/* * Copyright (c) 2014 - 2025, Nordic Semiconductor ASA * All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef NRF_RTC_H #define NRF_RTC_H #include #ifdef __cplusplus extern "C" { #endif #if !defined(NRF_RTC0) && defined(NRF_RTC) #define NRF_RTC0 NRF_RTC #define RTC0_CC_NUM RTC_CC_NUM #endif /** * @defgroup nrf_rtc_hal RTC HAL * @{ * @ingroup nrf_rtc * @brief Hardware access layer for managing the Real Time Counter (RTC) peripheral. */ /** * @brief Macro getting pointer to the structure of registers of the RTC peripheral. * * @param[in] idx RTC instance index. * * @return Pointer to the structure of registers of the RTC peripheral. */ #define NRF_RTC_INST_GET(idx) NRFX_CONCAT(NRF_, RTC, idx) /** @brief Macro for getting the number of compare channels available in a given RTC instance. */ #define NRF_RTC_CC_CHANNEL_COUNT(id) NRFX_CONCAT_3(RTC, id, _CC_NUM) /** @brief Symbol specifying maximum number of available compare channels. */ #define NRF_RTC_CC_COUNT_MAX NRFX_ARRAY_SIZE(((NRF_RTC_Type*)0)->EVENTS_COMPARE) /** @brief Maximum value of the RTC counter. */ #define NRF_RTC_COUNTER_MAX RTC_COUNTER_COUNTER_Msk /** @brief Input frequency of the RTC instance. */ #define NRF_RTC_INPUT_FREQ 32768 /** @brief Macro for converting expected frequency to prescaler setting. */ #define NRF_RTC_FREQ_TO_PRESCALER(FREQ) (uint16_t)(((NRF_RTC_INPUT_FREQ) / (FREQ)) - 1) /** @brief Macro for trimming values to the RTC bit width. */ #define NRF_RTC_WRAP(val) ((val) & RTC_COUNTER_COUNTER_Msk) /** @brief Macro for creating the interrupt bitmask for the specified compare channel. */ #define NRF_RTC_CHANNEL_INT_MASK(ch) ((uint32_t)(NRF_RTC_INT_COMPARE0_MASK) << (ch)) /** @brief Macro for creating the interrupt bitmask for all compare channels */ #define NRF_RTC_ALL_CHANNELS_INT_MASK \ ((uint32_t)(((1 << NRF_RTC_CC_COUNT_MAX) - 1) << RTC_INTENSET_COMPARE0_Pos)) /** @brief Macro for obtaining the compare event for the specified channel. */ #define NRF_RTC_CHANNEL_EVENT_ADDR(ch) \ (nrf_rtc_event_t)((NRF_RTC_EVENT_COMPARE_0) + (ch) * sizeof(uint32_t)) /** @brief RTC tasks. */ typedef enum { NRF_RTC_TASK_START = offsetof(NRF_RTC_Type,TASKS_START), /**< Start. */ NRF_RTC_TASK_STOP = offsetof(NRF_RTC_Type,TASKS_STOP), /**< Stop. */ NRF_RTC_TASK_CLEAR = offsetof(NRF_RTC_Type,TASKS_CLEAR), /**< Clear. */ NRF_RTC_TASK_TRIGGER_OVERFLOW = offsetof(NRF_RTC_Type,TASKS_TRIGOVRFLW), /**< Trigger overflow. */ #if defined(RTC_TASKS_CAPTURE_TASKS_CAPTURE_Msk) || defined(__NRFX_DOXYGEN__) NRF_RTC_TASK_CAPTURE_0 = offsetof(NRF_RTC_Type,TASKS_CAPTURE[0]), /**< Capture the counter value on channel 0. */ NRF_RTC_TASK_CAPTURE_1 = offsetof(NRF_RTC_Type,TASKS_CAPTURE[1]), /**< Capture the counter value on channel 1. */ NRF_RTC_TASK_CAPTURE_2 = offsetof(NRF_RTC_Type,TASKS_CAPTURE[2]), /**< Capture the counter value on channel 2. */ NRF_RTC_TASK_CAPTURE_3 = offsetof(NRF_RTC_Type,TASKS_CAPTURE[3]), /**< Capture the counter value on channel 3. */ #endif } nrf_rtc_task_t; /** @brief RTC events. */ typedef enum { NRF_RTC_EVENT_TICK = offsetof(NRF_RTC_Type,EVENTS_TICK), /**< Tick event. */ NRF_RTC_EVENT_OVERFLOW = offsetof(NRF_RTC_Type,EVENTS_OVRFLW), /**< Overflow event. */ NRF_RTC_EVENT_COMPARE_0 = offsetof(NRF_RTC_Type,EVENTS_COMPARE[0]), /**< Compare 0 event. */ NRF_RTC_EVENT_COMPARE_1 = offsetof(NRF_RTC_Type,EVENTS_COMPARE[1]), /**< Compare 1 event. */ NRF_RTC_EVENT_COMPARE_2 = offsetof(NRF_RTC_Type,EVENTS_COMPARE[2]), /**< Compare 2 event. */ NRF_RTC_EVENT_COMPARE_3 = offsetof(NRF_RTC_Type,EVENTS_COMPARE[3]) /**< Compare 3 event. */ } nrf_rtc_event_t; /** @brief RTC interrupts. */ typedef enum { NRF_RTC_INT_TICK_MASK = RTC_INTENSET_TICK_Msk, /**< RTC interrupt from tick event. */ NRF_RTC_INT_OVERFLOW_MASK = RTC_INTENSET_OVRFLW_Msk, /**< RTC interrupt from overflow event. */ NRF_RTC_INT_COMPARE0_MASK = RTC_INTENSET_COMPARE0_Msk, /**< RTC interrupt from compare event on channel 0. */ NRF_RTC_INT_COMPARE1_MASK = RTC_INTENSET_COMPARE1_Msk, /**< RTC interrupt from compare event on channel 1. */ NRF_RTC_INT_COMPARE2_MASK = RTC_INTENSET_COMPARE2_Msk, /**< RTC interrupt from compare event on channel 2. */ NRF_RTC_INT_COMPARE3_MASK = RTC_INTENSET_COMPARE3_Msk /**< RTC interrupt from compare event on channel 3. */ } nrf_rtc_int_t; /** * @brief Function for setting a compare value for a channel. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] ch Channel. * @param[in] cc_val Compare value to be set. */ NRF_STATIC_INLINE void nrf_rtc_cc_set(NRF_RTC_Type * p_reg, uint32_t ch, uint32_t cc_val); /** * @brief Function for returning the compare value for a channel. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] ch Channel. * * @return COMPARE[ch] value. */ NRF_STATIC_INLINE uint32_t nrf_rtc_cc_get(NRF_RTC_Type const * p_reg, uint32_t ch); /** * @brief Function for enabling interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of interrupts to be enabled. * Use @ref nrf_rtc_int_t values for bit masking. */ NRF_STATIC_INLINE void nrf_rtc_int_enable(NRF_RTC_Type * p_reg, uint32_t mask); /** * @brief Function for disabling interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of interrupts to be disabled. * Use @ref nrf_rtc_int_t values for bit masking. */ NRF_STATIC_INLINE void nrf_rtc_int_disable(NRF_RTC_Type * p_reg, uint32_t mask); /** * @brief Function for checking if the specified interrupts are enabled. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of interrupts to be checked. * Use @ref nrf_rtc_int_t values for bit masking. * * @return Mask of enabled interrupts. */ NRF_STATIC_INLINE uint32_t nrf_rtc_int_enable_check(NRF_RTC_Type const * p_reg, uint32_t mask); #if defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__) /** * @brief Function for setting the subscribe configuration for a given * RTC task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Task for which to set the configuration. * @param[in] channel Channel through which to subscribe events. */ NRF_STATIC_INLINE void nrf_rtc_subscribe_set(NRF_RTC_Type * p_reg, nrf_rtc_task_t task, uint8_t channel); /** * @brief Function for clearing the subscribe configuration for a given * RTC task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Task for which to clear the configuration. */ NRF_STATIC_INLINE void nrf_rtc_subscribe_clear(NRF_RTC_Type * p_reg, nrf_rtc_task_t task); /** * @brief Function for setting the publish configuration for a given * RTC event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event for which to set the configuration. * @param[in] channel Channel through which to publish the event. */ NRF_STATIC_INLINE void