/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_mat_scale_q15.c
* Description: Multiplies a Q15 matrix by a scalar
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/matrix_functions.h"
/**
@ingroup groupMatrix
*/
/**
@addtogroup MatrixScale
@{
*/
/**
@brief Q15 matrix scaling.
@param[in] pSrc points to input matrix
@param[in] scaleFract fractional portion of the scale factor
@param[in] shift number of bits to shift the result by
@param[out] pDst points to output matrix structure
@return execution status
- \ref ARM_MATH_SUCCESS : Operation successful
- \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
@par Scaling and Overflow Behavior
The input data *pSrc
and scaleFract
are in 1.15 format.
These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format.
*/
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
arm_status arm_mat_scale_q15(
const arm_matrix_instance_q15 * pSrc,
q15_t scaleFract,
int32_t shift,
arm_matrix_instance_q15 * pDst)
{
arm_status status; /* Status of matrix scaling */
q15_t *pIn = pSrc->pData; /* input data matrix pointer */
q15_t *pOut = pDst->pData; /* output data matrix pointer */
uint32_t numSamples; /* total number of elements in the matrix */
uint32_t blkCnt; /* loop counters */
q15x8_t vecIn, vecOut;
q15_t const *pInVec;
int32_t totShift = shift + 1; /* shift to apply after scaling */
pInVec = (q15_t const *) pIn;
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((pSrc->numRows != pDst->numRows) ||
(pSrc->numCols != pDst->numCols) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/*
* Total number of samples in the input matrix
*/
numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
blkCnt = numSamples >> 3;
while (blkCnt > 0U)
{
/*
* C(m,n) = A(m,n) * scale
* Scaling and results are stored in the destination buffer.
*/
vecIn = vld1q(pInVec); pInVec += 8;
/* multiply input with scaler value */
vecOut = vmulhq(vecIn, vdupq_n_s16(scaleFract));
/* apply shifting */
vecOut = vqshlq_r(vecOut, totShift);
vst1q(pOut, vecOut); pOut += 8;
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numSamples & 7;
if (blkCnt > 0U)
{
mve_pred16_t p0 = vctp16q(blkCnt);
vecIn = vld1q(pInVec); pInVec += 8;
vecOut = vmulhq(vecIn, vdupq_n_s16(scaleFract));
vecOut = vqshlq_r(vecOut, totShift);
vstrhq_p(pOut, vecOut, p0);
}
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
#else
arm_status arm_mat_scale_q15(
const arm_matrix_instance_q15 * pSrc,
q15_t scaleFract,
int32_t shift,
arm_matrix_instance_q15 * pDst)
{
q15_t *pIn = pSrc->pData; /* Input data matrix pointer */
q15_t *pOut = pDst->pData; /* Output data matrix pointer */
uint32_t numSamples; /* Total number of elements in the matrix */
uint32_t blkCnt; /* Loop counter */
arm_status status; /* Status of matrix scaling */
int32_t kShift = 15 - shift; /* Total shift to apply after scaling */
#if defined (ARM_MATH_LOOPUNROLL) && defined (ARM_MATH_DSP)
q31_t inA1, inA2;
q31_t out1, out2, out3, out4; /* Temporary output variables */
q15_t in1, in2, in3, in4; /* Temporary input variables */
#endif
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((pSrc->numRows != pDst->numRows) ||
(pSrc->numCols != pDst->numCols) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* Total number of samples in input matrix */
numSamples = (uint32_t) pSrc->numRows * pSrc->numCols;
#if defined (ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 outputs at a time */
blkCnt = numSamples >> 2U;
while (blkCnt > 0U)
{
/* C(m,n) = A(m,n) * k */
#if defined (ARM_MATH_DSP)
/* read 2 times 2 samples at a time from source */
inA1 = read_q15x2_ia ((q15_t **) &pIn);
inA2 = read_q15x2_ia ((q15_t **) &pIn);
/* Scale inputs and store result in temporary variables
* in single cycle by packing the outputs */
out1 = (q31_t) ((q15_t) (inA1 >> 16) * scaleFract);
out2 = (q31_t) ((q15_t) (inA1 ) * scaleFract);
out3 = (q31_t) ((q15_t) (inA2 >> 16) * scaleFract);
out4 = (q31_t) ((q15_t) (inA2 ) * scaleFract);
/* apply shifting */
out1 = out1 >> kShift;
out2 = out2 >> kShift;
out3 = out3 >> kShift;
out4 = out4 >> kShift;
/* saturate the output */
in1 = (q15_t) (__SSAT(out1, 16));
in2 = (q15_t) (__SSAT(out2, 16));
in3 = (q15_t) (__SSAT(out3, 16));
in4 = (q15_t) (__SSAT(out4, 16));
/* store result to destination */
write_q15x2_ia (&pOut, __PKHBT(in2, in1, 16));
write_q15x2_ia (&pOut, __PKHBT(in4, in3, 16));
#else
*pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
*pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
*pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
*pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
#endif
/* Decrement loop counter */
blkCnt--;
}
/* Loop unrolling: Compute remaining outputs */
blkCnt = numSamples % 0x4U;
#else
/* Initialize blkCnt with number of samples */
blkCnt = numSamples;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U)
{
/* C(m,n) = A(m,n) * k */
/* Scale, saturate and store result in destination buffer. */
*pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16));
/* Decrement loop counter */
blkCnt--;
}
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
#endif /* defined(ARM_MATH_MVEI) */
/**
@} end of MatrixScale group
*/