/* * Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright 2016-2020 NXP * All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include "fsl_dspi_edma.h" /*********************************************************************************************************************** * Definitions ***********************************************************************************************************************/ /* Component ID definition, used by tools. */ #ifndef FSL_COMPONENT_ID #define FSL_COMPONENT_ID "platform.drivers.dspi_edma" #endif /*! * @brief Structure definition for dspi_master_edma_private_handle_t. The structure is private. */ typedef struct _dspi_master_edma_private_handle { SPI_Type *base; /*!< DSPI peripheral base address. */ dspi_master_edma_handle_t *handle; /*!< dspi_master_edma_handle_t handle */ } dspi_master_edma_private_handle_t; /*! * @brief Structure definition for dspi_slave_edma_private_handle_t. The structure is private. */ typedef struct _dspi_slave_edma_private_handle { SPI_Type *base; /*!< DSPI peripheral base address. */ dspi_slave_edma_handle_t *handle; /*!< dspi_master_edma_handle_t handle */ } dspi_slave_edma_private_handle_t; /*********************************************************************************************************************** * Prototypes ***********************************************************************************************************************/ /*! * @brief EDMA_DspiMasterCallback after the DSPI master transfer completed by using EDMA. * This is not a public API. */ static void EDMA_DspiMasterCallback(edma_handle_t *edmaHandle, void *g_dspiEdmaPrivateHandle, bool transferDone, uint32_t tcds); /*! * @brief EDMA_DspiSlaveCallback after the DSPI slave transfer completed by using EDMA. * This is not a public API. */ static void EDMA_DspiSlaveCallback(edma_handle_t *edmaHandle, void *g_dspiEdmaPrivateHandle, bool transferDone, uint32_t tcds); /*********************************************************************************************************************** * Variables ***********************************************************************************************************************/ /*! @brief Pointers to dspi edma handles for each instance. */ static dspi_master_edma_private_handle_t s_dspiMasterEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT]; static dspi_slave_edma_private_handle_t s_dspiSlaveEdmaPrivateHandle[FSL_FEATURE_SOC_DSPI_COUNT]; /*********************************************************************************************************************** * Code ***********************************************************************************************************************/ /*! * brief Initializes the DSPI master eDMA handle. * * This function initializes the DSPI eDMA handle which can be used for other DSPI transactional APIs. Usually, for a * specified DSPI instance, call this API once to get the initialized handle. * * Note that DSPI eDMA has separated (RX and TX as two sources) or shared (RX and TX are the same source) DMA request * source. * (1) For the separated DMA request source, enable and set the RX DMAMUX source for edmaRxRegToRxDataHandle and * TX DMAMUX source for edmaIntermediaryToTxRegHandle. * (2) For the shared DMA request source, enable and set the RX/RX DMAMUX source for the edmaRxRegToRxDataHandle. * * param base DSPI peripheral base address. * param handle DSPI handle pointer to dspi_master_edma_handle_t. * param callback DSPI callback. * param userData A callback function parameter. * param edmaRxRegToRxDataHandle edmaRxRegToRxDataHandle pointer to edma_handle_t. * param edmaTxDataToIntermediaryHandle edmaTxDataToIntermediaryHandle pointer to edma_handle_t. * param edmaIntermediaryToTxRegHandle edmaIntermediaryToTxRegHandle pointer to edma_handle_t. */ void DSPI_MasterTransferCreateHandleEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, dspi_master_edma_transfer_callback_t callback, void *userData, edma_handle_t *edmaRxRegToRxDataHandle, edma_handle_t *edmaTxDataToIntermediaryHandle, edma_handle_t *edmaIntermediaryToTxRegHandle) { assert(NULL != handle); assert(NULL != edmaRxRegToRxDataHandle); #if (!(defined(FSL_FEATURE_DSPI_HAS_GASKET) && FSL_FEATURE_DSPI_HAS_GASKET)) assert(NULL != edmaTxDataToIntermediaryHandle); #endif assert(NULL != edmaIntermediaryToTxRegHandle); /* Zero the handle. */ (void)memset(handle, 0, sizeof(*handle)); uint32_t instance = DSPI_GetInstance(base); s_dspiMasterEdmaPrivateHandle[instance].base = base; s_dspiMasterEdmaPrivateHandle[instance].handle = handle; handle->callback = callback; handle->userData = userData; handle->edmaRxRegToRxDataHandle = edmaRxRegToRxDataHandle; handle->edmaTxDataToIntermediaryHandle = edmaTxDataToIntermediaryHandle; handle->edmaIntermediaryToTxRegHandle = edmaIntermediaryToTxRegHandle; } /*! * brief DSPI master transfer data using eDMA. * * This function transfers data using eDMA. This is a non-blocking function, which returns right away. When all data * is transferred, the callback function is called. * * note The max transfer size of each transfer depends on whether the instance's Tx/Rx shares the same DMA request. If * FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(x) is true, then the max transfer size is 32767 datawidth of data, * otherwise is 511. * * param base DSPI peripheral base address. * param handle A pointer to the dspi_master_edma_handle_t structure which stores the transfer state. * param transfer A pointer to the dspi_transfer_t structure. * return status of status_t. */ status_t DSPI_MasterTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, dspi_transfer_t *transfer) { assert(NULL != handle); assert(NULL != transfer); /* If the transfer count is zero, then return immediately.*/ if (transfer->dataSize == 0U) { return kStatus_InvalidArgument; } /* If both send buffer and receive buffer is null */ if ((NULL == (transfer->txData)) && (NULL == (transfer->rxData))) { return kStatus_InvalidArgument; } /* Check that we're not busy.