/*! \file gd32a50x_timer.c \brief TIMER driver \version 2022-01-30, V1.0.0, firmware for GD32A50x */ /* Copyright (c) 2022, GigaDevice Semiconductor Inc. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "gd32a50x_timer.h" /* TIMER init parameter mask */ #define ALIGNEDMODE_MASK ((uint32_t)0x00000060U) /*!< TIMER init parameter aligne dmode mask */ #define COUNTERDIRECTION_MASK ((uint32_t)0x00000010U) /*!< TIMER init parameter counter direction mask */ #define CLOCKDIVISION_MASK ((uint32_t)0x00000300U) /*!< TIMER init parameter clock division value mask */ /*! \brief deinit a TIMER \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[out] none \retval none */ void timer_deinit(uint32_t timer_periph) { switch(timer_periph) { case TIMER0: /* reset TIMER0 */ rcu_periph_reset_enable(RCU_TIMER0RST); rcu_periph_reset_disable(RCU_TIMER0RST); break; case TIMER1: /* reset TIMER1 */ rcu_periph_reset_enable(RCU_TIMER1RST); rcu_periph_reset_disable(RCU_TIMER1RST); break; case TIMER5: /* reset TIMER5 */ rcu_periph_reset_enable(RCU_TIMER5RST); rcu_periph_reset_disable(RCU_TIMER5RST); break; case TIMER6: /* reset TIMER6 */ rcu_periph_reset_enable(RCU_TIMER6RST); rcu_periph_reset_disable(RCU_TIMER6RST); break; case TIMER7: /* reset TIMER7 */ rcu_periph_reset_enable(RCU_TIMER7RST); rcu_periph_reset_disable(RCU_TIMER7RST); break; case TIMER19: /* reset TIMER19 */ rcu_periph_reset_enable(RCU_TIMER19RST); rcu_periph_reset_disable(RCU_TIMER19RST); break; case TIMER20: /* reset TIMER20 */ rcu_periph_reset_enable(RCU_TIMER20RST); rcu_periph_reset_disable(RCU_TIMER20RST); break; default: break; } } /*! \brief initialize TIMER init parameter struct with a default value \param[in] initpara: init parameter struct \param[out] none \retval none */ void timer_struct_para_init(timer_parameter_struct *initpara) { /* initialize the init parameter struct member with the default value */ initpara->prescaler = 0U; initpara->alignedmode = TIMER_COUNTER_EDGE; initpara->counterdirection = TIMER_COUNTER_UP; initpara->period = 65535U; initpara->clockdivision = TIMER_CKDIV_DIV1; initpara->repetitioncounter = 0U; } /*! \brief initialize TIMER counter \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[in] initpara: init parameter struct prescaler: prescaler value of the counter clock, 0~65535 alignedmode: TIMER_COUNTER_EDGE, TIMER_COUNTER_CENTER_DOWN, TIMER_COUNTER_CENTER_UP, TIMER_COUNTER_CENTER_BOTH counterdirection: TIMER_COUNTER_UP, TIMER_COUNTER_DOWN period: counter auto reload value, 0~65535 clockdivision: TIMER_CKDIV_DIV1, TIMER_CKDIV_DIV2, TIMER_CKDIV_DIV4 repetitioncounter: counter repetition value, 0~255 \param[out] none \retval none */ void gd32_timer_init(uint32_t timer_periph, timer_parameter_struct *initpara) { /* configure the counter prescaler value */ TIMER_PSC(timer_periph) = (uint16_t)initpara->prescaler; /* configure the counter direction and aligned mode */ if((TIMER0 == timer_periph) || (TIMER1 == timer_periph) || (TIMER7 == timer_periph) || (TIMER19 == timer_periph) || (TIMER20 == timer_periph)) { TIMER_CTL0(timer_periph) &= (~(uint32_t)(TIMER_CTL0_DIR | TIMER_CTL0_CAM)); TIMER_CTL0(timer_periph) |= (uint32_t)(initpara->alignedmode & ALIGNEDMODE_MASK); TIMER_CTL0(timer_periph) |= (uint32_t)(initpara->counterdirection & COUNTERDIRECTION_MASK); } /* configure the autoreload value */ TIMER_CAR(timer_periph) = (uint32_t)initpara->period; /* configure the clock division value */ if((TIMER5 != timer_periph) && (TIMER6 != timer_periph)) { /* reset