/* * Copyright (c) 2015 - 2025, Nordic Semiconductor ASA * All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef NRF_PDM_H_ #define NRF_PDM_H_ #include #ifdef __cplusplus extern "C" { #endif #if !defined(NRF_PDM0) && defined(NRF_PDM) #define NRF_PDM0 NRF_PDM #endif /** * @defgroup nrf_pdm_hal PDM HAL * @{ * @ingroup nrf_pdm * @brief Hardware access layer for managing the Pulse Density Modulation (PDM) peripheral. */ /** * @brief Macro for getting a pointer to the structure of registers of the PDM peripheral. * * @param[in] idx PDM instance index. * * @return Pointer to the structure of registers of the PDM peripheral. */ #define NRF_PDM_INST_GET(idx) NRFX_CONCAT_2(NRF_PDM, idx) #if defined(PDM_MCLKCONFIG_SRC_Msk) || defined(__NRFX_DOXYGEN__) /** @brief Symbol indicating whether master clock source configuration is available. */ #define NRF_PDM_HAS_MCLKCONFIG 1 #else #define NRF_PDM_HAS_MCLKCONFIG 0 #endif #if defined(PDM_RATIO_RATIO_Msk) || defined(__NRFX_DOXYGEN__) /** @brief Symbol indicating whether ratio configuration is available. */ #define NRF_PDM_HAS_RATIO_CONFIG 1 #else #define NRF_PDM_HAS_RATIO_CONFIG 0 #endif #if (defined(PDM_TASKS_DMA_START_START_Msk) && defined(PDM_EVENTS_DMA_END_END_Msk)) || \ defined(__NRFX_DOXYGEN__) /** @brief Symbol indicating whether PDM DMA tasks and events are present. */ #define NRF_PDM_HAS_DMA_TASKS_EVENTS 1 #else #define NRF_PDM_HAS_DMA_TASKS_EVENTS 0 #endif #if defined(PDM_PDMCLKCTRL_FREQ_Msk) || defined(__NRFX_DOXYGEN__) /** @brief Symbol indicating whether PDM clock control register is available. */ #define NRF_PDM_HAS_PDMCLKCTRL 1 #else #define NRF_PDM_HAS_PDMCLKCTRL 0 #endif #if defined(PDM_PRESCALER_DIVISOR_Msk) || defined(__NRFX_DOXYGEN__) /** @brief Symbol indicating whether PDM prescaler register is available. */ #define NRF_PDM_HAS_PRESCALER 1 #else #define NRF_PDM_HAS_PRESCALER 0 #endif /** @brief Minimum value of PDM gain. */ #define NRF_PDM_GAIN_MINIMUM 0x00 /** @brief Default value of PDM gain. */ #define NRF_PDM_GAIN_DEFAULT 0x28 /** @brief Maximum value of PDM gain. */ #define NRF_PDM_GAIN_MAXIMUM 0x50 #if NRF_PDM_HAS_PRESCALER /** @brief Minimum value of PDM prescaler. */ #define NRF_PDM_PRESCALER_MIN PDM_PRESCALER_DIVISOR_Min /** @brief Maximum value of PDM prescaler. */ #define NRF_PDM_PRESCALER_MAX PDM_PRESCALER_DIVISOR_Max #endif /** @brief PDM gain type. */ typedef uint8_t nrf_pdm_gain_t; /** @brief PDM tasks. */ typedef enum { #if NRF_PDM_HAS_DMA_TASKS_EVENTS NRF_PDM_TASK_START = offsetof(NRF_PDM_Type, TASKS_DMA.START), ///< Starts continuous PDM transfer. NRF_PDM_TASK_STOP = offsetof(NRF_PDM_Type, TASKS_DMA.STOP), ///< Stops PDM transfer. #else NRF_PDM_TASK_START = offsetof(NRF_PDM_Type, TASKS_START), ///< Starts continuous PDM transfer. NRF_PDM_TASK_STOP = offsetof(NRF_PDM_Type, TASKS_STOP), ///< Stops PDM transfer. #endif } nrf_pdm_task_t; /** @brief PDM events. */ typedef enum { NRF_PDM_EVENT_STARTED = offsetof(NRF_PDM_Type, EVENTS_STARTED), ///< PDM transfer is started. NRF_PDM_EVENT_STOPPED = offsetof(NRF_PDM_Type, EVENTS_STOPPED), ///< PDM transfer is