/* * Copyright (c) 2015 - 2023, Nordic Semiconductor ASA * All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef NRF_GPIOTE_H__ #define NRF_GPIOTE_H__ #include #ifdef __cplusplus extern "C" { #endif /* Internal macro used for NRF_GPIOTE_INT_IN_MASK. */ #define NRF_GPIOTE_INT_IN(idx, _) NRFX_CONCAT(NRF_GPIOTE_INT_IN, idx, _MASK) /** * @defgroup nrf_gpiote_hal GPIOTE HAL * @{ * @ingroup nrf_gpiote * @brief Hardware access layer (HAL) for managing the GPIOTE peripheral. */ #if defined(GPIOTE_CONFIG_PORT_Msk) || defined(__NRFX_DOXYGEN__) /** @brief Mask for covering port and pin bits in registers. */ #define GPIOTE_CONFIG_PORT_PIN_Msk (GPIOTE_CONFIG_PORT_Msk | GPIOTE_CONFIG_PSEL_Msk) #else #define GPIOTE_CONFIG_PORT_PIN_Msk GPIOTE_CONFIG_PSEL_Msk #endif #if defined(GPIOTE_LATENCY_LATENCY_Msk) || defined(__NRFX_DOXYGEN__) /** @brief Presence of the latency setting. */ #define NRF_GPIOTE_HAS_LATENCY 1 #else #define NRF_GPIOTE_HAS_LATENCY 0 #endif #if !defined(NRF_GPIOTE_IRQ_GROUP) || defined(__NRFX_DOXYGEN__) /** @brief Symbol indicating which interrupt group to use. Empty if there are no groups. */ #define NRF_GPIOTE_IRQ_GROUP #endif #if defined(GPIOTE_INTENSET0_PORT0SECURE_Msk) #if defined(NRF_TRUSTZONE_NONSECURE) || defined(ISA_RISCV) #define NRF_GPIOTE_SECURE_SUFFIX NONSECURE #else #define NRF_GPIOTE_SECURE_SUFFIX SECURE #endif #else /** @brief Symbol indicating a TrustZone suffix added to the register name. */ #define NRF_GPIOTE_SECURE_SUFFIX #endif #if defined(NRF_GPIOTE_PORT_ID) #define NRF_GPIOTE_EVENTS_PORT_REG EVENTS_PORT[NRF_GPIOTE_PORT_ID].NRF_GPIOTE_SECURE_SUFFIX #define NRF_GPIOTE_INT_PORT_MASK_NAME \ NRFX_CONCAT(GPIOTE_INTENSET, \ NRF_GPIOTE_IRQ_GROUP, \ _PORT, \ NRF_GPIOTE_PORT_ID, \ NRF_GPIOTE_SECURE_SUFFIX, \ _Msk) #else /** @brief Symbol indicating a name of PORT event register to be used. */ #define NRF_GPIOTE_EVENTS_PORT_REG EVENTS_PORT /** @brief Symbol specifying interrupt bitmask associated with the PORT event. */ #define NRF_GPIOTE_INT_PORT_MASK_NAME GPIOTE_INTENSET_PORT_Msk #endif /** @brief Polarity for the GPIOTE channel. */ typedef enum { NRF_GPIOTE_POLARITY_NONE = GPIOTE_CONFIG_POLARITY_None, ///< None. NRF_GPIOTE_POLARITY_LOTOHI = GPIOTE_CONFIG_POLARITY_LoToHi, ///< Low to high. NRF_GPIOTE_POLARITY_HITOLO = GPIOTE_CONFIG_POLARITY_HiToLo, ///< High to low. NRF_GPIOTE_POLARITY_TOGGLE = GPIOTE_CONFIG_POLARITY_Toggle, ///< Toggle. } nrf_gpiote_polarity_t; /** @brief Initial output value for the GPIOTE channel. */ typedef enum { NRF_GPIOTE_INITIAL_VALUE_LOW = GPIOTE_CONFIG_OUTINIT_Low, ///< Low to high. NRF_GPIOTE_INITIAL_VALUE_HIGH = GPIOTE_CONFIG_OUTINIT_High, ///< High to low. } nrf_gpiote_outinit_t; #if NRF_GPIOTE_HAS_LATENCY /** @brief Latency setting. */ typedef enum { NRF_GPIOTE_LATENCY_LOWPOWER = GPIOTE_LATENCY_LATENCY_LowPower, ///< Low Power. NRF_GPIOTE_LATENCY_LOWLATENCY = GPIOTE_LATENCY_LATENCY_LowLatency, ///< Low Latency. } nrf_gpiote_latency_t; #endif /** @brief GPIOTE tasks. */ typedef enum { NRF_GPIOTE_TASK_OUT_0 = offsetof(NRF_GPIOTE_Type, TASKS_OUT[0]), ///< Out task 0. NRF_GPIOTE_TASK_OUT_1 = offsetof(NRF_GPIOTE_Type, TASKS_OUT[1]), ///< Out task 1. NRF_GPIOTE_TASK_OUT_2 = offsetof(NRF_GPIOTE_Type, TASKS_OUT[2]), ///< Out task 2. NRF_GPIOTE_TASK_OUT_3 = offsetof(NRF_GPIOTE_Type, TASKS_OUT[3]), ///< Out task 3. #if (GPIOTE_CH_NUM > 4) || defined(__NRFX_DOXYGEN__) NRF_GPIOTE_TASK_OUT_4 = offsetof(NRF_GPIOTE_Type, TASKS_OUT[4]), ///< Out task 4. NRF_GPIOTE_TASK_OUT_5 = offsetof(NRF_GPIOTE_Type, TASKS_OUT[5]), ///< Out task 5. NRF_GPIOTE_TASK_OUT_6 = offsetof(NRF_GPIOTE_Type, TASKS_OUT[6]), ///< Out task 6. NRF_GPIOTE_TASK_OUT_7 = offsetof(NRF_GPIOTE_Type, TASKS_OUT[7]), ///< Out task 7. #endif #if defined(GPIOTE_FEATURE_SET_PRESENT) || defined(__NRFX_DOXYGEN__) NRF_GPIOTE_TASK_SET_0 = offsetof(NRF_GPIOTE_Type, TASKS_SET[0]), ///< Set task 0. NRF_GPIOTE_TASK_SET_1 = offsetof(NRF_GPIOTE_Type, TASKS_SET[1]), ///< Set task 1. NRF_GPIOTE_TASK_SET_2 = offsetof(NRF_GPIOTE_Type, TASKS_SET[2]), ///< Set task 2. NRF_GPIOTE_TASK_SET_3 = offsetof(NRF_GPIOTE_Type, TASKS_SET[3]), ///< Set task 3. NRF_GPIOTE_TASK_SET_4 = offsetof(NRF_GPIOTE_Type, TASKS_SET[4]), ///< Set task 4. NRF_GPIOTE_TASK_SET_5 = offsetof(NRF_GPIOTE_Type, TASKS_SET[5]), ///< Set task 5. NRF_GPIOTE_TASK_SET_6 = offsetof(NRF_GPIOTE_Type, TASKS_SET[6]), ///< Set task 6. NRF_GPIOTE_TASK_SET_7 = offsetof(NRF_GPIOTE_Type, TASKS_SET[7]), ///< Set task 7. #endif #if defined(GPIOTE_FEATURE_CLR_PRESENT) || defined(__NRFX_DOXYGEN__) NRF_GPIOTE_TASK_CLR_0 = offsetof(NRF_GPIOTE_Type, TASKS_CLR[0]), ///< Clear task 0. NRF_GPIOTE_TASK_CLR_1 = offsetof(NRF_GPIOTE_Type, TASKS_CLR[1]), ///< Clear task 1. NRF_GPIOTE_TASK_CLR_2 = offsetof(NRF_GPIOTE_Type, TASKS_CLR[2]), ///< Clear task 2. NRF_GPIOTE_TASK_CLR_3 = offsetof(NRF_GPIOTE_Type, TASKS_CLR[3]), ///< Clear task 3. NRF_GPIOTE_TASK_CLR_4 = offsetof(NRF_GPIOTE_Type, TASKS_CLR[4]), ///< Clear task 4. NRF_GPIOTE_TASK_CLR_5 = offsetof(NRF_GPIOTE_Type, TASKS_CLR[5]), ///< Clear task 5. NRF_GPIOTE_TASK_CLR_6 = offsetof(NRF_GPIOTE_Type, TASKS_CLR[6]), ///< Clear task 6. NRF_GPIOTE_TASK_CLR_7 = offsetof(NRF_GPIOTE_Type, TASKS_CLR[7]), ///< Clear task 7. #endif } nrf_gpiote_task_t; /** @brief GPIOTE events. */ typedef enum { NRF_GPIOTE_EVENT_IN_0 = offsetof(NRF_GPIOTE_Type, EVENTS_IN[0]), ///< In event 0. NRF_GPIOTE_EVENT_IN_1 = offsetof(NRF_GPIOTE_Type, EVENTS_IN[1]), ///< In event 1. NRF_GPIOTE_EVENT_IN_2 = offsetof(NRF_GPIOTE_Type, EVENTS_IN[2]), ///< In event 2. NRF_GPIOTE_EVENT_IN_3 = offsetof(NRF_GPIOTE_Type, EVENTS_IN[3]), ///< In event 3. #if (GPIOTE_CH_NUM > 4) || defined(__NRFX_DOXYGEN__) NRF_GPIOTE_EVENT_IN_4 = offsetof(NRF_GPIOTE_Type, EVENTS_IN[4]), ///< In