the CKDIV bit */ TIMER_CTL0(timer_periph) &= (~(uint32_t)TIMER_CTL0_CKDIV); TIMER_CTL0(timer_periph) |= (uint32_t)(initpara->clockdivision & CLOCKDIVISION_MASK); } if((TIMER0 == timer_periph) || (TIMER7 == timer_periph) || (TIMER19 == timer_periph) || (TIMER20 == timer_periph)) { /* configure the repetition counter value */ TIMER_CREP(timer_periph) = (uint32_t)initpara->repetitioncounter; } /* generate an update event */ TIMER_SWEVG(timer_periph) |= (uint32_t)TIMER_SWEVG_UPG; } /*! \brief enable a TIMER \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[out] none \retval none */ void timer_enable(uint32_t timer_periph) { TIMER_CTL0(timer_periph) |= (uint32_t)TIMER_CTL0_CEN; } /*! \brief disable a TIMER \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[out] none \retval none */ void timer_disable(uint32_t timer_periph) { TIMER_CTL0(timer_periph) &= ~(uint32_t)TIMER_CTL0_CEN; } /*! \brief enable the auto reload shadow function \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[out] none \retval none */ void timer_auto_reload_shadow_enable(uint32_t timer_periph) { TIMER_CTL0(timer_periph) |= (uint32_t)TIMER_CTL0_ARSE; } /*! \brief disable the auto reload shadow function \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[out] none \retval none */ void timer_auto_reload_shadow_disable(uint32_t timer_periph) { TIMER_CTL0(timer_periph) &= ~(uint32_t)TIMER_CTL0_ARSE; } /*! \brief enable the update event \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[out] none \retval none */ void timer_update_event_enable(uint32_t timer_periph) { TIMER_CTL0(timer_periph) &= ~(uint32_t)TIMER_CTL0_UPDIS; } /*! \brief disable the update event \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[out] none \retval none */ void timer_update_event_disable(uint32_t timer_periph) { TIMER_CTL0(timer_periph) |= (uint32_t) TIMER_CTL0_UPDIS; } /*! \brief set TIMER counter alignment mode \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] aligned: aligned mode only one parameter can be selected which is shown as below: \arg TIMER_COUNTER_EDGE: edge-aligned mode \arg TIMER_COUNTER_CENTER_DOWN: center-aligned and counting down assert mode \arg TIMER_COUNTER_CENTER_UP: center-aligned and counting up assert mode \arg TIMER_COUNTER_CENTER_BOTH: center-aligned and counting up/down assert mode \param[out] none \retval none */ void timer_counter_alignment(uint32_t timer_periph, uint16_t aligned) { TIMER_CTL0(timer_periph) &= (uint32_t)(~TIMER_CTL0_CAM); TIMER_CTL0(timer_periph) |= (uint32_t)aligned; } /*! \brief set TIMER counter up direction \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[out] none \retval none */ void timer_counter_up_direction(uint32_t timer_periph) { TIMER_CTL0(timer_periph) &= ~(uint32_t)TIMER_CTL0_DIR; } /*! \brief set TIMER counter down direction \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[out] none \retval none */ void timer_counter_down_direction(uint32_t timer_periph) { TIMER_CTL0(timer_periph) |= (uint32_t)TIMER_CTL0_DIR; } /*! \brief configure TIMER prescaler \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[in] prescaler: prescaler value, 0~65535 \param[in] pscreload: prescaler reload mode only one parameter can be selected which is shown as below: \arg TIMER_PSC_RELOAD_NOW: the prescaler is loaded right now \arg TIMER_PSC_RELOAD_UPDATE: the prescaler is loaded at the next update event \param[out] none \retval none */ void timer_prescaler_config(uint32_t timer_periph, uint16_t