nrf_rtc_publish_set(NRF_RTC_Type * p_reg, nrf_rtc_event_t event, uint8_t channel); /** * @brief Function for clearing the publish configuration for a given * RTC event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event for which to clear the configuration. */ NRF_STATIC_INLINE void nrf_rtc_publish_clear(NRF_RTC_Type * p_reg, nrf_rtc_event_t event); #endif // defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__) /** * @brief Function for retrieving the state of the RTC event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event to be checked. * * @retval true The event has been generated. * @retval false The event has not been generated. */ NRF_STATIC_INLINE bool nrf_rtc_event_check(NRF_RTC_Type const * p_reg, nrf_rtc_event_t event); /** * @brief Function for clearing an event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event to be cleared. */ NRF_STATIC_INLINE void nrf_rtc_event_clear(NRF_RTC_Type * p_reg, nrf_rtc_event_t event); /** * @brief Function for returning a counter value. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Counter value. */ NRF_STATIC_INLINE uint32_t nrf_rtc_counter_get(NRF_RTC_Type const * p_reg); /** * @brief Function for setting a prescaler value. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] val Value to set the prescaler to. */ NRF_STATIC_INLINE void nrf_rtc_prescaler_set(NRF_RTC_Type * p_reg, uint32_t val); /** * @brief Function for getting a prescaler value. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Prescaler value. */ NRF_STATIC_INLINE uint32_t nrf_rtc_prescaler_get(NRF_RTC_Type const * p_reg); /** * @brief Function for returning the address of an event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Requested event. * * @return Address of the requested event register. */ NRF_STATIC_INLINE uint32_t nrf_rtc_event_address_get(NRF_RTC_Type const * p_reg, nrf_rtc_event_t event); /** * @brief Function for returning the address of a task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Requested task. * * @return Address of the requested task register. */ NRF_STATIC_INLINE uint32_t nrf_rtc_task_address_get(NRF_RTC_Type const * p_reg, nrf_rtc_task_t task); #if defined(RTC_TASKS_CAPTURE_TASKS_CAPTURE_Msk) || defined(__NRFX_DOXYGEN__) /** * @brief Function for getting the CAPTURE task associated with the specified capture channel. * * @param[in] index Capture channel index. * * @return Requested CAPTURE task. */ NRF_STATIC_INLINE nrf_rtc_task_t nrf_rtc_capture_task_get(uint8_t index); #endif /** * @brief Function for starting a task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Requested task. */ NRF_STATIC_INLINE void nrf_rtc_task_trigger(NRF_RTC_Type * p_reg, nrf_rtc_task_t task); /** * @brief Function for enabling events. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of event flags to be enabled. */ NRF_STATIC_INLINE void nrf_rtc_event_enable(NRF_RTC_Type * p_reg, uint32_t mask); /** * @brief Function for disabling an event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of event flags to be disabled. */ NRF_STATIC_INLINE void nrf_rtc_event_disable(NRF_RTC_Type * p_reg, uint32_t mask); /** * @brief Function for getting the COMPARE event associated with the specified compare channel. * * @param[in] index Compare channel index. * * @return Requested