event 4. NRF_GPIOTE_EVENT_IN_5 = offsetof(NRF_GPIOTE_Type, EVENTS_IN[5]), ///< In event 5. NRF_GPIOTE_EVENT_IN_6 = offsetof(NRF_GPIOTE_Type, EVENTS_IN[6]), ///< In event 6. NRF_GPIOTE_EVENT_IN_7 = offsetof(NRF_GPIOTE_Type, EVENTS_IN[7]), ///< In event 7. #endif NRF_GPIOTE_EVENT_PORT = offsetof(NRF_GPIOTE_Type, NRF_GPIOTE_EVENTS_PORT_REG), ///< Port event. } nrf_gpiote_event_t; /** @brief GPIOTE interrupts. */ typedef enum { NRF_GPIOTE_INT_IN0_MASK = NRFX_CONCAT(GPIOTE_INTENSET, NRF_GPIOTE_IRQ_GROUP, _IN0_Msk), ///< GPIOTE interrupt from IN0. NRF_GPIOTE_INT_IN1_MASK = NRFX_CONCAT(GPIOTE_INTENSET, NRF_GPIOTE_IRQ_GROUP, _IN1_Msk), ///< GPIOTE interrupt from IN1. NRF_GPIOTE_INT_IN2_MASK = NRFX_CONCAT(GPIOTE_INTENSET, NRF_GPIOTE_IRQ_GROUP, _IN2_Msk), ///< GPIOTE interrupt from IN2. NRF_GPIOTE_INT_IN3_MASK = NRFX_CONCAT(GPIOTE_INTENSET, NRF_GPIOTE_IRQ_GROUP, _IN3_Msk), ///< GPIOTE interrupt from IN3. #if (GPIOTE_CH_NUM > 4) || defined(__NRFX_DOXYGEN__) NRF_GPIOTE_INT_IN4_MASK = NRFX_CONCAT(GPIOTE_INTENSET, NRF_GPIOTE_IRQ_GROUP, _IN4_Msk), ///< GPIOTE interrupt from IN4. NRF_GPIOTE_INT_IN5_MASK = NRFX_CONCAT(GPIOTE_INTENSET, NRF_GPIOTE_IRQ_GROUP, _IN5_Msk), ///< GPIOTE interrupt from IN5. NRF_GPIOTE_INT_IN6_MASK = NRFX_CONCAT(GPIOTE_INTENSET, NRF_GPIOTE_IRQ_GROUP, _IN6_Msk), ///< GPIOTE interrupt from IN6. NRF_GPIOTE_INT_IN7_MASK = NRFX_CONCAT(GPIOTE_INTENSET, NRF_GPIOTE_IRQ_GROUP, _IN7_Msk), ///< GPIOTE interrupt from IN7. #endif NRF_GPIOTE_INT_PORT_MASK = (int)NRF_GPIOTE_INT_PORT_MASK_NAME ///< GPIOTE interrupt from PORT event. } nrf_gpiote_int_t; /** @brief Symbol specifying bitmask collecting all IN events interrupts. */ #define NRF_GPIOTE_INT_IN_MASK (NRFX_LISTIFY(GPIOTE_CH_NUM, NRF_GPIOTE_INT_IN, (|), _)) /** * @brief Function for activating the specified GPIOTE task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Task. */ NRF_STATIC_INLINE void nrf_gpiote_task_trigger(NRF_GPIOTE_Type * p_reg, nrf_gpiote_task_t task); /** * @brief Function for getting the address of the specified GPIOTE task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Task. * * @return Address of the specified task. */ NRF_STATIC_INLINE uint32_t nrf_gpiote_task_address_get(NRF_GPIOTE_Type const * p_reg, nrf_gpiote_task_t task); /** * @brief Function for getting the state of the specified GPIOTE event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event. * * @retval true The event is set. * @retval false The event is not set. */ NRF_STATIC_INLINE bool nrf_gpiote_event_check(NRF_GPIOTE_Type const * p_reg, nrf_gpiote_event_t event); /** * @brief Function for clearing the specified GPIOTE event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event. */ NRF_STATIC_INLINE void nrf_gpiote_event_clear(NRF_GPIOTE_Type * p_reg, nrf_gpiote_event_t event); /** * @brief Function for getting the address