prescaler, uint32_t pscreload) { TIMER_PSC(timer_periph) = (uint32_t)prescaler; if(TIMER_PSC_RELOAD_NOW == pscreload) { TIMER_SWEVG(timer_periph) |= (uint32_t)TIMER_SWEVG_UPG; } } /*! \brief configure TIMER repetition register value \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] repetition: the counter repetition value, 0~255 \param[out] none \retval none */ void timer_repetition_value_config(uint32_t timer_periph, uint16_t repetition) { TIMER_CREP(timer_periph) = (uint32_t)repetition; } /*! \brief configure TIMER autoreload register value \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[in] autoreload: the counter auto-reload value, 0~65535 \param[out] none \retval none */ void timer_autoreload_value_config(uint32_t timer_periph, uint16_t autoreload) { TIMER_CAR(timer_periph) = (uint32_t)autoreload; } /*! \brief configure TIMER counter register value \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[in] counter: the counter value, 0~65535 \param[out] none \retval none */ void timer_counter_value_config(uint32_t timer_periph, uint16_t counter) { TIMER_CNT(timer_periph) = (uint32_t)counter; } /*! \brief read TIMER counter value \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[out] none \retval counter value, 0~65535 */ uint32_t timer_counter_read(uint32_t timer_periph) { uint32_t count_value = 0U; count_value = TIMER_CNT(timer_periph); return (count_value); } /*! \brief read TIMER prescaler value \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[out] none \retval prescaler register value, 0~65535 */ uint16_t timer_prescaler_read(uint32_t timer_periph) { uint16_t prescaler_value = 0U; prescaler_value = (uint16_t)(TIMER_PSC(timer_periph)); return (prescaler_value); } /*! \brief configure TIMER single pulse mode \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[in] spmode: single pulse mode only one parameter can be selected which is shown as below: \arg TIMER_SP_MODE_SINGLE: single pulse mode \arg TIMER_SP_MODE_REPETITIVE: repetitive pulse mode \param[out] none \retval none */ void timer_single_pulse_mode_config(uint32_t timer_periph, uint32_t spmode) { if(TIMER_SP_MODE_SINGLE == spmode) { TIMER_CTL0(timer_periph) |= (uint32_t)TIMER_CTL0_SPM; } else if(TIMER_SP_MODE_REPETITIVE == spmode) { TIMER_CTL0(timer_periph) &= ~((uint32_t)TIMER_CTL0_SPM); } else { /* illegal parameters */ } } /*! \brief configure TIMER update source \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[in] update: update source only one parameter can be selected which is shown as below: \arg TIMER_UPDATE_SRC_GLOBAL: update generate by setting of UPG bit or the counter overflow/underflow, or the slave mode controller trigger \arg TIMER_UPDATE_SRC_REGULAR: update generate only by counter overflow/underflow \param[out] none \retval none */ void timer_update_source_config(uint32_t timer_periph, uint32_t update) { if(TIMER_UPDATE_SRC_REGULAR == update) { TIMER_CTL0(timer_periph) |= (uint32_t)TIMER_CTL0_UPS; } else if(TIMER_UPDATE_SRC_GLOBAL == update) { TIMER_CTL0(timer_periph) &= ~(uint32_t)TIMER_CTL0_UPS; } else { /* illegal parameters */ } } /*! \brief configure channel commutation control shadow register \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] newvalue: ENABLE or DISABLE \param[out] none \retval none */ void timer_channel_control_shadow_config(uint32_t timer_periph, ControlStatus newvalue) { if(ENABLE == newvalue) { TIMER_CTL1(timer_periph) |= (uint32_t)TIMER_CTL1_CCSE; } else { TIMER_CTL1(timer_periph) &= (~(uint32_t)TIMER_CTL1_CCSE); } } /*! \brief configure TIMER channel control shadow register update control \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] ccuctl: channel control shadow register update control only one parameter can be selected which is shown as below: \arg TIMER_UPDATECTL_CCU: the shadow registers update by when CMTG bit is set \arg TIMER_UPDATECTL_CCUTRI: the shadow registers update by when CMTG bit is set or an rising edge of TRGI occurs \param[out] none \retval none */ void timer_channel_control_shadow_update_config(uint32_t timer_periph, uint32_t ccuctl) { if(TIMER_UPDATECTL_CCU == ccuctl) { TIMER_CTL1(timer_periph) &= (~(uint32_t)TIMER_CTL1_CCUC); } else if(TIMER_UPDATECTL_CCUTRI == ccuctl) { TIMER_CTL1(timer_periph) |= (uint32_t)TIMER_CTL1_CCUC; } else { /* illegal parameters */ } } /*! \brief enable the TIMER DMA \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[in] dma: specify which DMA to enable one or more parameters can be selected which are shown as below: \arg TIMER_DMA_UPD: update DMA request, TIMERx(x=0,1,5,6,7,19,20) \arg TIMER_DMA_CH0D: channel 0 DMA request , TIMERx(x=0,1,7,19,20) \arg TIMER_DMA_CH1D: channel 1 DMA request, TIMERx(x=0,1,7,19,20) \arg TIMER_DMA_CH2D: channel 2 DMA request, TIMERx(x=0,1,7,19,20) \arg TIMER_DMA_CH3D: channel 3 DMA request, TIMERx(x=0,1,7,19,20) \arg TIMER_DMA_CMTD: channel commutation DMA request, TIMERx(x=0,7,19,20) \arg TIMER_DMA_TRGD: trigger DMA request,TIMERx(x=0,1,7,19,20) \arg TIMER_DMA_MCH0D: multi mode channel 0 DMA request, TIMERx(x=0,7,19,20) \arg TIMER_DMA_MCH1D: multi mode channel 1 DMA request, TIMERx(x=0,7,19,20) \arg TIMER_DMA_MCH2D: multi mode channel 2 DMA request, TIMERx(x=0,7,19,20) \arg TIMER_DMA_MCH3D: multi mode channel 3 DMA request, TIMERx(x=0,7,19,20) \param[out] none \retval none */ void timer_dma_enable(uint32_t timer_periph, uint32_t dma) { TIMER_DMAINTEN(timer_periph) |= (uint32_t) dma; } /*! \brief disable the TIMER DMA \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[in] dma: specify which DMA to disbale one or more parameters can be selected which are shown as below: \arg TIMER_DMA_UPD: update DMA request, TIMERx(x=0,1,5,6,7,19,20) \arg TIMER_DMA_CH0D: channel 0 DMA request , TIMERx(x=0,1,7,19,20) \arg TIMER_DMA_CH1D: channel 1 DMA request, TIMERx(x=0,1,7,19,20) \arg TIMER_DMA_CH2D: channel 2 DMA request, TIMERx(x=0,1,7,19,20) \arg TIMER_DMA_CH3D: channel 3 DMA request, TIMERx(x=0,1,7,19,20) \arg TIMER_DMA_CMTD: channel commutation DMA request, TIMERx(x=0,7,19,20) \arg TIMER_DMA_TRGD: trigger DMA request,TIMERx(x=0,1,7,19,20) \arg TIMER_DMA_MCH0D: multi mode channel 0 DMA request, TIMERx(x=0,7,19,20) \arg TIMER_DMA_MCH1D: multi mode channel 1 DMA request, TIMERx(x=0,7,19,20) \arg TIMER_DMA_MCH2D: multi mode channel 2 DMA request, TIMERx(x=0,7,19,20) \arg TIMER_DMA_MCH3D: multi mode channel 3 DMA request, TIMERx(x=0,7,19,20) \param[out] none \retval none */ void timer_dma_disable(uint32_t timer_periph, uint32_t dma) { TIMER_DMAINTEN(timer_periph) &= (~(uint32_t)(dma)); } /*! \brief channel DMA request source selection \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[in] dma_request: channel DMA request source selection only one parameter can be selected which is shown as below: \arg TIMER_DMAREQUEST_CHANNELEVENT: DMA request of channel n is sent when channel n event occurs \arg TIMER_DMAREQUEST_UPDATEEVENT: DMA request of channel n is sent when update event occurs \param[out] none \retval