finished. #if NRF_PDM_HAS_DMA_TASKS_EVENTS NRF_PDM_EVENT_END = offsetof(NRF_PDM_Type, EVENTS_DMA.END), ///< The PDM has written the last sample specified by MAXCNT (or the last sample after a STOP task has been received) to Data RAM. #else NRF_PDM_EVENT_END = offsetof(NRF_PDM_Type, EVENTS_END), ///< The PDM has written the last sample specified by MAXCNT (or the last sample after a STOP task has been received) to Data RAM. #endif } nrf_pdm_event_t; /** @brief PDM interrupt masks. */ typedef enum { NRF_PDM_INT_STARTED = PDM_INTENSET_STARTED_Msk, ///< Interrupt on EVENTS_STARTED event. NRF_PDM_INT_STOPPED = PDM_INTENSET_STOPPED_Msk, ///< Interrupt on EVENTS_STOPPED event. #if NRF_PDM_HAS_DMA_TASKS_EVENTS NRF_PDM_INT_END = PDM_INTENSET_DMAEND_Msk ///< Interrupt on EVENTS_END event. #else NRF_PDM_INT_END = PDM_INTENSET_END_Msk ///< Interrupt on EVENTS_END event. #endif } nrf_pdm_int_mask_t; #if NRF_PDM_HAS_PDMCLKCTRL /** @brief PDM clock frequency. */ typedef enum { NRF_PDM_FREQ_1000K = PDM_PDMCLKCTRL_FREQ_1000K, ///< PDM_CLK = 1.000 MHz. NRF_PDM_FREQ_1032K = PDM_PDMCLKCTRL_FREQ_Default, ///< PDM_CLK = 1.032 MHz. NRF_PDM_FREQ_1067K = PDM_PDMCLKCTRL_FREQ_1067K, ///< PDM_CLK = 1.067 MHz. #if defined(PDM_PDMCLKCTRL_FREQ_1231K) || defined(__NRFX_DOXYGEN__) NRF_PDM_FREQ_1231K = PDM_PDMCLKCTRL_FREQ_1231K, ///< PDM_CLK = 1.231 MHz. #endif #if defined(PDM_PDMCLKCTRL_FREQ_1280K) || defined(__NRFX_DOXYGEN__) NRF_PDM_FREQ_1280K = PDM_PDMCLKCTRL_FREQ_1280K, ///< PDM_CLK = 1.280 MHz. #endif #if defined(PDM_PDMCLKCTRL_FREQ_1333K) || defined(__NRFX_DOXYGEN__) NRF_PDM_FREQ_1333K = PDM_PDMCLKCTRL_FREQ_1333K ///< PDM_CLK = 1.333 MHz. #endif } nrf_pdm_freq_t; #endif #if NRF_PDM_HAS_RATIO_CONFIG /** @brief PDM ratio between PDM_CLK and output sample rate. */ typedef enum { #if defined(PDM_RATIO_RATIO_Ratio32) || defined(__NRFX_DOXYGEN__) NRF_PDM_RATIO_32X = PDM_RATIO_RATIO_Ratio32, ///< Ratio of 32. #endif #if defined(PDM_RATIO_RATIO_Ratio48) || defined(__NRFX_DOXYGEN__) NRF_PDM_RATIO_48X = PDM_RATIO_RATIO_Ratio48, ///< Ratio of 48. #endif #if defined(PDM_RATIO_RATIO_Ratio50) || defined(__NRFX_DOXYGEN__) NRF_PDM_RATIO_50X = PDM_RATIO_RATIO_Ratio50, ///< Ratio of 50. #endif NRF_PDM_RATIO_64X = PDM_RATIO_RATIO_Ratio64, ///< Ratio of 64. NRF_PDM_RATIO_80X = PDM_RATIO_RATIO_Ratio80, ///< Ratio of 80. #if defined(PDM_RATIO_RATIO_Ratio96) || defined(__NRFX_DOXYGEN__) NRF_PDM_RATIO_96X = PDM_RATIO_RATIO_Ratio96, ///< Ratio of 96. #endif #if defined(PDM_RATIO_RATIO_Ratio100) || defined(__NRFX_DOXYGEN__) NRF_PDM_RATIO_100X = PDM_RATIO_RATIO_Ratio100, ///< Ratio of 100. #endif #if defined(PDM_RATIO_RATIO_Ratio128) || defined(__NRFX_DOXYGEN__) NRF_PDM_RATIO_128X = PDM_RATIO_RATIO_Ratio128, ///< Ratio of 128. #endif } nrf_pdm_ratio_t; #endif /** @brief PDM operation mode. */ typedef enum { NRF_PDM_MODE_STEREO = PDM_MODE_OPERATION_Stereo, ///< Sample and store one pair (Left + Right) of 16-bit samples per RAM word. NRF_PDM_MODE_MONO = PDM_MODE_OPERATION_Mono ///< Sample and store two successive Left samples (16 bit each) per RAM word. } nrf_pdm_mode_t; /** @brief PDM