/* * Copyright (c) 2015 - 2023, Nordic Semiconductor ASA * All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #if NRFX_CHECK(NRFX_SPI_ENABLED) #if !NRFX_FEATURE_PRESENT(NRFX_SPI, _ENABLED) #error "No enabled SPI instances. Check ." #endif #include #include "prs/nrfx_prs.h" #include #define NRFX_LOG_MODULE SPI #include // Control block - driver instance local data. typedef struct { nrfx_spi_evt_handler_t handler; void * p_context; nrfx_spi_evt_t evt; // Keep the struct that is ready for event handler. Less memcpy. nrfx_drv_state_t state; volatile bool transfer_in_progress; uint8_t ss_pin; uint8_t orc; size_t bytes_transferred; bool abort; bool skip_gpio_cfg; } spi_control_block_t; static spi_control_block_t m_cb[NRFX_SPI_ENABLED_COUNT]; static void pins_configure(nrfx_spi_config_t const * p_config) { if (!p_config->skip_gpio_cfg) { // Configure pins used by the peripheral: // - SCK - output with initial value corresponding with the SPI mode used: // 0 - for modes 0 and 1 (CPOL = 0), 1 - for modes 2 and 3 (CPOL = 1); // according to the reference manual guidelines this pin and its input // buffer must always be connected for the SPI to work. if (p_config->mode <= NRF_SPI_MODE_1) { nrf_gpio_pin_clear(p_config->sck_pin); } else { nrf_gpio_pin_set(p_config->sck_pin); } nrf_gpio_cfg(p_config->sck_pin, NRF_GPIO_PIN_DIR_OUTPUT, NRF_GPIO_PIN_INPUT_CONNECT, NRF_GPIO_PIN_NOPULL, NRF_GPIO_PIN_S0S1, NRF_GPIO_PIN_NOSENSE); // - MOSI (optional) - output with initial value 0, if (p_config->mosi_pin != NRFX_SPI_PIN_NOT_USED) { nrf_gpio_pin_clear(p_config->mosi_pin); nrf_gpio_cfg_output(p_config->mosi_pin); } // - MISO (optional) - input, if (p_config->miso_pin != NRFX_SPI_PIN_NOT_USED) { nrf_gpio_cfg_input(p_config->miso_pin, p_config->miso_pull); } // - Slave Select (optional) - output with initial value 1 (inactive). if (p_config->ss_pin != NRFX_SPI_PIN_NOT_USED) { nrf_gpio_pin_set(p_config->ss_pin); nrf_gpio_cfg_output(p_config->ss_pin); } } } static void spi_configure(nrfx_spi_t const * p_instance, nrfx_spi_config_t const * p_config) { pins_configure(p_config); m_cb[p_instance->drv_inst_idx].ss_pin = p_config->ss_pin; if (!p_config->skip_psel_cfg) { uint32_t mosi_pin = p_config->mosi_pin != NRFX_SPI_PIN_NOT_USED ? p_config->mosi_pin : NRF_SPI_PIN_NOT_CONNECTED; uint32_t miso_pin = p_config->miso_pin != NRFX_SPI_PIN_NOT_USED ? p_config->miso_pin : NRF_SPI_PIN_NOT_CONNECTED; nrf_spi_pins_set(p_instance->p_reg, p_config->sck_pin, mosi_pin, miso_pin); } nrf_spi_frequency_set(p_instance->p_reg, p_config->frequency); nrf_spi_configure(p_instance->p_reg, p_config->mode, p_config->bit_order); m_cb[p_instance->drv_inst_idx].orc = p_config->orc; if (m_cb[p_instance->drv_inst_idx].handler) { NRFX_IRQ_PRIORITY_SET(nrfx_get_irq_number(p_instance->p_reg), p_config->irq_priority); NRFX_IRQ_ENABLE(nrfx_get_irq_number(p_instance->p_reg)); } } nrfx_err_t nrfx_spi_init(nrfx_spi_t const * p_instance, nrfx_spi_config_t const * p_config, nrfx_spi_evt_handler_t handler, void * p_context) { NRFX_ASSERT(p_config); spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx]; nrfx_err_t err_code; if (p_cb->state != NRFX_DRV_STATE_UNINITIALIZED) { err_code = NRFX_ERROR_INVALID_STATE; NRFX_LOG_WARNING("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } #if NRFX_CHECK(NRFX_PRS_ENABLED) static nrfx_irq_handler_t const irq_handlers[NRFX_SPI_ENABLED_COUNT] = { NRFX_INSTANCE_IRQ_HANDLERS_LIST(SPI, spi) }; if (nrfx_prs_acquire(p_instance->p_reg, irq_handlers[p_instance->drv_inst_idx]) != NRFX_SUCCESS) { err_code = NRFX_ERROR_BUSY; NRFX_LOG_WARNING("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } #endif // NRFX_CHECK(NRFX_PRS_ENABLED) p_cb->handler = handler; p_cb->p_context = p_context; if (p_config) { p_cb->skip_gpio_cfg = p_config->skip_gpio_cfg; p_cb->ss_pin = p_config->ss_pin; p_cb->orc = p_config->orc; spi_configure(p_instance, p_config); } nrf_spi_enable(p_instance->p_reg); p_cb->transfer_in_progress = false; p_cb->state = NRFX_DRV_STATE_INITIALIZED; err_code = NRFX_SUCCESS; NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } nrfx_err_t nrfx_spi_reconfigure(nrfx_spi_t const * p_instance, nrfx_spi_config_t const * p_config) { NRFX_ASSERT(p_config); spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx]; if (p_cb->state == NRFX_DRV_STATE_UNINITIALIZED) { return NRFX_ERROR_INVALID_STATE; } if (p_cb->transfer_in_progress) { return NRFX_ERROR_BUSY; } nrf_spi_disable(p_instance->p_reg); spi_configure(p_instance, p_config); nrf_spi_enable(p_instance->p_reg); return NRFX_SUCCESS; } void nrfx_spi_uninit(nrfx_spi_t const * p_instance) { spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx]; NRFX_ASSERT(p_cb->state != NRFX_DRV_STATE_UNINITIALIZED); NRF_SPI_Type * p_spi = p_instance->p_reg; if (p_cb->handler) { NRFX_IRQ_DISABLE(nrfx_get_irq_number(p_instance->p_reg)); nrf_spi_int_disable(p_spi, NRF_SPI_ALL_INTS_MASK); } nrf_spi_disable(p_spi); if (!p_cb->skip_gpio_cfg) { nrf_gpio_cfg_default(nrf_spi_sck_pin_get(p_spi)); uint32_t miso_pin = nrf_spi_miso_pin_get(p_spi); if (miso_pin != NRF_SPI_PIN_NOT_CONNECTED) { nrf_gpio_cfg_default(miso_pin); } uint32_t mosi_pin = nrf_spi_mosi_pin_get(p_spi); if (mosi_pin != NRF_SPI_PIN_NOT_CONNECTED) { nrf_gpio_cfg_default(mosi_pin); } if (p_cb->ss_pin != NRFX_SPI_PIN_NOT_USED) { nrf_gpio_cfg_default(p_cb->ss_pin); } } #if NRFX_CHECK(NRFX_PRS_ENABLED) nrfx_prs_release(p_instance->p_reg); #endif p_cb->state = NRFX_DRV_STATE_UNINITIALIZED; } static void finish_transfer(spi_control_block_t * p_cb) { // If Slave Select signal is used, this is the time to deactivate it. if (p_cb->ss_pin != NRFX_SPI_PIN_NOT_USED) { nrf_gpio_pin_write(p_cb->ss_pin, 1); } // By clearing this flag before calling the handler we allow subsequent // transfers to be started directly from the handler function. p_cb->transfer_in_progress = false; p_cb->evt.type = NRFX_SPI_EVENT_DONE; p_cb->handler(&p_cb->evt, p_cb->p_context); } // This function is called from the IRQ handler or, in blocking mode, directly // from the 'spi_xfer' function. // It returns true as long as the transfer should be continued, otherwise (when // there is nothing more to send/receive) it returns false. static bool transfer_byte(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb) { // Read the data byte received in this transfer (always, because no further // READY event can be generated until the current byte is read out from the // RXD register), and store it in the RX buffer (only when needed). volatile uint8_t rx_data = nrf_spi_rxd_get(p_spi); if (p_cb->bytes_transferred < p_cb->evt.xfer_desc.rx_length) { p_cb->evt.xfer_desc.p_rx_buffer[p_cb->bytes_transferred] = rx_data; } ++p_cb->bytes_transferred; // Check if there are more bytes to send or receive and write proper data // byte (next one from TX buffer or over-run character) to the TXD register // when needed. // NOTE - we've already used 'p_cb->bytes_transferred + 1' bytes from our // buffers, because we take advantage of double buffering of TXD // register (so in effect one byte is still being transmitted now); // see how the transfer is started in the 'spi_xfer' function. size_t bytes_used = p_cb->bytes_transferred + 1; if (p_cb->abort) { if (bytes_used < p_cb->evt.xfer_desc.tx_length) { p_cb->evt.xfer_desc.tx_length = bytes_used; } if (bytes_used < p_cb->evt.xfer_desc.rx_length) { p_cb->evt.xfer_desc.rx_length = bytes_used; } } if (bytes_used < p_cb->evt.xfer_desc.tx_length) { nrf_spi_txd_set(p_spi, p_cb->evt.xfer_desc.p_tx_buffer[bytes_used]); return true; } else if (bytes_used < p_cb->evt.xfer_desc.rx_length) { nrf_spi_txd_set(p_spi, p_cb->orc); return true; } return (p_cb->bytes_transferred < p_cb->evt.xfer_desc.tx_length || p_cb->bytes_transferred < p_cb->evt.xfer_desc.rx_length); } static void spi_xfer(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb, nrfx_spi_xfer_desc_t const * p_xfer_desc) { p_cb->bytes_transferred = 0; nrf_spi_int_disable(p_spi, NRF_SPI_INT_READY_MASK); nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY); // Start the transfer by writing some byte to the TXD register; // if TX buffer is not empty, take the first byte from this buffer, // otherwise - use over-run character. nrf_spi_txd_set(p_spi, (p_xfer_desc->tx_length > 0 ? p_xfer_desc->p_tx_buffer[0] : p_cb->orc)); // TXD register is double buffered, so next byte to be transmitted can // be written immediately, if needed, i.e. if TX or RX transfer is to // be more that 1 byte long. Again - if there is something more in TX // buffer send it, otherwise use over-run character. if (p_xfer_desc->tx_length > 1) { nrf_spi_txd_set(p_spi, p_xfer_desc->p_tx_buffer[1]); } else if (p_xfer_desc->rx_length > 1) { nrf_spi_txd_set(p_spi, p_cb->orc); } // For blocking mode (user handler not provided) wait here for READY // events (indicating that the byte from TXD register was transmitted // and a new incoming byte was moved to the RXD register) and continue // transaction until all requested bytes are transferred. // In non-blocking mode - IRQ service routine will do this stuff. if (p_cb->handler) { nrf_spi_int_enable(p_spi, NRF_SPI_INT_READY_MASK); } else { do { while (!nrf_spi_event_check(p_spi, NRF_SPI_EVENT_READY)) {} nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY); NRFX_LOG_DEBUG("SPI: Event: NRF_SPI_EVENT_READY."); } while (transfer_byte(p_spi, p_cb)); if (p_cb->ss_pin != NRFX_SPI_PIN_NOT_USED) { nrf_gpio_pin_write(p_cb->ss_pin, 1); } } } nrfx_err_t nrfx_spi_xfer(nrfx_spi_t const * p_instance, nrfx_spi_xfer_desc_t const * p_xfer_desc, uint32_t flags) { spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx]; NRFX_ASSERT(p_cb->state != NRFX_DRV_STATE_UNINITIALIZED); NRFX_ASSERT(p_xfer_desc->p_tx_buffer != NULL || p_xfer_desc->tx_length == 0); NRFX_ASSERT(p_xfer_desc->p_rx_buffer != NULL || p_xfer_desc->rx_length == 0); nrfx_err_t err_code = NRFX_SUCCESS; if (p_cb->transfer_in_progress) { err_code = NRFX_ERROR_BUSY; NRFX_LOG_WARNING("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } else { if (p_cb->handler) { p_cb->transfer_in_progress = true; } } p_cb->evt.xfer_desc = *p_xfer_desc; p_cb->abort = false; if (p_cb->ss_pin != NRFX_SPI_PIN_NOT_USED) { nrf_gpio_pin_write(p_cb->ss_pin, 0); } if (flags) { p_cb->transfer_in_progress = false; err_code = NRFX_ERROR_NOT_SUPPORTED; } else { spi_xfer(p_instance->p_reg, p_cb, p_xfer_desc); } NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code)); return err_code; } void nrfx_spi_abort(nrfx_spi_t const * p_instance) { spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx]; NRFX_ASSERT(p_cb->state != NRFX_DRV_STATE_UNINITIALIZED); p_cb->abort = true; } static void irq_handler(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb) { NRFX_ASSERT(p_cb->handler); nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY); NRFX_LOG_DEBUG("Event: NRF_SPI_EVENT_READY."); if (!transfer_byte(p_spi, p_cb)) { finish_transfer(p_cb); } } NRFX_INSTANCE_IRQ_HANDLERS(SPI, spi) #endif // NRFX_CHECK(NRFX_SPI_ENABLED)