*/ if (handle->state == (uint8_t)kDSPI_Busy) { return kStatus_DSPI_Busy; } handle->state = (uint8_t)kDSPI_Busy; uint32_t instance = DSPI_GetInstance(base); uint16_t wordToSend = 0; uint8_t dummyData = DSPI_GetDummyDataInstance(base); uint8_t dataAlreadyFed = 0; uint8_t dataFedMax = 2; uint32_t tmpMCR = 0; size_t tmpRemainingSendByteCount = 0; uint32_t rxAddr = DSPI_GetRxRegisterAddress(base); uint32_t txAddr = DSPI_MasterGetTxRegisterAddress(base); edma_tcd_t *softwareTCD = (edma_tcd_t *)((uint32_t)(&handle->dspiSoftwareTCD[1]) & (~0x1FU)); edma_transfer_config_t transferConfigA; edma_transfer_config_t transferConfigB; handle->txBuffIfNull = ((uint32_t)dummyData << 8U) | dummyData; dspi_command_data_config_t commandStruct; DSPI_StopTransfer(base); DSPI_FlushFifo(base, true, true); DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_AllStatusFlag); commandStruct.whichPcs = (uint8_t)((uint32_t)1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT)); commandStruct.isEndOfQueue = false; commandStruct.clearTransferCount = false; commandStruct.whichCtar = (uint8_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT); commandStruct.isPcsContinuous = (0U != (transfer->configFlags & (uint32_t)kDSPI_MasterPcsContinuous)) ? true : false; handle->command = DSPI_MasterGetFormattedCommand(&(commandStruct)); commandStruct.isEndOfQueue = true; commandStruct.isPcsContinuous = (0U != (transfer->configFlags & (uint32_t)kDSPI_MasterActiveAfterTransfer)) ? true : false; handle->lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct)); handle->bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1U; tmpMCR = base->MCR; if ((0U != (tmpMCR & SPI_MCR_DIS_RXF_MASK)) || (0U != (tmpMCR & SPI_MCR_DIS_TXF_MASK))) { handle->fifoSize = 1U; } else { handle->fifoSize = (uint8_t)FSL_FEATURE_DSPI_FIFO_SIZEn(base); } handle->txData = transfer->txData; handle->rxData = transfer->rxData; handle->remainingSendByteCount = transfer->dataSize; handle->remainingReceiveByteCount = transfer->dataSize; handle->totalByteCount = transfer->dataSize; /* If using a shared RX/TX DMA request, then this limits the amount of data we can transfer * due to the linked channel. The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame */ if (transfer->dataSize > DSPI_EDMA_MAX_TRANSFER_SIZE(base, (handle->bitsPerFrame))) { handle->state = (uint8_t)kDSPI_Idle; return kStatus_DSPI_OutOfRange; } /*The data size should be even if the bitsPerFrame is greater than 8 (that is 2 bytes per frame in dspi) */ if ((0U != (transfer->dataSize & 0x1U)) && (handle->bitsPerFrame > 8U)) { handle->state = (uint8_t)kDSPI_Idle; return kStatus_InvalidArgument; } DSPI_DisableDMA(base, (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable); EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiMasterCallback, &s_dspiMasterEdmaPrivateHandle[instance]); /* (1)For DSPI instances with shared RX/TX DMA requests: Rx DMA request -> channel_A -> channel_B-> channel_C. channel_A minor link to channel_B , channel_B minor link to channel_C. Already pushed 1 or 2 data in SPI_PUSHR , then start the DMA tansfer. channel_A:SPI_POPR to rxData, channel_B:next txData to handle->command (low 16 bits), channel_C:handle->command (32 bits) to SPI_PUSHR, and use the scatter/gather to transfer the last data (handle->lastCommand to SPI_PUSHR). (2)For DSPI instances with separate RX and TX DMA requests: Rx DMA request -> channel_A Tx DMA request -> channel_C -> channel_B . channel_C major link to channel_B. So need prepare the first data in "intermediary" before the DMA transfer and then channel_B is used to prepare the next data to "intermediary" channel_A:SPI_POPR to rxData, channel_C: handle->command (32 bits) to SPI_PUSHR, channel_B: next txData to handle->command (low 16 bits), and use the scatter/gather to prepare the last data (handle->lastCommand to handle->Command). */ /*If dspi has separate dma request , prepare the first data in "intermediary" . else (dspi has shared dma request) , send first 2 data if there is fifo or send first 1 data if there is no fifo*/ if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { /* For DSPI instances with separate RX/TX DMA requests, we'll use the TX DMA request to * trigger the TX DMA channel and RX DMA request to trigger the RX DMA channel */ /*Prepare the firt data*/ if (handle->bitsPerFrame > 8U) { /* If it's the last word */ if (handle->remainingSendByteCount <= 2U) { if (NULL != handle->txData) { wordToSend = *(handle->txData); ++handle->txData; /* increment to next data byte */ wordToSend |= (uint16_t)(*(handle->txData)) << 8U; } else { wordToSend = (((uint16_t)dummyData << 8U) | (uint16_t)dummyData); } handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend; handle->command = handle->lastCommand; } else /* For all words except the last word , frame > 8bits */ { if (NULL != handle->txData) { wordToSend = *(handle->txData); ++handle->txData; /* increment to next data byte */ wordToSend |= (uint16_t)(*(handle->txData)) << 8U; ++handle->txData; /* increment to next data byte */ } else { wordToSend = (((uint16_t)dummyData << 8U) | (uint16_t)dummyData); } handle->command = (handle->command & 0xffff0000U) | wordToSend; } } else /* Optimized for bits/frame less than or equal to one byte. */ { if (NULL != handle->txData) { wordToSend = *(handle->txData); ++handle->txData; /* increment to next data word*/ } else { wordToSend = dummyData; } if (handle->remainingSendByteCount == 1U) { handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend; handle->command = handle->lastCommand; } else { handle->command = (handle->command & 0xffff0000U) | wordToSend; } } } else /*dspi has shared dma request*/ { /* For DSPI instances with shared RX/TX DMA requests, we'll use the RX DMA request to * trigger ongoing transfers and will link to the TX DMA channel from the RX DMA channel. */ /* If bits/frame is greater than one byte */ if (handle->bitsPerFrame > 8U) { while ((uint32_t)kDSPI_TxFifoFillRequestFlag == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag)) { if (handle->remainingSendByteCount <= 2U) { if (NULL != handle->txData) { wordToSend = *(handle->txData); ++handle->txData; wordToSend |= (uint16_t)(*(handle->txData)) << 8U; } else { wordToSend = (((uint16_t)dummyData << 8U) | (uint16_t)dummyData); } handle->remainingSendByteCount = 0; base->PUSHR = (handle->lastCommand & 0xffff0000U) | wordToSend; } /* For all words except the last word */ else { if (NULL != handle->txData) { wordToSend = *(handle->txData); ++handle->txData; wordToSend |= (uint16_t)(*(handle->txData)) << 8U; ++handle->txData; } else { wordToSend = (((uint16_t)dummyData << 8U) | (uint16_t)dummyData); } handle->remainingSendByteCount -= 2U; base->PUSHR = (handle->command & 0xffff0000U) | wordToSend; } /* Try to clear the TFFF; if the TX FIFO is full this will clear */ DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag); dataAlreadyFed += 2U; /* exit loop if send count is zero, else update local variables for next loop */ if ((handle->remainingSendByteCount == 0U) || (dataAlreadyFed == (dataFedMax * 2U))) { break; } } /* End of TX FIFO fill while loop */ } else /* Optimized for bits/frame less than or equal to one byte. */ { while ((uint32_t)kDSPI_TxFifoFillRequestFlag == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag)) { if (NULL != handle->txData) { wordToSend = *(handle->txData); ++handle->txData; } else { wordToSend = dummyData; } if (handle->remainingSendByteCount == 1U) { base->PUSHR = (handle->lastCommand & 0xffff0000U) | wordToSend; } else { base->PUSHR = (handle->command & 0xffff0000U) | wordToSend; } /* Try to clear the TFFF; if the TX FIFO is full this will clear */ DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag); --handle->remainingSendByteCount; dataAlreadyFed++; /* exit loop if send count is zero, else update local variables for next loop */ if ((handle->remainingSendByteCount == 0U) || (dataAlreadyFed == dataFedMax)) { break; } } /* End of TX FIFO fill while loop */ } } /***channel_A *** used for carry the data from Rx_Data_Register(POPR) to User_Receive_Buffer(rxData)*/ EDMA_ResetChannel(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel); transferConfigA.srcAddr = (uint32_t)rxAddr; transferConfigA.srcOffset = 0; if (NULL != handle->rxData) { transferConfigA.destAddr = (uint32_t) & (handle->rxData[0]); transferConfigA.destOffset = 1; } else { transferConfigA.destAddr = (uint32_t) & (handle->rxBuffIfNull); transferConfigA.destOffset = 0; } transferConfigA.destTransferSize = kEDMA_TransferSize1Bytes; if (handle->bitsPerFrame <= 8U) { transferConfigA.srcTransferSize = kEDMA_TransferSize1Bytes; transferConfigA.minorLoopBytes = 1; transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount; } else { transferConfigA.srcTransferSize = kEDMA_TransferSize2Bytes; transferConfigA.minorLoopBytes = 2; transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount / 2U; } /* Store the initially configured eDMA minor byte transfer count into the DSPI handle */ handle->nbytes = (uint8_t)(transferConfigA.minorLoopBytes); EDMA_SetTransferConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, (const edma_transfer_config_t *)(uint32_t)&transferConfigA, NULL); EDMA_EnableChannelInterrupts(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, (uint32_t)kEDMA_MajorInterruptEnable); if (handle->remainingSendByteCount == 0U) { EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle); DSPI_EnableDMA(base, (uint32_t)kDSPI_RxDmaEnable); DSPI_StartTransfer(base); return kStatus_Success; } tmpRemainingSendByteCount = handle->remainingSendByteCount; /*Calculate the last data : handle->lastCommand*/ if (((tmpRemainingSendByteCount > 0U) && (1U != (uint8_t)FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) || ((((tmpRemainingSendByteCount > 1U) && (handle->bitsPerFrame <= 8U)) || ((tmpRemainingSendByteCount > 2U) && (handle->bitsPerFrame > 8U))) && (1U == (uint8_t)FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)))) { if (NULL != handle->txData) { uint32_t bufferIndex = 0; if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { if (handle->bitsPerFrame <= 8U) { bufferIndex = handle->remainingSendByteCount - 1U; } else { bufferIndex = handle->remainingSendByteCount - 2U; } } else { bufferIndex = handle->remainingSendByteCount; } uint32_t tmpLastCommand = handle->lastCommand; uint8_t *tmpTxData = handle->txData; if (handle->bitsPerFrame <= 8U) { tmpLastCommand = (tmpLastCommand & 0xffff0000U) | tmpTxData[bufferIndex - 1U]; } else { tmpLastCommand = (tmpLastCommand & 0xffff0000U) | ((uint32_t)tmpTxData[bufferIndex - 1U] << 8U) | tmpTxData[bufferIndex - 2U]; } handle->lastCommand = tmpLastCommand; } else { if (handle->bitsPerFrame <= 8U) { wordToSend = dummyData; } else { wordToSend = (((uint16_t)dummyData << 8U) | (uint16_t)dummyData); } handle->lastCommand = (handle->lastCommand & 0xffff0000U) | wordToSend; } } /* The feature of GASKET is that the SPI supports 8-bit or 16-bit writes to the PUSH TX FIFO, * allowing a single write to the command word followed by multiple writes to the transmit word. * The TX FIFO will save the last command word written, and convert a 8-bit/16-bit write to the * transmit word into a 32-bit write that pushes both the command word and transmit word into * the TX FIFO (PUSH TX FIFO Register In Master Mode) * So, if this feature is supported, we can use use one channel to carry the receive data from * receive regsiter to user data buffer, use the other channel to carry the data from user data buffer * to transmit register,and use the scatter/gather function to prepare the last data. * That is to say, if GASKET feature is supported, we can use only two channels for tansferring data. */ #if defined(FSL_FEATURE_DSPI_HAS_GASKET) && FSL_FEATURE_DSPI_HAS_GASKET /* For DSPI instances with separate RX and TX DMA requests: use the scatter/gather to prepare the last data * (handle->lastCommand) to PUSHR register. */ EDMA_ResetChannel(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel); if ((1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) || ((handle->remainingSendByteCount > 0) && (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)))) { transferConfigB.srcAddr = (uint32_t) & (handle->lastCommand); transferConfigB.destAddr = (uint32_t)txAddr; transferConfigB.srcTransferSize = kEDMA_TransferSize4Bytes; transferConfigB.destTransferSize = kEDMA_TransferSize4Bytes; transferConfigB.srcOffset = 0; transferConfigB.destOffset = 0; transferConfigB.minorLoopBytes = 4; transferConfigB.majorLoopCounts = 1; EDMA_TcdReset(softwareTCD); EDMA_TcdSetTransferConfig(softwareTCD, &transferConfigB, NULL); } /*User_Send_Buffer(txData) to PUSHR register. */ if (((handle->remainingSendByteCount > 2U) && (handle->bitsPerFrame <= 8U)) || ((handle->remainingSendByteCount > 4U) && (handle->bitsPerFrame > 8U))) { if (handle->txData) { if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { /* For DSPI with separate RX and TX DMA requests, one frame data has been carry * to handle->command, so need to reduce the pointer of txData. */ transferConfigB.srcAddr = (uint32_t)((uint8_t *)(handle->txData) - ((handle->bitsPerFrame <= 8U) ? (1U) : (2U))); transferConfigB.srcOffset = 1; } else { /* For DSPI with shared RX and TX DMA requests, one or two frame data have been carry * to PUSHR register, so no need to change the pointer of txData. */ transferConfigB.srcAddr = (uint32_t)((uint8_t *)(handle->txData)); transferConfigB.srcOffset = 1; } } else { transferConfigB.srcAddr = (uint32_t)(&handle->txBuffIfNull); transferConfigB.srcOffset = 0; } transferConfigB.destAddr = (uint32_t)txAddr; transferConfigB.destOffset = 0; transferConfigB.srcTransferSize = kEDMA_TransferSize1Bytes; if (handle->bitsPerFrame <= 8U) { transferConfigB.destTransferSize = kEDMA_TransferSize1Bytes; transferConfigB.minorLoopBytes = 1; transferConfigB.majorLoopCounts = handle->remainingSendByteCount - 1U; } else { transferConfigB.destTransferSize = kEDMA_TransferSize2Bytes; transferConfigB.minorLoopBytes = 2; transferConfigB.majorLoopCounts = (handle->remainingSendByteCount / 2U) - 1U; } EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigB, softwareTCD); } /* If only one word to transmit, only carry the lastcommand. */ else { EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel, &transferConfigB, NULL); } /*Start the EDMA channel_A , channel_C. */ EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle); EDMA_StartTransfer(handle->edmaIntermediaryToTxRegHandle); /* Set the channel link. * For DSPI instances with shared TX and RX DMA requests, setup channel minor link, first receive data from the * receive register, and then carry transmit data to PUSHER register. * For DSPI instance with separate TX and RX DMA requests, there is no need to set up channel link. */ if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { /*Set channel priority*/ uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel; uint8_t channelPriorityHigh = handle->edmaIntermediaryToTxRegHandle->channel; uint8_t t = 0; if (channelPriorityLow > channelPriorityHigh) { t = channelPriorityLow; channelPriorityLow = channelPriorityHigh; channelPriorityHigh = t; } edma_channel_Preemption_config_t preemption_config_t; preemption_config_t.enableChannelPreemption = true; preemption_config_t.enablePreemptAbility = true; preemption_config_t.channelPriority = channelPriorityLow; EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, &preemption_config_t); preemption_config_t.channelPriority = channelPriorityHigh; EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel, &preemption_config_t); /*if there is Rx DMA request , carry the 32bits data (handle->command) to user data first , then link to channelC to carry the next data to PUSHER register.(txData to PUSHER) */ if (handle->remainingSendByteCount > 0U) { EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, kEDMA_MinorLink, handle->edmaIntermediaryToTxRegHandle->channel); } } DSPI_EnableDMA(base, kDSPI_RxDmaEnable | kDSPI_TxDmaEnable); /* Setup control info to PUSHER register. */ *((uint16_t *)&(base->PUSHR) + 1) = (handle->command >> 16U); #else /***channel_B *** used for carry the data from User_Send_Buffer to "intermediary" because the SPIx_PUSHR should write the 32bits at once time . Then use channel_C to carry the "intermediary" to SPIx_PUSHR. Note that the SPIx_PUSHR upper 16 bits are the "command" and the low 16bits are data */ EDMA_ResetChannel(handle->edmaTxDataToIntermediaryHandle->base, handle->edmaTxDataToIntermediaryHandle->channel); /*For DSPI instances with separate RX and TX DMA requests: use the scatter/gather to prepare the last data * (handle->lastCommand) to handle->Command*/ if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { transferConfigB.srcAddr = (uint32_t) & (handle->lastCommand); transferConfigB.destAddr = (uint32_t) & (handle->command); transferConfigB.srcTransferSize = kEDMA_TransferSize4Bytes; transferConfigB.destTransferSize = kEDMA_TransferSize4Bytes; transferConfigB.srcOffset = 0; transferConfigB.destOffset = 0; transferConfigB.minorLoopBytes = 4; transferConfigB.majorLoopCounts = 1; EDMA_TcdReset(softwareTCD); EDMA_TcdSetTransferConfig(softwareTCD, (const edma_transfer_config_t *)(uint32_t)&transferConfigB, NULL); } tmpRemainingSendByteCount = handle->remainingSendByteCount; /*User_Send_Buffer(txData) to intermediary(handle->command)*/ if (((((tmpRemainingSendByteCount > 2U) && (handle->bitsPerFrame <= 8U)) || ((tmpRemainingSendByteCount > 4U) && (handle->bitsPerFrame > 8U))) && (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) || (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) { if (NULL != handle->txData) { transferConfigB.srcAddr = (uint32_t)(handle->txData); transferConfigB.srcOffset = 1; } else { transferConfigB.srcAddr = (uint32_t)(&handle->txBuffIfNull); transferConfigB.srcOffset = 0; } transferConfigB.destAddr = (uint32_t)(&handle->command); transferConfigB.destOffset = 0; transferConfigB.srcTransferSize = kEDMA_TransferSize1Bytes; if (handle->bitsPerFrame <= 8U) { transferConfigB.destTransferSize = kEDMA_TransferSize1Bytes; transferConfigB.minorLoopBytes = 1; if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { transferConfigB.majorLoopCounts = handle->remainingSendByteCount - 2U; } else { /*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is majorlink , the majorlink would not trigger the channel_C*/ transferConfigB.majorLoopCounts = handle->remainingSendByteCount + 1U; } } else { transferConfigB.destTransferSize = kEDMA_TransferSize2Bytes; transferConfigB.minorLoopBytes = 2; if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2U - 2U; } else { /*Only enable channel_B minorlink to channel_C , so need to add one count due to the last time is * majorlink*/ transferConfigB.majorLoopCounts = handle->remainingSendByteCount / 2U + 1U; } } if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base, handle->edmaTxDataToIntermediaryHandle->channel, (const edma_transfer_config_t *)(uint32_t)&transferConfigB, softwareTCD); EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel, false); } else { EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base, handle->edmaTxDataToIntermediaryHandle->channel, (const edma_transfer_config_t *)(uint32_t)&transferConfigB, NULL); } } else { EDMA_SetTransferConfig(handle->edmaTxDataToIntermediaryHandle->base, handle->edmaTxDataToIntermediaryHandle->channel, (const edma_transfer_config_t *)(uint32_t)&transferConfigB, NULL); } /***channel_C ***carry the "intermediary" to SPIx_PUSHR. used the edma Scatter Gather function on channel_C to handle the last data */ edma_transfer_config_t transferConfigC; EDMA_ResetChannel(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel); tmpRemainingSendByteCount = handle->remainingSendByteCount; /*For DSPI instances with shared RX/TX DMA requests: use the scatter/gather to prepare the last data * (handle->lastCommand) to SPI_PUSHR*/ if (((1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) && (tmpRemainingSendByteCount > 0U))) { transferConfigC.srcAddr = (uint32_t) & (handle->lastCommand); transferConfigC.destAddr = (uint32_t)txAddr; transferConfigC.srcTransferSize = kEDMA_TransferSize4Bytes; transferConfigC.destTransferSize = kEDMA_TransferSize4Bytes; transferConfigC.srcOffset = 0; transferConfigC.destOffset = 0; transferConfigC.minorLoopBytes = 4; transferConfigC.majorLoopCounts = 1; EDMA_TcdReset(softwareTCD); EDMA_TcdSetTransferConfig(softwareTCD, (const edma_transfer_config_t *)(uint32_t)&transferConfigC, NULL); } tmpRemainingSendByteCount = handle->remainingSendByteCount; if (((tmpRemainingSendByteCount > 1U) && (handle->bitsPerFrame <= 8U)) || ((tmpRemainingSendByteCount > 2U) && (handle->bitsPerFrame > 8U)) || (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base))) { transferConfigC.srcAddr = (uint32_t)(&(handle->command)); transferConfigC.destAddr = (uint32_t)txAddr; transferConfigC.srcTransferSize = kEDMA_TransferSize4Bytes; transferConfigC.destTransferSize = kEDMA_TransferSize4Bytes; transferConfigC.srcOffset = 0; transferConfigC.destOffset = 0; transferConfigC.minorLoopBytes = 4; if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { if (handle->bitsPerFrame <= 8U) { transferConfigC.majorLoopCounts = handle->remainingSendByteCount - 1U; } else { transferConfigC.majorLoopCounts = (handle->remainingSendByteCount / 2U) - 1U; } EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel, (const edma_transfer_config_t *)(uint32_t)&transferConfigC, softwareTCD); } else { transferConfigC.majorLoopCounts = 1; EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel, (const edma_transfer_config_t *)(uint32_t)&transferConfigC, NULL); } EDMA_EnableAutoStopRequest(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel, false); } else { EDMA_SetTransferConfig(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel, (const edma_transfer_config_t *)(uint32_t)&transferConfigC, NULL); } /*Start the EDMA channel_A , channel_B , channel_C transfer*/ EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle); EDMA_StartTransfer(handle->edmaTxDataToIntermediaryHandle); EDMA_StartTransfer(handle->edmaIntermediaryToTxRegHandle); /*Set channel priority*/ uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel; uint8_t channelPriorityMid = handle->edmaTxDataToIntermediaryHandle->channel; uint8_t channelPriorityHigh = handle->edmaIntermediaryToTxRegHandle->channel; uint8_t t = 0; if (channelPriorityLow > channelPriorityMid) { t = channelPriorityLow; channelPriorityLow = channelPriorityMid; channelPriorityMid = t; } if (channelPriorityLow > channelPriorityHigh) { t = channelPriorityLow; channelPriorityLow = channelPriorityHigh; channelPriorityHigh = t; } if (channelPriorityMid > channelPriorityHigh) { t = channelPriorityMid; channelPriorityMid = channelPriorityHigh; channelPriorityHigh = t; } edma_channel_Preemption_config_t preemption_config_t; preemption_config_t.enableChannelPreemption = true; preemption_config_t.enablePreemptAbility = true; preemption_config_t.channelPriority = channelPriorityLow; if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t); preemption_config_t.channelPriority = channelPriorityMid; EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToIntermediaryHandle->base, handle->edmaTxDataToIntermediaryHandle->channel, (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t); preemption_config_t.channelPriority = channelPriorityHigh; EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel, (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t); } else { EDMA_SetChannelPreemptionConfig(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel, (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t); preemption_config_t.channelPriority = channelPriorityMid; EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToIntermediaryHandle->base, handle->edmaTxDataToIntermediaryHandle->channel, (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t); preemption_config_t.channelPriority = channelPriorityHigh; EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t); } /*Set the channel link.