sampling mode. */ typedef enum { NRF_PDM_EDGE_LEFTFALLING = PDM_MODE_EDGE_LeftFalling, ///< Left (or mono) is sampled on falling edge of PDM_CLK. NRF_PDM_EDGE_LEFTRISING = PDM_MODE_EDGE_LeftRising ///< Left (or mono) is sampled on rising edge of PDM_CLK. } nrf_pdm_edge_t; #if NRF_PDM_HAS_MCLKCONFIG /** @brief PDM master clock source selection. */ typedef enum { NRF_PDM_MCLKSRC_PCLK32M = PDM_MCLKCONFIG_SRC_PCLK32M, ///< 32MHz peripheral clock. NRF_PDM_MCLKSRC_ACLK = PDM_MCLKCONFIG_SRC_ACLK ///< Audio PLL clock. } nrf_pdm_mclksrc_t; #endif /** * @brief Function for triggering a PDM task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task PDM task. */ NRF_STATIC_INLINE void nrf_pdm_task_trigger(NRF_PDM_Type * p_reg, nrf_pdm_task_t task); /** * @brief Function for getting the address of a PDM task register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task PDM task. * * @return Address of the specified PDM task. */ NRF_STATIC_INLINE uint32_t nrf_pdm_task_address_get(NRF_PDM_Type const * p_reg, nrf_pdm_task_t task); /** * @brief Function for retrieving the state of the PDM event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event to be checked. * * @retval true The event has been generated. * @retval false The event has not been generated. */ NRF_STATIC_INLINE bool nrf_pdm_event_check(NRF_PDM_Type const * p_reg, nrf_pdm_event_t event); /** * @brief Function for clearing a PDM event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event PDM event. */ NRF_STATIC_INLINE void nrf_pdm_event_clear(NRF_PDM_Type * p_reg, nrf_pdm_event_t event); /** * @brief Function for getting the address of a PDM event register. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event PDM event. * * @return Address of the specified PDM event. */ NRF_STATIC_INLINE uint32_t nrf_pdm_event_address_get(NRF_PDM_Type const * p_reg, nrf_pdm_event_t event); /** * @brief Function for enabling PDM interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of interrupts to be enabled. * Use @ref nrf_pdm_int_mask_t values for bit masking. */ NRF_STATIC_INLINE void nrf_pdm_int_enable(NRF_PDM_Type * p_reg, uint32_t mask); /** * @brief Function for checking if the specified interrupts are enabled. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of interrupts to be checked. * Use @ref nrf_pdm_int_mask_t values for bit masking. * * @return Mask of enabled interrupts. */ NRF_STATIC_INLINE uint32_t nrf_pdm_int_enable_check(NRF_PDM_Type const * p_reg, uint32_t mask); /** * @brief Function for disabling interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of interrupts to be disabled. * Use @ref nrf_pdm_int_mask_t values for bit masking. */ NRF_STATIC_INLINE void nrf_pdm_int_disable(NRF_PDM_Type * p_reg, uint32_t mask); #if defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__) /** * @brief Function for setting the subscribe configuration for a given * PDM task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Task for which to set the configuration. * @param[in] channel Channel through which to subscribe events. */ NRF_STATIC_INLINE void