none */ void timer_channel_dma_request_source_select(uint32_t timer_periph, uint32_t dma_request) { if(TIMER_DMAREQUEST_UPDATEEVENT == dma_request) { TIMER_CTL1(timer_periph) |= (uint32_t)TIMER_CTL1_DMAS; } else if(TIMER_DMAREQUEST_CHANNELEVENT == dma_request) { TIMER_CTL1(timer_periph) &= ~(uint32_t)TIMER_CTL1_DMAS; } else { /* illegal parameters */ } } /*! \brief configure the TIMER DMA transfer \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] dma_baseaddr: DMA access base address only one parameter can be selected which is shown as below: \arg TIMER_DMACFG_DMATA_CTL0: DMA transfer address is TIMER_CTL0, TIMERx(x=0,1,7,19,20) \arg TIMER_DMACFG_DMATA_CTL1: DMA transfer address is TIMER_CTL1, TIMERx(x=0,1,7,19,20) \arg TIMER_DMACFG_DMATA_SMCFG: DMA transfer address is TIMER_SMCFG, TIMERx(x=0,1,7,19,20) \arg TIMER_DMACFG_DMATA_DMAINTEN: DMA transfer address is TIMER_DMAINTEN, TIMERx(x=0,1,7,19,20) \arg TIMER_DMACFG_DMATA_INTF: DMA transfer address is TIMER_INTF, TIMERx(x=0,1,7,19,20) \arg TIMER_DMACFG_DMATA_SWEVG: DMA transfer address is TIMER_SWEVG, TIMERx(x=0,1,7,19,20) \arg TIMER_DMACFG_DMATA_CHCTL0: DMA transfer address is TIMER_CHCTL0, TIMERx(x=0,1,7,19,20) \arg TIMER_DMACFG_DMATA_CHCTL1: DMA transfer address is TIMER_CHCTL1, TIMERx(x=0,1,7,19,20) \arg TIMER_DMACFG_DMATA_CHCTL2: DMA transfer address is TIMER_CHCTL2, TIMERx(x=0,1,7,19,20) \arg TIMER_DMACFG_DMATA_CNT: DMA transfer address is TIMER_CNT, TIMERx(x=0,1,7,19,20) \arg TIMER_DMACFG_DMATA_PSC: DMA transfer address is TIMER_PSC, TIMERx(x=0,1,7,19,20) \arg TIMER_DMACFG_DMATA_CAR: DMA transfer address is TIMER_CAR, TIMERx(x=0,1,7,19,20) \arg TIMER_DMACFG_DMATA_CREP: DMA transfer address is TIMER_CREP, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_CH0CV: DMA transfer address is TIMER_CH0CV, TIMERx(x=0,1,7,19,20) \arg TIMER_DMACFG_DMATA_CH1CV: DMA transfer address is TIMER_CH1CV, TIMERx(x=0,1,7,19,20) \arg TIMER_DMACFG_DMATA_CH2CV: DMA transfer address is TIMER_CH2CV, TIMERx(x=0,1,7,19,20) \arg TIMER_DMACFG_DMATA_CH3CV: DMA transfer address is TIMER_CH3CV, TIMERx(x=0,1,7,19,20) \arg TIMER_DMACFG_DMATA_CCHP: DMA transfer address is TIMER_CCHP, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_MCHCTL0: DMA transfer address is TIMER_MCHCTL0, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_MCHCTL1: DMA transfer address is TIMER_MCHCTL1, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_MCHCTL2: DMA transfer address is TIMER_MCHCTL2, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_MCH0CV: DMA transfer address is TIMER_MCH0CV, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_MCH1CV: DMA transfer address is TIMER_MCH1CV, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_MCH2CV: DMA transfer address is TIMER_MCH2CV, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_MCH3CV: DMA transfer address is TIMER_MCH3CV, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_CH0COMV_ADD: DMA transfer address is TIMER_CH0COMV_ADD, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_CH1COMV_ADD: DMA transfer address is TIMER_CH1COMV_ADD, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_CH2COMV_ADD: DMA transfer address is TIMER_CH2COMV_ADD, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_CH3COMV_ADD: DMA transfer address is TIMER_CH3COMV_ADD, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_CTL2: DMA transfer address is TIMER_CTL2, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_BRKCFG: DMA transfer address is