/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_mat_scale_f32.c
* Description: Multiplies a floating-point matrix by a scalar
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/matrix_functions.h"
/**
@ingroup groupMatrix
*/
/**
@defgroup MatrixScale Matrix Scale
Multiplies a matrix by a scalar. This is accomplished by multiplying each element in the
matrix by the scalar. For example:
\image html MatrixScale.gif "Matrix Scaling of a 3 x 3 matrix"
The function checks to make sure that the input and output matrices are of the same size.
In the fixed-point Q15 and Q31 functions, scale
is represented by
a fractional multiplication scaleFract
and an arithmetic shift shift
.
The shift allows the gain of the scaling operation to exceed 1.0.
The overall scale factor applied to the fixed-point data is
scale = scaleFract * 2^shift.*/ /** @addtogroup MatrixScale @{ */ /** @brief Floating-point matrix scaling. @param[in] pSrc points to input matrix @param[in] scale scale factor to be applied @param[out] pDst points to output matrix structure @return execution status - \ref ARM_MATH_SUCCESS : Operation successful - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed */ #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) arm_status arm_mat_scale_f32( const arm_matrix_instance_f32 * pSrc, float32_t scale, arm_matrix_instance_f32 * pDst) { arm_status status; /* status of matrix scaling */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { float32_t *pIn = pSrc->pData; /* input data matrix pointer */ float32_t *pOut = pDst->pData; /* output data matrix pointer */ uint32_t numSamples; /* total number of elements in the matrix */ uint32_t blkCnt; /* loop counters */ f32x4_t vecIn, vecOut; float32_t const *pInVec; pInVec = (float32_t const *) pIn; /* * Total number of samples in the input matrix */ numSamples = (uint32_t) pSrc->numRows * pSrc->numCols; blkCnt = numSamples >> 2; while (blkCnt > 0U) { /* * C(m,n) = A(m,n) * scale * Scaling and results are stored in the destination buffer. */ vecIn = vld1q(pInVec); pInVec += 4; vecOut = vecIn * scale; vst1q(pOut, vecOut); pOut += 4; /* * Decrement the blockSize loop counter */ blkCnt--; } /* * tail */ blkCnt = numSamples & 3; if (blkCnt > 0U) { mve_pred16_t p0 = vctp32q(blkCnt); vecIn = vld1q(pInVec); vecOut = vecIn * scale; vstrwq_p(pOut, vecOut, p0); } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #else #if defined(ARM_MATH_NEON_EXPERIMENTAL) arm_status arm_mat_scale_f32( const arm_matrix_instance_f32 * pSrc, float32_t scale, arm_matrix_instance_f32 * pDst) { float32_t *pIn = pSrc->pData; /* input data matrix pointer */ float32_t *pOut = pDst->pData; /* output data matrix pointer */ uint32_t numSamples; /* total number of elements in the matrix */ uint32_t blkCnt; /* loop counters */ arm_status status; /* status of matrix scaling */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { float32x4_t vec1; float32x4_t res; /* Total number of samples in the input matrix */ numSamples = (uint32_t) pSrc->numRows * pSrc->numCols; blkCnt = numSamples >> 2; /* Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* C(m,n) = A(m,n) * scale */ /* Scaling and results are stored in the destination buffer. */ vec1 = vld1q_f32(pIn); res = vmulq_f32(vec1, vdupq_n_f32(scale)); vst1q_f32(pOut, res); /* update pointers to process next sampels */ pIn += 4U; pOut += 4U; /* Decrement the numSamples loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4U; while (blkCnt > 0U) { /* C(m,n) = A(m,n) * scale */ /* The results are stored in the destination buffer. */ *pOut++ = (*pIn++) * scale; /* Decrement the loop counter */ blkCnt--; } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #else arm_status arm_mat_scale_f32( const arm_matrix_instance_f32 * pSrc, float32_t scale, arm_matrix_instance_f32 * pDst) { float32_t *pIn = pSrc->pData; /* Input data matrix pointer */ float32_t *pOut = pDst->pData; /* Output data matrix pointer */ uint32_t numSamples; /* Total number of elements in the matrix */ uint32_t blkCnt; /* Loop counters */ arm_status status; /* Status of matrix scaling */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols) ) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* Total number of samples in input matrix */ numSamples = (uint32_t) pSrc->numRows * pSrc->numCols; #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ blkCnt = numSamples >> 2U; while (blkCnt > 0U) { /* C(m,n) = A(m,n) * scale */ /* Scale and store result in destination buffer. */ *pOut++ = (*pIn++) * scale; *pOut++ = (*pIn++) * scale; *pOut++ = (*pIn++) * scale; *pOut++ = (*pIn++) * scale; /* Decrement loop counter */ blkCnt--; } /* Loop unrolling: Compute remaining outputs */ blkCnt = numSamples % 0x4U; #else /* Initialize blkCnt with number of samples */ blkCnt = numSamples; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (blkCnt > 0U) { /* C(m,n) = A(m,n) * scale */ /* Scale and store result in destination buffer. */ *pOut++ = (*pIn++) * scale; /* Decrement loop counter */ blkCnt--; } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #endif /* #if defined(ARM_MATH_NEON) */ #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ /** @} end of MatrixScale group */