nrf_pdm_subscribe_set(NRF_PDM_Type * p_reg, nrf_pdm_task_t task, uint8_t channel); /** * @brief Function for clearing the subscribe configuration for a given * PDM task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Task for which to clear the configuration. */ NRF_STATIC_INLINE void nrf_pdm_subscribe_clear(NRF_PDM_Type * p_reg, nrf_pdm_task_t task); /** * @brief Function for setting the publish configuration for a given * PDM event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event for which to set the configuration. * @param[in] channel Channel through which to publish the event. */ NRF_STATIC_INLINE void nrf_pdm_publish_set(NRF_PDM_Type * p_reg, nrf_pdm_event_t event, uint8_t channel); /** * @brief Function for clearing the publish configuration for a given * PDM event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event for which to clear the configuration. */ NRF_STATIC_INLINE void nrf_pdm_publish_clear(NRF_PDM_Type * p_reg, nrf_pdm_event_t event); #endif // defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__) /** * @brief Function for enabling the PDM peripheral. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * The PDM peripheral must be enabled before use. */ NRF_STATIC_INLINE void nrf_pdm_enable(NRF_PDM_Type * p_reg); /** * @brief Function for disabling the PDM peripheral. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. */ NRF_STATIC_INLINE void nrf_pdm_disable(NRF_PDM_Type * p_reg); /** * @brief Function for checking if the PDM peripheral is enabled. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @retval true The PDM peripheral is enabled. * @retval false The PDM peripheral is not enabled. */ NRF_STATIC_INLINE bool nrf_pdm_enable_check(NRF_PDM_Type const * p_reg); /** * @brief Function for setting the PDM operation mode. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] pdm_mode PDM operation mode. * @param[in] pdm_edge PDM sampling mode. */ NRF_STATIC_INLINE void nrf_pdm_mode_set(NRF_PDM_Type * p_reg, nrf_pdm_mode_t pdm_mode, nrf_pdm_edge_t pdm_edge); /** * @brief Function for getting the PDM operation mode. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[out] p_pdm_mode PDM operation mode. * @param[out] p_pdm_edge PDM sampling mode. */ NRF_STATIC_INLINE void nrf_pdm_mode_get(NRF_PDM_Type const * p_reg, nrf_pdm_mode_t * p_pdm_mode, nrf_pdm_edge_t * p_pdm_edge); #if NRF_PDM_HAS_PDMCLKCTRL /** * @brief Function for setting the PDM clock frequency. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] pdm_freq PDM clock frequency. */ NRF_STATIC_INLINE void nrf_pdm_clock_set(NRF_PDM_Type * p_reg, nrf_pdm_freq_t pdm_freq); /** * @brief Function for getting the PDM clock frequency. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return PDM clock frequency. */ NRF_STATIC_INLINE nrf_pdm_freq_t nrf_pdm_clock_get(NRF_PDM_Type const * p_reg); #endif #if NRF_PDM_HAS_PRESCALER /** * @brief Function for setting the PDM prescaler divisor. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] prescaler PDM prescaler divisor. */ NRF_STATIC_INLINE void nrf_pdm_prescaler_set(NRF_PDM_Type * p_reg, uint32_t prescaler); /** * @brief Function for getting the PDM prescaler divisor. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return PDM prescaler divisor. */ NRF_STATIC_INLINE uint32_t nrf_pdm_prescaler_get(NRF_PDM_Type const * p_reg); #endif /** * @brief Function for setting up the PDM pins. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] psel_clk CLK pin number. * @param[in] psel_din DIN pin number. */ NRF_STATIC_INLINE void nrf_pdm_psel_connect(NRF_PDM_Type * p_reg, uint32_t psel_clk, uint32_t psel_din); /** * @brief Function for setting the CLK pin. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] pin CLK pin number. */ NRF_STATIC_INLINE void nrf_pdm_clk_pin_set(NRF_PDM_Type * p_reg, uint32_t pin); /** * @brief Function for setting the DIN pin. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] pin DIN pin number. */ NRF_STATIC_INLINE void nrf_pdm_din_pin_set(NRF_PDM_Type * p_reg, uint32_t pin); /** * @brief Function for getting the CLK pin selection. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return CLK pin selection; */ NRF_STATIC_INLINE uint32_t nrf_pdm_clk_pin_get(NRF_PDM_Type const * p_reg); /** * @brief Function for getting the DIN pin selection. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return DIN pin selection; */ NRF_STATIC_INLINE uint32_t nrf_pdm_din_pin_get(NRF_PDM_Type const * p_reg); /** * @brief Function for disconnecting the PDM pins. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. */ NRF_STATIC_INLINE void nrf_pdm_psel_disconnect(NRF_PDM_Type * p_reg); /** * @brief Function for setting the PDM gain. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] gain_l Left channel gain. * @param[in] gain_r Right channel gain. */ NRF_STATIC_INLINE void nrf_pdm_gain_set(NRF_PDM_Type * p_reg, nrf_pdm_gain_t gain_l, nrf_pdm_gain_t gain_r); /** * @brief Function for getting the PDM gain. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[out] p_gain_l Left channel gain. * @param[out] p_gain_r Right channel gain. */ NRF_STATIC_INLINE void nrf_pdm_gain_get(NRF_PDM_Type const * p_reg, nrf_pdm_gain_t * p_gain_l, nrf_pdm_gain_t * p_gain_r); /** * @brief Function for setting the PDM sample buffer. * * The amount of allocated RAM depends on the operation mode. * - For stereo mode: N 32-bit words. * - For mono mode: Ceil(N/2) 32-bit words. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] p_buffer Pointer to the RAM address where samples are to be written with EasyDMA. * @param[in] num Number of samples to allocate memory for in EasyDMA mode. */ NRF_STATIC_INLINE void nrf_pdm_buffer_set(NRF_PDM_Type * p_reg, uint32_t * p_buffer, uint32_t num); /** * @brief Function for getting the current PDM sample buffer address. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Pointer to the current sample buffer. */ NRF_STATIC_INLINE uint32_t * nrf_pdm_buffer_get(NRF_PDM_Type const * p_reg); #if NRF_PDM_HAS_RATIO_CONFIG /** * @brief Function for setting ratio between PDM_CLK and output sample rate. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] ratio Ratio between PDM_CLK and output sample rate. */ NRF_STATIC_INLINE void nrf_pdm_ratio_set(NRF_PDM_Type * p_reg, nrf_pdm_ratio_t ratio); #endif #if NRF_PDM_HAS_MCLKCONFIG /** * @brief Function for configuring PDM master clock source. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mclksrc Master Clock source selection. */ NRF_STATIC_INLINE void nrf_pdm_mclksrc_configure(NRF_PDM_Type * p_reg, nrf_pdm_mclksrc_t mclksrc); #endif #ifndef NRF_DECLARE_ONLY NRF_STATIC_INLINE void nrf_pdm_task_trigger(NRF_PDM_Type * p_reg, nrf_pdm_task_t task) { *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)task)) = 0x1UL; } NRF_STATIC_INLINE uint32_t nrf_pdm_task_address_get(NRF_PDM_Type const * p_reg, nrf_pdm_task_t task) { return nrf_task_event_address_get(p_reg, task); } NRF_STATIC_INLINE bool nrf_pdm_event_check(NRF_PDM_Type const * p_reg, nrf_pdm_event_t event) { return nrf_event_check(p_reg, event); } NRF_STATIC_INLINE void nrf_pdm_event_clear(NRF_PDM_Type * p_reg, nrf_pdm_event_t event) { *((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL; nrf_event_readback((uint8_t *)p_reg + (uint32_t)event); } NRF_STATIC_INLINE uint32_t nrf_pdm_event_address_get(NRF_PDM_Type const * p_reg, nrf_pdm_event_t event) { return nrf_task_event_address_get(p_reg, event); } NRF_STATIC_INLINE void nrf_pdm_int_enable(NRF_PDM_Type * p_reg, uint32_t mask) { p_reg->INTENSET = mask; } NRF_STATIC_INLINE uint32_t nrf_pdm_int_enable_check(NRF_PDM_Type const * p_reg, uint32_t mask) { return p_reg->INTENSET & mask; } NRF_STATIC_INLINE void nrf_pdm_int_disable(NRF_PDM_Type * p_reg, uint32_t mask) { p_reg->INTENCLR = mask; } #if defined(DPPI_PRESENT) NRF_STATIC_INLINE void nrf_pdm_subscribe_set(NRF_PDM_Type * p_reg, nrf_pdm_task_t task, uint8_t channel) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) = ((uint32_t)channel | NRF_SUBSCRIBE_PUBLISH_ENABLE); } NRF_STATIC_INLINE void nrf_pdm_subscribe_clear(NRF_PDM_Type * p_reg, nrf_pdm_task_t task) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) = 0; } NRF_STATIC_INLINE void nrf_pdm_publish_set(NRF_PDM_Type * p_reg, nrf_pdm_event_t event, uint8_t channel) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = ((uint32_t)channel | NRF_SUBSCRIBE_PUBLISH_ENABLE); } NRF_STATIC_INLINE void nrf_pdm_publish_clear(NRF_PDM_Type * p_reg, nrf_pdm_event_t event) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = 0; } #endif // defined(DPPI_PRESENT) NRF_STATIC_INLINE void nrf_pdm_enable(NRF_PDM_Type * p_reg) { p_reg->ENABLE = (PDM_ENABLE_ENABLE_Enabled << PDM_ENABLE_ENABLE_Pos); } NRF_STATIC_INLINE void nrf_pdm_disable(NRF_PDM_Type * p_reg) { p_reg->ENABLE = (PDM_ENABLE_ENABLE_Disabled << PDM_ENABLE_ENABLE_Pos); } NRF_STATIC_INLINE bool nrf_pdm_enable_check(NRF_PDM_Type const * p_reg) { return (p_reg->ENABLE == (PDM_ENABLE_ENABLE_Enabled << PDM_ENABLE_ENABLE_Pos)); } NRF_STATIC_INLINE void nrf_pdm_mode_set(NRF_PDM_Type * p_reg, nrf_pdm_mode_t pdm_mode, nrf_pdm_edge_t pdm_edge) { p_reg->MODE = ((pdm_mode << PDM_MODE_OPERATION_Pos) & PDM_MODE_OPERATION_Msk) | ((pdm_edge << PDM_MODE_EDGE_Pos) & PDM_MODE_EDGE_Msk); } NRF_STATIC_INLINE void