/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_quaternion_inverse_f32.c * Description: Floating-point quaternion inverse * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/quaternion_math_functions.h" #include /** @ingroup groupQuaternionMath */ /** @defgroup QuatInverse Quaternion Inverse Compute the inverse of a quaternion. */ /** @addtogroup QuatInverse @{ */ /** @brief Floating-point quaternion inverse. @param[in] pInputQuaternions points to the input vector of quaternions @param[out] pInverseQuaternions points to the output vector of inverse quaternions @param[in] nbQuaternions number of quaternions in each vector @return none */ #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) #include "arm_helium_utils.h" void arm_quaternion_inverse_f32(const float32_t *pInputQuaternions, float32_t *pInverseQuaternions, uint32_t nbQuaternions) { f32x4_t vec1,vec2; float32_t squaredSum; for(uint32_t i=0; i < nbQuaternions; i++) { vec1 = vld1q(pInputQuaternions); vec2 = vmulq(vec1,vec1); squaredSum = vecAddAcrossF32Mve(vec2); vec1 = vmulq_n_f32(vec1, 1.0f / squaredSum); vec1 = vsetq_lane_f32(-vgetq_lane(vec1, 0),vec1,0); vec1 = vnegq_f32(vec1); vst1q(pInverseQuaternions, vec1); pInputQuaternions += 4; pInverseQuaternions += 4; } } #else void arm_quaternion_inverse_f32(const float32_t *pInputQuaternions, float32_t *pInverseQuaternions, uint32_t nbQuaternions) { float32_t temp; for(uint32_t i=0; i < nbQuaternions; i++) { temp = SQ(pInputQuaternions[4 * i + 0]) + SQ(pInputQuaternions[4 * i + 1]) + SQ(pInputQuaternions[4 * i + 2]) + SQ(pInputQuaternions[4 * i + 3]); pInverseQuaternions[4 * i + 0] = pInputQuaternions[4 * i + 0] / temp; pInverseQuaternions[4 * i + 1] = -pInputQuaternions[4 * i + 1] / temp; pInverseQuaternions[4 * i + 2] = -pInputQuaternions[4 * i + 2] / temp; pInverseQuaternions[4 * i + 3] = -pInputQuaternions[4 * i + 3] / temp; } } #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ /** @} end of QuatInverse group */