*/ if (1 == FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { /*if there is Tx DMA request , carry the 32bits data (handle->command) to PUSHR first , then link to channelB to prepare the next 32bits data (txData to handle->command) */ if (handle->remainingSendByteCount > 1U) { EDMA_SetChannelLink(handle->edmaIntermediaryToTxRegHandle->base, handle->edmaIntermediaryToTxRegHandle->channel, kEDMA_MajorLink, handle->edmaTxDataToIntermediaryHandle->channel); } DSPI_EnableDMA(base, (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable); } else { if (handle->remainingSendByteCount > 0U) { EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, kEDMA_MinorLink, handle->edmaTxDataToIntermediaryHandle->channel); EDMA_SetChannelLink(handle->edmaTxDataToIntermediaryHandle->base, handle->edmaTxDataToIntermediaryHandle->channel, kEDMA_MinorLink, handle->edmaIntermediaryToTxRegHandle->channel); } DSPI_EnableDMA(base, (uint32_t)kDSPI_RxDmaEnable); } #endif DSPI_StartTransfer(base); return kStatus_Success; } /*! * brief Transfers a block of data using a eDMA method. * * This function transfers data using eDNA, the transfer mechanism is half-duplex. This is a non-blocking function, * which returns right away. When all data is transferred, the callback function is called. * * param base DSPI base pointer * param handle A pointer to the dspi_master_edma_handle_t structure which stores the transfer state. * param transfer A pointer to the dspi_half_duplex_transfer_t structure. * return status of status_t. */ status_t DSPI_MasterHalfDuplexTransferEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, dspi_half_duplex_transfer_t *xfer) { assert(NULL != xfer); assert(NULL != handle); dspi_transfer_t tempXfer = {0}; status_t status; if (true == xfer->isTransmitFirst) { tempXfer.txData = xfer->txData; tempXfer.rxData = NULL; tempXfer.dataSize = xfer->txDataSize; } else { tempXfer.txData = NULL; tempXfer.rxData = xfer->rxData; tempXfer.dataSize = xfer->rxDataSize; } /* If the pcs pin keep assert between transmit and receive. */ if (true == xfer->isPcsAssertInTransfer) { tempXfer.configFlags = (xfer->configFlags) | (uint32_t)kDSPI_MasterActiveAfterTransfer; } else { tempXfer.configFlags = (xfer->configFlags) & (~(uint32_t)kDSPI_MasterActiveAfterTransfer); } status = DSPI_MasterTransferBlocking(base, &tempXfer); if (status != kStatus_Success) { return status; } if (true == xfer->isTransmitFirst) { tempXfer.txData = NULL; tempXfer.rxData = xfer->rxData; tempXfer.dataSize = xfer->rxDataSize; } else { tempXfer.txData = xfer->txData; tempXfer.rxData = NULL; tempXfer.dataSize = xfer->txDataSize; } tempXfer.configFlags = xfer->configFlags; status = DSPI_MasterTransferEDMA(base, handle, &tempXfer); return status; } static void EDMA_DspiMasterCallback(edma_handle_t *edmaHandle, void *g_dspiEdmaPrivateHandle, bool transferDone, uint32_t tcds) { assert(NULL != edmaHandle); assert(NULL != g_dspiEdmaPrivateHandle); dspi_master_edma_private_handle_t *dspiEdmaPrivateHandle; dspiEdmaPrivateHandle = (dspi_master_edma_private_handle_t *)g_dspiEdmaPrivateHandle; DSPI_DisableDMA((dspiEdmaPrivateHandle->base), (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable); dspiEdmaPrivateHandle->handle->state = (uint8_t)kDSPI_Idle; if (NULL != dspiEdmaPrivateHandle->handle->callback) { dspiEdmaPrivateHandle->handle->callback(dspiEdmaPrivateHandle->base, dspiEdmaPrivateHandle->handle, kStatus_Success, dspiEdmaPrivateHandle->handle->userData); } } /*! * brief DSPI master aborts a transfer which is using eDMA. * * This function aborts a transfer which is using eDMA. * * param base DSPI peripheral base address. * param handle A pointer to the dspi_master_edma_handle_t structure which stores the transfer state. */ void DSPI_MasterTransferAbortEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle) { assert(NULL != handle); DSPI_StopTransfer(base); DSPI_DisableDMA(base, (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable); EDMA_AbortTransfer(handle->edmaRxRegToRxDataHandle); EDMA_AbortTransfer(handle->edmaTxDataToIntermediaryHandle); EDMA_AbortTransfer(handle->edmaIntermediaryToTxRegHandle); handle->state = (uint8_t)kDSPI_Idle; } /*! * brief Gets the master eDMA transfer count. * * This function gets the master eDMA transfer count. * * param base DSPI peripheral base address. * param handle A pointer to the dspi_master_edma_handle_t structure which stores the transfer state. * param count A number of bytes transferred by the non-blocking transaction. * return status of status_t. */ status_t DSPI_MasterTransferGetCountEDMA(SPI_Type *base, dspi_master_edma_handle_t *handle, size_t *count) { assert(NULL != handle); if (NULL == count) { return kStatus_InvalidArgument; } /* Catch when there is not an active transfer. */ if (handle->state != (uint8_t)kDSPI_Busy) { *count = 0; return kStatus_NoTransferInProgress; } size_t bytes; bytes = (uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel); *count = handle->totalByteCount - bytes; return kStatus_Success; } /*! * brief Initializes the DSPI slave eDMA handle. * * This function initializes the DSPI eDMA handle which can be used for other DSPI transactional APIs. Usually, for a * specified DSPI instance, call this API once to get the initialized handle. * * Note that DSPI eDMA has separated (RN and TX in 2 sources) or shared (RX and TX are the same source) DMA request * source. * (1)For the separated DMA request source, enable and set the RX DMAMUX source for edmaRxRegToRxDataHandle and * TX DMAMUX source for edmaTxDataToTxRegHandle. * (2)For the shared DMA request source, enable and set the RX/RX DMAMUX source for the edmaRxRegToRxDataHandle. * * param base DSPI peripheral base address. * param handle DSPI handle pointer to dspi_slave_edma_handle_t. * param callback DSPI callback. * param userData A callback function parameter. * param edmaRxRegToRxDataHandle edmaRxRegToRxDataHandle pointer to edma_handle_t. * param edmaTxDataToTxRegHandle edmaTxDataToTxRegHandle pointer to edma_handle_t. */ void DSPI_SlaveTransferCreateHandleEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, dspi_slave_edma_transfer_callback_t callback, void *userData, edma_handle_t *edmaRxRegToRxDataHandle, edma_handle_t *edmaTxDataToTxRegHandle) { assert(NULL != handle); assert(NULL != edmaRxRegToRxDataHandle); assert(NULL != edmaTxDataToTxRegHandle); /* Zero the handle. */ (void)memset(handle, 0, sizeof(*handle)); uint32_t instance = DSPI_GetInstance(base); s_dspiSlaveEdmaPrivateHandle[instance].base = base; s_dspiSlaveEdmaPrivateHandle[instance].handle = handle; handle->callback = callback; handle->userData = userData; handle->edmaRxRegToRxDataHandle = edmaRxRegToRxDataHandle; handle->edmaTxDataToTxRegHandle = edmaTxDataToTxRegHandle; } /*! * brief DSPI slave transfer data using eDMA. * * This function transfers data using eDMA. This is a non-blocking function, which returns right away. When all data * is transferred, the callback function is called. * Note that the slave eDMA transfer doesn't support transfer_size is 1 when the bitsPerFrame is greater * than eight. * * note The max transfer size of each transfer depends on whether the instance's Tx/Rx shares the same DMA request. If * FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(x) is true, then the max transfer size is 32767 datawidth of data, * otherwise is 511. * * param base DSPI peripheral base address. * param handle A pointer to the dspi_slave_edma_handle_t structure which stores the transfer state. * param transfer A pointer to the dspi_transfer_t structure. * return status of status_t. */ status_t DSPI_SlaveTransferEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, dspi_transfer_t *transfer) { assert(NULL != handle); assert(NULL != transfer); /* If send/receive length is zero */ if (transfer->dataSize == 0U) { return kStatus_InvalidArgument; } /* If both send buffer and receive buffer is null */ if ((NULL == (transfer->txData)) && (NULL == (transfer->rxData))) { return kStatus_InvalidArgument; } /* Check that we're not busy.*/ if (handle->state == (uint8_t)kDSPI_Busy) { return kStatus_DSPI_Busy; } handle->state = (uint8_t)kDSPI_Busy; uint32_t instance = DSPI_GetInstance(base); uint8_t whichCtar = (uint8_t)((transfer->configFlags & DSPI_SLAVE_CTAR_MASK) >> DSPI_SLAVE_CTAR_SHIFT); handle->bitsPerFrame = (((base->CTAR_SLAVE[whichCtar]) & SPI_CTAR_SLAVE_FMSZ_MASK) >> SPI_CTAR_SLAVE_FMSZ_SHIFT) + 1U; /* If using a shared RX/TX DMA request, then this limits the amount of data we can transfer * due to the linked channel. The max bytes is 511 if 8-bit/frame or 1022 if 16-bit/frame */ if (transfer->dataSize > DSPI_EDMA_MAX_TRANSFER_SIZE(base, (handle->bitsPerFrame))) { handle->state = (uint8_t)kDSPI_Idle; return kStatus_DSPI_OutOfRange; } /*The data size should be even if the bitsPerFrame is greater than 8 (that is 2 bytes per frame in dspi) */ if ((0U != (transfer->dataSize & 0x1U)) && (handle->bitsPerFrame > 8U)) { handle->state = (uint8_t)kDSPI_Idle; return kStatus_InvalidArgument; } EDMA_SetCallback(handle->edmaRxRegToRxDataHandle, EDMA_DspiSlaveCallback, &s_dspiSlaveEdmaPrivateHandle[instance]); /* Store transfer information */ handle->txData = transfer->txData; handle->rxData = transfer->rxData; handle->remainingSendByteCount = transfer->dataSize; handle->remainingReceiveByteCount = transfer->dataSize; handle->totalByteCount = transfer->dataSize; uint32_t wordToSend = 0; uint8_t dummyData = DSPI_GetDummyDataInstance(base); uint8_t dataAlreadyFed = 0; uint8_t dataFedMax = 2; uint32_t rxAddr = DSPI_GetRxRegisterAddress(base); uint32_t txAddr = DSPI_SlaveGetTxRegisterAddress(base); edma_transfer_config_t transferConfigA; edma_transfer_config_t transferConfigC; DSPI_StopTransfer(base); DSPI_FlushFifo(base, true, true); DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_AllStatusFlag); DSPI_DisableDMA(base, (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable); DSPI_StartTransfer(base); /*if dspi has separate dma request , need not prepare data first . else (dspi has shared dma request) , send first 2 data into fifo if there is fifo or send first 1 data to slaveGetTxRegister if there is no fifo*/ if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { /* For DSPI instances with shared RX/TX DMA requests, we'll use the RX DMA request to * trigger ongoing transfers and will link to the TX DMA channel from the RX DMA channel. */ /* If bits/frame is greater than one byte */ if (handle->bitsPerFrame > 8U) { while ((uint32_t)kDSPI_TxFifoFillRequestFlag == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag)) { if (NULL != handle->txData) { wordToSend = *(handle->txData); ++handle->txData; /* Increment to next data byte */ wordToSend |= (unsigned)(*(handle->txData)) << 8U; ++handle->txData; /* Increment to next data byte */ } else { wordToSend = ((uint32_t)dummyData << 8U) | dummyData; } handle->remainingSendByteCount -= 2U; /* decrement remainingSendByteCount by 2 */ base->PUSHR_SLAVE = wordToSend; /* Try to clear the TFFF; if the TX FIFO is full this will clear */ DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag); dataAlreadyFed += 2U; /* Exit loop if send count is zero, else update local variables for next loop */ if ((handle->remainingSendByteCount == 0U) || (dataAlreadyFed == (dataFedMax * 2U))) { break; } } /* End of TX FIFO fill while loop */ } else /* Optimized for bits/frame less than or equal to one byte. */ { while ((uint32_t)kDSPI_TxFifoFillRequestFlag == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag)) { if (NULL != handle->txData) { wordToSend = *(handle->txData); /* Increment to next data word*/ ++handle->txData; } else { wordToSend = dummyData; } base->PUSHR_SLAVE = wordToSend; /* Try to clear the TFFF; if the TX FIFO is full this will clear */ DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag); /* Decrement remainingSendByteCount*/ --handle->remainingSendByteCount; dataAlreadyFed++; /* Exit loop if send count is zero, else update local variables for next loop */ if ((handle->remainingSendByteCount == 0U) || (dataAlreadyFed == dataFedMax)) { break; } } /* End of TX FIFO fill while loop */ } } /***channel_A *** used for carry the data from Rx_Data_Register(POPR) to User_Receive_Buffer*/ if (handle->remainingReceiveByteCount > 0U) { EDMA_ResetChannel(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel); transferConfigA.srcAddr = (uint32_t)rxAddr; transferConfigA.srcOffset = 0; if (NULL != handle->rxData) { transferConfigA.destAddr = (uint32_t) & (handle->rxData[0]); transferConfigA.destOffset = 1; } else { transferConfigA.destAddr = (uint32_t) & (handle->rxBuffIfNull); transferConfigA.destOffset = 0; } transferConfigA.destTransferSize = kEDMA_TransferSize1Bytes; if (handle->bitsPerFrame <= 8U) { transferConfigA.srcTransferSize = kEDMA_TransferSize1Bytes; transferConfigA.minorLoopBytes = 1; transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount; } else { transferConfigA.srcTransferSize = kEDMA_TransferSize2Bytes; transferConfigA.minorLoopBytes = 2; transferConfigA.majorLoopCounts = handle->remainingReceiveByteCount / 2U; } /* Store the initially configured eDMA minor byte transfer count into the DSPI handle */ handle->nbytes = (uint8_t)(transferConfigA.minorLoopBytes); EDMA_SetTransferConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, (const edma_transfer_config_t *)(uint32_t)&transferConfigA, NULL); EDMA_EnableChannelInterrupts(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, (uint32_t)kEDMA_MajorInterruptEnable); } if (handle->remainingSendByteCount > 0U) { /***channel_C *** used for carry the data from User_Send_Buffer to Tx_Data_Register(PUSHR_SLAVE)*/ EDMA_ResetChannel(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel); transferConfigC.destAddr = (uint32_t)txAddr; transferConfigC.destOffset = 0; if (NULL != handle->txData) { transferConfigC.srcAddr = (uint32_t)(&(handle->txData[0])); transferConfigC.srcOffset = 1; } else { transferConfigC.srcAddr = (uint32_t)(&handle->txBuffIfNull); transferConfigC.srcOffset = 0; if (handle->bitsPerFrame <= 8U) { handle->txBuffIfNull = dummyData; } else { handle->txBuffIfNull = ((uint32_t)dummyData << 8U) | dummyData; } } transferConfigC.srcTransferSize = kEDMA_TransferSize1Bytes; if (handle->bitsPerFrame <= 8U) { transferConfigC.destTransferSize = kEDMA_TransferSize1Bytes; transferConfigC.minorLoopBytes = 1; transferConfigC.majorLoopCounts = handle->remainingSendByteCount; } else { transferConfigC.destTransferSize = kEDMA_TransferSize2Bytes; transferConfigC.minorLoopBytes = 2; transferConfigC.majorLoopCounts = handle->remainingSendByteCount / 2U; } EDMA_SetTransferConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel, (const edma_transfer_config_t *)(uint32_t)&transferConfigC, NULL); EDMA_StartTransfer(handle->edmaTxDataToTxRegHandle); } EDMA_StartTransfer(handle->edmaRxRegToRxDataHandle); /*Set channel priority*/ uint8_t channelPriorityLow = handle->edmaRxRegToRxDataHandle->channel; uint8_t channelPriorityHigh = handle->edmaTxDataToTxRegHandle->channel; uint8_t t = 0; if (channelPriorityLow > channelPriorityHigh) { t = channelPriorityLow; channelPriorityLow = channelPriorityHigh; channelPriorityHigh = t; } edma_channel_Preemption_config_t preemption_config_t; preemption_config_t.enableChannelPreemption = true; preemption_config_t.enablePreemptAbility = true; preemption_config_t.channelPriority = channelPriorityLow; if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t); preemption_config_t.channelPriority = channelPriorityHigh; EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel, (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t); } else { EDMA_SetChannelPreemptionConfig(handle->edmaTxDataToTxRegHandle->base, handle->edmaTxDataToTxRegHandle->channel, (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t); preemption_config_t.channelPriority = channelPriorityHigh; EDMA_SetChannelPreemptionConfig(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, (const edma_channel_Preemption_config_t *)(uint32_t)&preemption_config_t); } /*Set the channel link. For DSPI instances with shared RX/TX DMA requests: Rx DMA request -> channel_A -> channel_C. For DSPI instances with separate RX and TX DMA requests: Rx DMA request -> channel_A Tx DMA request -> channel_C */ if (1 != FSL_FEATURE_DSPI_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { if (handle->remainingSendByteCount > 0U) { EDMA_SetChannelLink(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel, kEDMA_MinorLink, handle->edmaTxDataToTxRegHandle->channel); } DSPI_EnableDMA(base, (uint32_t)kDSPI_RxDmaEnable); } else { DSPI_EnableDMA(base, (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable); } return kStatus_Success; } static void EDMA_DspiSlaveCallback(edma_handle_t *edmaHandle, void *g_dspiEdmaPrivateHandle, bool transferDone, uint32_t tcds) { assert(NULL != edmaHandle); assert(NULL != g_dspiEdmaPrivateHandle); dspi_slave_edma_private_handle_t *dspiEdmaPrivateHandle; dspiEdmaPrivateHandle = (dspi_slave_edma_private_handle_t *)g_dspiEdmaPrivateHandle; DSPI_DisableDMA((dspiEdmaPrivateHandle->base), (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable); dspiEdmaPrivateHandle->handle->state = (uint8_t)kDSPI_Idle; if (NULL != dspiEdmaPrivateHandle->handle->callback) { dspiEdmaPrivateHandle->handle->callback(dspiEdmaPrivateHandle->base, dspiEdmaPrivateHandle->handle, kStatus_Success, dspiEdmaPrivateHandle->handle->userData); } } /*! * brief DSPI slave aborts a transfer which is using eDMA. * * This function aborts a transfer which is using eDMA. * * param base DSPI peripheral base address. * param handle A pointer to the dspi_slave_edma_handle_t structure which stores the transfer state. */ void DSPI_SlaveTransferAbortEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle) { assert(NULL != handle); DSPI_StopTransfer(base); DSPI_DisableDMA(base, (uint32_t)kDSPI_RxDmaEnable | (uint32_t)kDSPI_TxDmaEnable); EDMA_AbortTransfer(handle->edmaRxRegToRxDataHandle); EDMA_AbortTransfer(handle->edmaTxDataToTxRegHandle); handle->state = (uint8_t)kDSPI_Idle; } /*! * brief Gets the slave eDMA transfer count. * * This function gets the slave eDMA transfer count. * * param base DSPI peripheral base address. * param handle A pointer to the dspi_slave_edma_handle_t structure which stores the transfer state. * param count A number of bytes transferred so far by the non-blocking transaction. * return status of status_t. */ status_t DSPI_SlaveTransferGetCountEDMA(SPI_Type *base, dspi_slave_edma_handle_t *handle, size_t *count) { assert(NULL != handle); if (NULL == count) { return kStatus_InvalidArgument; } /* Catch when there is not an active transfer. */ if (handle->state != (uint8_t)kDSPI_Busy) { *count = 0; return kStatus_NoTransferInProgress; } size_t bytes; bytes = (uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->edmaRxRegToRxDataHandle->base, handle->edmaRxRegToRxDataHandle->channel); *count = handle->totalByteCount - bytes; return kStatus_Success; }