nrf_pdm_mode_get(NRF_PDM_Type const * p_reg, nrf_pdm_mode_t * p_pdm_mode, nrf_pdm_edge_t * p_pdm_edge) { uint32_t mode = p_reg->MODE; *p_pdm_mode = (nrf_pdm_mode_t)((mode & PDM_MODE_OPERATION_Msk ) >> PDM_MODE_OPERATION_Pos); *p_pdm_edge = (nrf_pdm_edge_t)((mode & PDM_MODE_EDGE_Msk ) >> PDM_MODE_EDGE_Pos); } #if NRF_PDM_HAS_PDMCLKCTRL NRF_STATIC_INLINE void nrf_pdm_clock_set(NRF_PDM_Type * p_reg, nrf_pdm_freq_t pdm_freq) { p_reg->PDMCLKCTRL = ((pdm_freq << PDM_PDMCLKCTRL_FREQ_Pos) & PDM_PDMCLKCTRL_FREQ_Msk); } NRF_STATIC_INLINE nrf_pdm_freq_t nrf_pdm_clock_get(NRF_PDM_Type const * p_reg) { return (nrf_pdm_freq_t) ((p_reg->PDMCLKCTRL << PDM_PDMCLKCTRL_FREQ_Pos) & PDM_PDMCLKCTRL_FREQ_Msk); } #endif #if NRF_PDM_HAS_PRESCALER NRF_STATIC_INLINE void nrf_pdm_prescaler_set(NRF_PDM_Type * p_reg, uint32_t prescaler) { NRFX_ASSERT(prescaler >= NRF_PDM_PRESCALER_MIN); NRFX_ASSERT(prescaler <= NRF_PDM_PRESCALER_MAX); p_reg->PRESCALER = prescaler; } NRF_STATIC_INLINE uint32_t nrf_pdm_prescaler_get(NRF_PDM_Type const * p_reg) { return p_reg->PRESCALER; } #endif NRF_STATIC_INLINE void nrf_pdm_psel_connect(NRF_PDM_Type * p_reg, uint32_t psel_clk, uint32_t psel_din) { p_reg->PSEL.CLK = psel_clk; p_reg->PSEL.DIN = psel_din; } NRF_STATIC_INLINE void nrf_pdm_clk_pin_set(NRF_PDM_Type * p_reg, uint32_t pin) { p_reg->PSEL.CLK = pin; } NRF_STATIC_INLINE void nrf_pdm_din_pin_set(NRF_PDM_Type * p_reg, uint32_t pin) { p_reg->PSEL.DIN = pin; } NRF_STATIC_INLINE uint32_t nrf_pdm_clk_pin_get(NRF_PDM_Type const * p_reg) { return p_reg->PSEL.CLK; } NRF_STATIC_INLINE uint32_t nrf_pdm_din_pin_get(NRF_PDM_Type const * p_reg) { return p_reg->PSEL.DIN; } NRF_STATIC_INLINE void nrf_pdm_psel_disconnect(NRF_PDM_Type * p_reg) { p_reg->PSEL.CLK = ((PDM_PSEL_CLK_CONNECT_Disconnected << PDM_PSEL_CLK_CONNECT_Pos) & PDM_PSEL_CLK_CONNECT_Msk); p_reg->PSEL.DIN = ((PDM_PSEL_DIN_CONNECT_Disconnected << PDM_PSEL_DIN_CONNECT_Pos) & PDM_PSEL_DIN_CONNECT_Msk); } NRF_STATIC_INLINE void nrf_pdm_gain_set(NRF_PDM_Type * p_reg, nrf_pdm_gain_t gain_l, nrf_pdm_gain_t gain_r) { p_reg->GAINL = gain_l; p_reg->GAINR = gain_r; } NRF_STATIC_INLINE void nrf_pdm_gain_get(NRF_PDM_Type const * p_reg, nrf_pdm_gain_t * p_gain_l, nrf_pdm_gain_t * p_gain_r) { *p_gain_l = (nrf_pdm_gain_t)p_reg->GAINL; *p_gain_r = (nrf_pdm_gain_t)p_reg->GAINR; } NRF_STATIC_INLINE void nrf_pdm_buffer_set(NRF_PDM_Type * p_reg, uint32_t * p_buffer, uint32_t num) { p_reg->SAMPLE.PTR = (uint32_t)p_buffer; #if defined(DMA_BUFFER_UNIFIED_BYTE_ACCESS) p_reg->SAMPLE.MAXCNT = num * sizeof(int16_t); #else p_reg->SAMPLE.MAXCNT = num; #endif } NRF_STATIC_INLINE uint32_t * nrf_pdm_buffer_get(NRF_PDM_Type const * p_reg) { return (uint32_t *)p_reg->SAMPLE.PTR; } #if NRF_PDM_HAS_RATIO_CONFIG NRF_STATIC_INLINE void nrf_pdm_ratio_set(NRF_PDM_Type * p_reg, nrf_pdm_ratio_t ratio) { p_reg->RATIO = ratio; } #endif #if NRF_PDM_HAS_MCLKCONFIG NRF_STATIC_INLINE void nrf_pdm_mclksrc_configure(NRF_PDM_Type * p_reg, nrf_pdm_mclksrc_t mclksrc) { p_reg->MCLKCONFIG = mclksrc; } #endif #endif // NRF_DECLARE_ONLY /** @} */ #ifdef __cplusplus } #endif #endif // NRF_PDM_H_