COMPARE event. */ NRF_STATIC_INLINE nrf_rtc_event_t nrf_rtc_compare_event_get(uint8_t index); #ifndef NRF_DECLARE_ONLY NRF_STATIC_INLINE void nrf_rtc_cc_set(NRF_RTC_Type * p_reg, uint32_t ch, uint32_t cc_val) { p_reg->CC[ch] = cc_val; } NRF_STATIC_INLINE uint32_t nrf_rtc_cc_get(NRF_RTC_Type const * p_reg, uint32_t ch) { return p_reg->CC[ch]; } NRF_STATIC_INLINE void nrf_rtc_int_enable(NRF_RTC_Type * p_reg, uint32_t mask) { p_reg->INTENSET = mask; } NRF_STATIC_INLINE void nrf_rtc_int_disable(NRF_RTC_Type * p_reg, uint32_t mask) { p_reg->INTENCLR = mask; } NRF_STATIC_INLINE uint32_t nrf_rtc_int_enable_check(NRF_RTC_Type const * p_reg, uint32_t mask) { return p_reg->INTENSET & mask; } #if defined(DPPI_PRESENT) NRF_STATIC_INLINE void nrf_rtc_subscribe_set(NRF_RTC_Type * p_reg, nrf_rtc_task_t task, uint8_t channel) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) = ((uint32_t)channel | NRF_SUBSCRIBE_PUBLISH_ENABLE); } NRF_STATIC_INLINE void nrf_rtc_subscribe_clear(NRF_RTC_Type * p_reg, nrf_rtc_task_t task) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) = 0; } NRF_STATIC_INLINE void nrf_rtc_publish_set(NRF_RTC_Type * p_reg, nrf_rtc_event_t event, uint8_t channel) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = ((uint32_t)channel | NRF_SUBSCRIBE_PUBLISH_ENABLE); } NRF_STATIC_INLINE void nrf_rtc_publish_clear(NRF_RTC_Type * p_reg, nrf_rtc_event_t event) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = 0; } #endif // defined(DPPI_PRESENT) NRF_STATIC_INLINE bool nrf_rtc_event_check(NRF_RTC_Type const * p_reg, nrf_rtc_event_t event) { return nrf_event_check(p_reg, event); } NRF_STATIC_INLINE void nrf_rtc_event_clear(NRF_RTC_Type * p_reg, nrf_rtc_event_t event) { *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0; nrf_event_readback((uint8_t *)p_reg + (uint32_t)event); } NRF_STATIC_INLINE uint32_t nrf_rtc_counter_get(NRF_RTC_Type const * p_reg) { return p_reg->COUNTER; } NRF_STATIC_INLINE void nrf_rtc_prescaler_set(NRF_RTC_Type * p_reg, uint32_t val) { NRFX_ASSERT(val <= (RTC_PRESCALER_PRESCALER_Msk >> RTC_PRESCALER_PRESCALER_Pos)); p_reg->PRESCALER = val; } NRF_STATIC_INLINE uint32_t nrf_rtc_prescaler_get(NRF_RTC_Type const * p_reg) { return p_reg->PRESCALER; } NRF_STATIC_INLINE uint32_t nrf_rtc_event_address_get(NRF_RTC_Type const * p_reg, nrf_rtc_event_t event) { return (uint32_t)p_reg + event; } NRF_STATIC_INLINE uint32_t nrf_rtc_task_address_get(NRF_RTC_Type const * p_reg, nrf_rtc_task_t task) { return (uint32_t)p_reg + task; } #if defined(RTC_TASKS_CAPTURE_TASKS_CAPTURE_Msk) NRF_STATIC_INLINE nrf_rtc_task_t nrf_rtc_capture_task_get(uint8_t index) { return (nrf_rtc_task_t)NRFX_OFFSETOF(NRF_RTC_Type, TASKS_CAPTURE[index]); } #endif NRF_STATIC_INLINE void nrf_rtc_task_trigger(NRF_RTC_Type * p_reg, nrf_rtc_task_t task) { *(__IO uint32_t *)((uint32_t)p_reg + task) = 1; } NRF_STATIC_INLINE void nrf_rtc_event_enable(NRF_RTC_Type * p_reg, uint32_t mask) { p_reg->EVTENSET = mask; } NRF_STATIC_INLINE void nrf_rtc_event_disable(NRF_RTC_Type * p_reg, uint32_t mask) { p_reg->EVTENCLR = mask; } NRF_STATIC_INLINE nrf_rtc_event_t nrf_rtc_compare_event_get(uint8_t index) { return (nrf_rtc_event_t)NRFX_OFFSETOF(NRF_RTC_Type, EVENTS_COMPARE[index]); } #endif // NRF_DECLARE_ONLY /** @} */ #ifdef __cplusplus } #endif #endif /* NRF_RTC_H */