of the specified GPIOTE event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event. * * @return Address of the specified event. */ NRF_STATIC_INLINE uint32_t nrf_gpiote_event_address_get(NRF_GPIOTE_Type const * p_reg, nrf_gpiote_event_t event); /** * @brief Function for enabling interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of interrupts to be enabled. */ NRF_STATIC_INLINE void nrf_gpiote_int_enable(NRF_GPIOTE_Type * p_reg, uint32_t mask); /** * @brief Function for disabling interrupts. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of interrupts to be disabled. */ NRF_STATIC_INLINE void nrf_gpiote_int_disable(NRF_GPIOTE_Type * p_reg, uint32_t mask); /** * @brief Function for checking if the specified interrupts are enabled. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] mask Mask of interrupts to be checked. * * @return Mask of enabled interrupts. */ NRF_STATIC_INLINE uint32_t nrf_gpiote_int_enable_check(NRF_GPIOTE_Type const * p_reg, uint32_t mask); #if defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__) /** * @brief Function for setting the subscribe configuration for a given * GPIOTE task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Task for which to set the configuration. * @param[in] channel Channel through which to subscribe events. */ NRF_STATIC_INLINE void nrf_gpiote_subscribe_set(NRF_GPIOTE_Type * p_reg, nrf_gpiote_task_t task, uint8_t channel); /** * @brief Function for clearing the subscribe configuration for a given * GPIOTE task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] task Task for which to clear the configuration. */ NRF_STATIC_INLINE void nrf_gpiote_subscribe_clear(NRF_GPIOTE_Type * p_reg, nrf_gpiote_task_t task); /** * @brief Function for setting the publish configuration for a given * GPIOTE event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event for which to set the configuration. * @param[in] channel Channel through which to publish the event. */ NRF_STATIC_INLINE void nrf_gpiote_publish_set(NRF_GPIOTE_Type * p_reg, nrf_gpiote_event_t event, uint8_t channel); /** * @brief Function for clearing the publish configuration for a given * GPIOTE event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] event Event for which to clear the configuration. */ NRF_STATIC_INLINE void nrf_gpiote_publish_clear(NRF_GPIOTE_Type * p_reg, nrf_gpiote_event_t event); #endif // defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__) /** * @brief Function for enabling a GPIOTE event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] idx Task-Event index. */ NRF_STATIC_INLINE void nrf_gpiote_event_enable(NRF_GPIOTE_Type * p_reg, uint32_t idx); /** * @brief Function for disabling a GPIOTE event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] idx Task-Event index. */ NRF_STATIC_INLINE void nrf_gpiote_event_disable(NRF_GPIOTE_Type * p_reg, uint32_t idx); /** * @brief Function for configuring a GPIOTE event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] idx Task-Event index. * @param[in] pin Pin associated with event. * @param[in] polarity Transition that should generate an event. */ NRF_STATIC_INLINE void nrf_gpiote_event_configure(NRF_GPIOTE_Type * p_reg, uint32_t idx, uint32_t pin, nrf_gpiote_polarity_t polarity); /** * @brief Function for getting the pin associated with a GPIOTE event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] idx Task-Event index. * * @return Pin number. */ NRF_STATIC_INLINE uint32_t nrf_gpiote_event_pin_get(NRF_GPIOTE_Type const * p_reg, uint32_t idx); /** * @brief Function for getting the polarity associated with a GPIOTE event. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] idx Task-Event index. * * @return Polarity. */ NRF_STATIC_INLINE nrf_gpiote_polarity_t nrf_gpiote_event_polarity_get(NRF_GPIOTE_Type const * p_reg, uint32_t idx); /** * @brief Function for enabling a GPIOTE task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] idx Task-Event index. */ NRF_STATIC_INLINE void nrf_gpiote_task_enable(NRF_GPIOTE_Type * p_reg, uint32_t idx); /** * @brief Function for disabling a GPIOTE task. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] idx Task-Event index. */ NRF_STATIC_INLINE void nrf_gpiote_task_disable(NRF_GPIOTE_Type * p_reg, uint32_t idx); /** * @brief Function for configuring a GPIOTE task. * * @note Function is not configuring mode field so task is disabled after this function is called. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] idx Task-Event index. * @param[in] pin Pin associated with event. * @param[in] polarity Transition that should generate an event. * @param[in] init_val Initial value of the pin. */ NRF_STATIC_INLINE void nrf_gpiote_task_configure(NRF_GPIOTE_Type * p_reg, uint32_t idx, uint32_t pin, nrf_gpiote_polarity_t polarity, nrf_gpiote_outinit_t init_val); /** * @brief Function for forcing the specified state on the pin connected to GPIOTE. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] idx Task-Event index. * @param[in] init_val Pin state. */ NRF_STATIC_INLINE void nrf_gpiote_task_force(NRF_GPIOTE_Type * p_reg, uint32_t idx, nrf_gpiote_outinit_t init_val); /** * @brief Function for resetting a GPIOTE task event configuration to the default state. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] idx Task-Event index. */ NRF_STATIC_INLINE void nrf_gpiote_te_default(NRF_GPIOTE_Type * p_reg, uint32_t idx); /** * @brief Function for checking if particular Task-Event is enabled. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] idx Task-Event index. * * @retval true The Task-Event mode is set to Task or Event. * @retval false The Task-Event mode is set to Disabled. */ NRF_STATIC_INLINE bool nrf_gpiote_te_is_enabled(NRF_GPIOTE_Type const * p_reg, uint32_t idx); /** * @brief Function for getting the OUT task associated with the specified GPIOTE channel. * * @param[in] index Channel index. * * @return Requested OUT task. */ NRF_STATIC_INLINE nrf_gpiote_task_t nrf_gpiote_out_task_get(uint8_t index); #if defined(GPIOTE_FEATURE_SET_PRESENT) || defined(__NRFX_DOXYGEN__) /** * @brief Function for getting the SET task associated with the specified GPIOTE channel. * * @param[in] index Channel index. * * @return Requested SET task. */ NRF_STATIC_INLINE nrf_gpiote_task_t nrf_gpiote_set_task_get(uint8_t index); #endif #if defined(GPIOTE_FEATURE_CLR_PRESENT) || defined(__NRFX_DOXYGEN__) /** * @brief Function for getting the CLR task associated with the specified GPIOTE channel. * * @param[in] index Channel index. * * @return Requested CLR task. */ NRF_STATIC_INLINE nrf_gpiote_task_t nrf_gpiote_clr_task_get(uint8_t index); #endif /** * @brief Function for getting the IN event associated with the specified GPIOTE channel. * * @param[in] index Channel index. * * @return Requested IN event. */ NRF_STATIC_INLINE nrf_gpiote_event_t nrf_gpiote_in_event_get(uint8_t index); #if NRF_GPIOTE_HAS_LATENCY /** * @brief Function for setting the latency setting. * * @note Available for event mode with rising or falling edge detection on the pin. * Toggle task mode can only be used with low latency setting. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * @param[in] latency Latency setting to be set. */ NRF_STATIC_INLINE void nrf_gpiote_latency_set(NRF_GPIOTE_Type * p_reg, nrf_gpiote_latency_t latency); /** * @brief Function for retrieving the latency setting. * * @param[in] p_reg Pointer to the structure of registers of the peripheral. * * @return Latency setting. */ NRF_STATIC_INLINE nrf_gpiote_latency_t nrf_gpiote_latency_get(NRF_GPIOTE_Type const * p_reg); #endif #ifndef NRF_DECLARE_ONLY NRF_STATIC_INLINE void nrf_gpiote_task_trigger(NRF_GPIOTE_Type * p_reg, nrf_gpiote_task_t task) { *(volatile uint32_t *)((uint32_t)p_reg + task) = 0x1UL; } NRF_STATIC_INLINE uint32_t nrf_gpiote_task_address_get(NRF_GPIOTE_Type const * p_reg, nrf_gpiote_task_t task) { return ((uint32_t)p_reg + task); } NRF_STATIC_INLINE bool nrf_gpiote_event_check(NRF_GPIOTE_Type const * p_reg, nrf_gpiote_event_t event) { return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event); } NRF_STATIC_INLINE void nrf_gpiote_event_clear(NRF_GPIOTE_Type * p_reg, nrf_gpiote_event_t event) { *((volatile uint32_t *)nrf_gpiote_event_address_get(p_reg, event)) = 0; nrf_event_readback((void *)nrf_gpiote_event_address_get(p_reg, event)); } NRF_STATIC_INLINE uint32_t nrf_gpiote_event_address_get(NRF_GPIOTE_Type const * p_reg, nrf_gpiote_event_t event) { return ((uint32_t)p_reg + event); } NRF_STATIC_INLINE void nrf_gpiote_int_enable(NRF_GPIOTE_Type * p_reg, uint32_t mask) { p_reg->NRFX_CONCAT_2(INTENSET, NRF_GPIOTE_IRQ_GROUP) = mask; } NRF_STATIC_INLINE void nrf_gpiote_int_disable(NRF_GPIOTE_Type * p_reg, uint32_t mask) { p_reg->NRFX_CONCAT_2(INTENCLR, NRF_GPIOTE_IRQ_GROUP) = mask; } NRF_STATIC_INLINE uint32_t nrf_gpiote_int_enable_check(NRF_GPIOTE_Type const * p_reg, uint32_t mask) { return p_reg->NRFX_CONCAT_2(INTENSET, NRF_GPIOTE_IRQ_GROUP) & mask; } #if defined(DPPI_PRESENT) NRF_STATIC_INLINE void nrf_gpiote_subscribe_set(NRF_GPIOTE_Type * p_reg, nrf_gpiote_task_t task, uint8_t channel) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) = ((uint32_t)channel | NRF_SUBSCRIBE_PUBLISH_ENABLE); } NRF_STATIC_INLINE void nrf_gpiote_subscribe_clear(NRF_GPIOTE_Type * p_reg, nrf_gpiote_task_t task) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) = 0; } NRF_STATIC_INLINE void nrf_gpiote_publish_set(NRF_GPIOTE_Type * p_reg, nrf_gpiote_event_t event, uint8_t channel) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = ((uint32_t)channel | NRF_SUBSCRIBE_PUBLISH_ENABLE); } NRF_STATIC_INLINE void nrf_gpiote_publish_clear(NRF_GPIOTE_Type * p_reg, nrf_gpiote_event_t event) { *((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = 0; } #endif // defined(DPPI_PRESENT) NRF_STATIC_INLINE void nrf_gpiote_event_enable(NRF_GPIOTE_Type * p_reg, uint32_t idx) { p_reg->CONFIG[idx] |= GPIOTE_CONFIG_MODE_Event; } NRF_STATIC_INLINE void nrf_gpiote_event_disable(NRF_GPIOTE_Type * p_reg, uint32_t idx) { p_reg->CONFIG[idx] &= ~GPIOTE_CONFIG_MODE_Msk; } NRF_STATIC_INLINE void nrf_gpiote_event_configure(NRF_GPIOTE_Type * p_reg, uint32_t idx, uint32_t pin, nrf_gpiote_polarity_t polarity) { p_reg->CONFIG[idx] &= ~(GPIOTE_CONFIG_PORT_PIN_Msk | GPIOTE_CONFIG_POLARITY_Msk); p_reg->CONFIG[idx] |= ((pin << GPIOTE_CONFIG_PSEL_Pos) & GPIOTE_CONFIG_PORT_PIN_Msk) | ((polarity << GPIOTE_CONFIG_POLARITY_Pos) & GPIOTE_CONFIG_POLARITY_Msk); } NRF_STATIC_INLINE uint32_t nrf_gpiote_event_pin_get(NRF_GPIOTE_Type const * p_reg, uint32_t idx) { return ((p_reg->CONFIG[idx] & GPIOTE_CONFIG_PORT_PIN_Msk) >> GPIOTE_CONFIG_PSEL_Pos); } NRF_STATIC_INLINE nrf_gpiote_polarity_t nrf_gpiote_event_polarity_get(NRF_GPIOTE_Type const * p_reg, uint32_t idx) { return (nrf_gpiote_polarity_t)((p_reg->CONFIG[idx] & GPIOTE_CONFIG_POLARITY_Msk) >> GPIOTE_CONFIG_POLARITY_Pos); } NRF_STATIC_INLINE void nrf_gpiote_task_enable(NRF_GPIOTE_Type * p_reg, uint32_t idx) { uint32_t final_config = p_reg->CONFIG[idx] | GPIOTE_CONFIG_MODE_Task; #ifdef NRF51 /* Workaround for the OUTINIT PAN. When nrf_gpiote_task_config() is called a glitch happens on the GPIO if the GPIO in question is already assigned to GPIOTE and the pin is in the correct state in GPIOTE, but not in the OUT register. Configure channel to not existing, not connected to the pin, and configure as a tasks that will set it to proper level */ p_reg->CONFIG[idx] = final_config | (((31) << GPIOTE_CONFIG_PSEL_Pos) & GPIOTE_CONFIG_PORT_PIN_Msk); __NOP(); __NOP(); __NOP(); #endif p_reg->CONFIG[idx] = final_config; } NRF_STATIC_INLINE void nrf_gpiote_task_disable(NRF_GPIOTE_Type * p_reg, uint32_t idx) { p_reg->CONFIG[idx] &= ~GPIOTE_CONFIG_MODE_Msk; } NRF_STATIC_INLINE void nrf_gpiote_task_configure(NRF_GPIOTE_Type * p_reg, uint32_t idx, uint32_t pin, nrf_gpiote_polarity_t polarity, nrf_gpiote_outinit_t init_val) { p_reg->CONFIG[idx] &= ~(GPIOTE_CONFIG_PORT_PIN_Msk | GPIOTE_CONFIG_POLARITY_Msk | GPIOTE_CONFIG_OUTINIT_Msk); p_reg->CONFIG[idx] |= ((pin << GPIOTE_CONFIG_PSEL_Pos) & GPIOTE_CONFIG_PORT_PIN_Msk) | ((polarity << GPIOTE_CONFIG_POLARITY_Pos) & GPIOTE_CONFIG_POLARITY_Msk) | ((init_val << GPIOTE_CONFIG_OUTINIT_Pos) & GPIOTE_CONFIG_OUTINIT_Msk); } NRF_STATIC_INLINE void nrf_gpiote_task_force(NRF_GPIOTE_Type * p_reg, uint32_t idx, nrf_gpiote_outinit_t init_val) { p_reg->CONFIG[idx] = (p_reg->CONFIG[idx] & ~GPIOTE_CONFIG_OUTINIT_Msk) | ((init_val << GPIOTE_CONFIG_OUTINIT_Pos) & GPIOTE_CONFIG_OUTINIT_Msk); } NRF_STATIC_INLINE void nrf_gpiote_te_default(NRF_GPIOTE_Type * p_reg, uint32_t idx) { p_reg->CONFIG[idx] = 0; #if !defined(NRF51_SERIES) && !defined(NRF52_SERIES) p_reg->CONFIG[idx] = 0; #endif } NRF_STATIC_INLINE bool nrf_gpiote_te_is_enabled(NRF_GPIOTE_Type const * p_reg, uint32_t idx) { return (p_reg->CONFIG[idx] & GPIOTE_CONFIG_MODE_Msk) != GPIOTE_CONFIG_MODE_Disabled; } NRF_STATIC_INLINE nrf_gpiote_task_t nrf_gpiote_out_task_get(uint8_t index) { NRFX_ASSERT(index < GPIOTE_CH_NUM); return (nrf_gpiote_task_t)NRFX_OFFSETOF(NRF_GPIOTE_Type, TASKS_OUT[index]); } #if defined(GPIOTE_FEATURE_SET_PRESENT) NRF_STATIC_INLINE nrf_gpiote_task_t nrf_gpiote_set_task_get(uint8_t index) { NRFX_ASSERT(index < GPIOTE_CH_NUM); return (nrf_gpiote_task_t)NRFX_OFFSETOF(NRF_GPIOTE_Type, TASKS_SET[index]); } #endif #if defined(GPIOTE_FEATURE_CLR_PRESENT) NRF_STATIC_INLINE nrf_gpiote_task_t nrf_gpiote_clr_task_get(uint8_t index) { NRFX_ASSERT(index < GPIOTE_CH_NUM); return (nrf_gpiote_task_t)NRFX_OFFSETOF(NRF_GPIOTE_Type, TASKS_CLR[index]); } #endif NRF_STATIC_INLINE nrf_gpiote_event_t nrf_gpiote_in_event_get(uint8_t index) { NRFX_ASSERT(index < GPIOTE_CH_NUM); return (nrf_gpiote_event_t)NRFX_OFFSETOF(NRF_GPIOTE_Type, EVENTS_IN[index]); } #if NRF_GPIOTE_HAS_LATENCY NRF_STATIC_INLINE void nrf_gpiote_latency_set(NRF_GPIOTE_Type * p_reg, nrf_gpiote_latency_t latency) { p_reg->LATENCY = (latency << GPIOTE_LATENCY_LATENCY_Pos) & GPIOTE_LATENCY_LATENCY_Msk; } NRF_STATIC_INLINE nrf_gpiote_latency_t nrf_gpiote_latency_get(NRF_GPIOTE_Type const * p_reg) { return (nrf_gpiote_latency_t)((p_reg->LATENCY & GPIOTE_LATENCY_LATENCY_Msk) >> GPIOTE_LATENCY_LATENCY_Pos); } #endif // NRF_GPIOTE_HAS_LATENCY #endif // NRF_DECLARE_ONLY /** @} */ #ifdef __cplusplus } #endif #endif