TIMER_BRKCFG, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_FCCHP0: DMA transfer address is TIMER_FCCHP0, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_FCCHP1: DMA transfer address is TIMER_FCCHP1, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_FCCHP2: DMA transfer address is TIMER_FCCHP2, TIMERx(x=0,7,19,20) \arg TIMER_DMACFG_DMATA_FCCHP3: DMA transfer address is TIMER_FCCHP3, TIMERx(x=0,7,19,20) \param[in] dma_lenth: access burst length only one parameter can be selected which is shown as below: \arg TIMER_DMACFG_DMATC_xTRANSFER(x=1~35): DMA transfer x time \param[out] none \retval none */ void timer_dma_transfer_config(uint32_t timer_periph, uint32_t dma_baseaddr, uint32_t dma_lenth) { TIMER_DMACFG(timer_periph) &= (~(uint32_t)(TIMER_DMACFG_DMATA | TIMER_DMACFG_DMATC)); TIMER_DMACFG(timer_periph) |= (uint32_t)(dma_baseaddr | dma_lenth); } /*! \brief software generate events \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] event: the timer software event generation sources one or more parameters can be selected which are shown as below: \arg TIMER_EVENT_SRC_UPG: update event generation, TIMERx(x=0,1,5,6,7,19,20) \arg TIMER_EVENT_SRC_CH0G: channel 0 capture or compare event generation, TIMERx(x=0,1,7,19,20) \arg TIMER_EVENT_SRC_CH1G: channel 1 capture or compare event generation, TIMERx(x=0,1,7,19,20) \arg TIMER_EVENT_SRC_CH2G: channel 2 capture or compare event generation, TIMERx(x=0,1,7,19,20) \arg TIMER_EVENT_SRC_CH3G: channel 3 capture or compare event generation, TIMERx(x=0,1,7,19,20) \arg TIMER_EVENT_SRC_CMTG: channel commutation event generation, TIMERx(x=0,7,19,20) \arg TIMER_EVENT_SRC_TRGG: trigger event generation, TIMERx(x=0,1,7,19,20) \arg TIMER_EVENT_SRC_BRKG: break event generation, TIMERx(x=0,7,19,20) \arg TIMER_EVENT_SRC_MCH0G: multi mode channel 0 capture or compare event generation, TIMERx(x=0,7,19,20) \arg TIMER_EVENT_SRC_MCH1G: multi mode channel 1 capture or compare event generation, TIMERx(x=0,7,19,20) \arg TIMER_EVENT_SRC_MCH2G: multi mode channel 2 capture or compare event generation, TIMERx(x=0,7,19,20) \arg TIMER_EVENT_SRC_MCH3G: multi mode channel 3 capture or compare event generation, TIMERx(x=0,7,19,20) \arg TIMER_EVENT_SRC_CH0COMADDG: channel 0 additional compare event generation, TIMERx(x=0,7,19,20) \arg TIMER_EVENT_SRC_CH1COMADDG: channel 1 additional compare event generation, TIMERx(x=0,7,19,20) \arg TIMER_EVENT_SRC_CH2COMADDG: channel 2 additional compare event generation, TIMERx(x=0,7,19,20) \arg TIMER_EVENT_SRC_CH3COMADDG: channel 3 additional compare event generation, TIMERx(x=0,7,19,20) \param[out] none \retval none */ void timer_event_software_generate(uint32_t timer_periph, uint32_t event) { TIMER_SWEVG(timer_periph) |= (uint32_t)event; } /*! \brief initialize TIMER break parameter struct with a default value \param[in] breakpara: TIMER break parameter struct \param[out] none \retval none */ void timer_break_struct_para_init(timer_break_parameter_struct *breakpara) { /* initialize the break parameter struct member with the default value */ breakpara->runoffstate = (uint16_t)TIMER_ROS_STATE_DISABLE; breakpara->ideloffstate = (uint16_t)TIMER_IOS_STATE_DISABLE; breakpara->deadtime = 0U; breakpara->breakpolarity = (uint16_t)TIMER_BREAK_POLARITY_LOW; breakpara->outputautostate = (uint16_t)TIMER_OUTAUTO_DISABLE; breakpara->protectmode = (uint16_t)TIMER_CCHP_PROT_OFF; breakpara->breakstate = (uint16_t)TIMER_BREAK_DISABLE; } /*! \brief configure TIMER break function \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] breakpara: TIMER break parameter struct runoffstate: TIMER_ROS_STATE_ENABLE, TIMER_ROS_STATE_DISABLE ideloffstate: TIMER_IOS_STATE_ENABLE, TIMER_IOS_STATE_DISABLE deadtime: 0~255 breakpolarity: TIMER_BREAK_POLARITY_LOW, TIMER_BREAK_POLARITY_HIGH outputautostate: TIMER_OUTAUTO_ENABLE, TIMER_OUTAUTO_DISABLE protectmode: TIMER_CCHP_PROT_OFF, TIMER_CCHP_PROT_0, TIMER_CCHP_PROT_1, TIMER_CCHP_PROT_2 breakstate: TIMER_BREAK_ENABLE, TIMER_BREAK_DISABLE \param[out] none \retval none */ void timer_break_config(uint32_t timer_periph, timer_break_parameter_struct *breakpara) { TIMER_CCHP(timer_periph) = (uint32_t)(((uint32_t)(breakpara->runoffstate)) | ((uint32_t)(breakpara->ideloffstate)) | ((uint32_t)(breakpara->deadtime)) | ((uint32_t)(breakpara->breakpolarity)) | ((uint32_t)(breakpara->outputautostate)) | ((uint32_t)(breakpara->protectmode)) | ((uint32_t)(breakpara->breakstate))); } /*! \brief enable TIMER break function \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[out] none \retval none */ void timer_break_enable(uint32_t timer_periph) { TIMER_CCHP(timer_periph) |= (uint32_t)TIMER_CCHP_BRKEN; } /*! \brief disable TIMER break function \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[out] none \retval none */ void timer_break_disable(uint32_t timer_periph) { TIMER_CCHP(timer_periph) &= ~(uint32_t)TIMER_CCHP_BRKEN; } /*! \brief enable TIMER output automatic function \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[out] none \retval none */ void timer_automatic_output_enable(uint32_t timer_periph) { TIMER_CCHP(timer_periph) |= (uint32_t)TIMER_CCHP_OAEN; } /*! \brief disable TIMER output automatic function \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[out] none \retval none */ void timer_automatic_output_disable(uint32_t timer_periph) { TIMER_CCHP(timer_periph) &= ~(uint32_t)TIMER_CCHP_OAEN; } /*! \brief configure TIMER primary output function \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] newvalue: ENABLE or DISABLE \param[out] none \retval none */ void timer_primary_output_config(uint32_t timer_periph, ControlStatus newvalue) { if(ENABLE == newvalue) { TIMER_CCHP(timer_periph) |= (uint32_t)TIMER_CCHP_POEN; } else { TIMER_CCHP(timer_periph) &= (~(uint32_t)TIMER_CCHP_POEN); } } /*! \brief initialize TIMER channel output parameter struct with a default value \param[in] ocpara: TIMER channel n output parameter struct \param[out] none \retval none */ void timer_channel_output_struct_para_init(timer_oc_parameter_struct *ocpara) { /* initialize the channel output parameter struct member with the default value */ ocpara->outputstate = TIMER_CCX_DISABLE; ocpara->outputnstate = TIMER_CCXN_DISABLE; ocpara->ocpolarity = TIMER_OC_POLARITY_HIGH; ocpara->ocnpolarity = TIMER_OCN_POLARITY_HIGH; ocpara->ocidlestate = TIMER_OC_IDLE_STATE_LOW; ocpara->ocnidlestate = TIMER_OCN_IDLE_STATE_LOW; } /*! \brief configure TIMER channel output function \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_1: TIMER channel 1(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_2: TIMER channel 2(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_3: TIMER channel 3(TIMERx(x=0,1,7,19,20)) \param[in] ocpara: TIMER channel output parameter struct outputstate: TIMER_CCX_ENABLE, TIMER_CCX_DISABLE outputnstate: TIMER_CCXN_ENABLE, TIMER_CCXN_DISABLE ocpolarity: TIMER_OC_POLARITY_HIGH, TIMER_OC_POLARITY_LOW ocnpolarity: TIMER_OCN_POLARITY_HIGH, TIMER_OCN_POLARITY_LOW ocidlestate: TIMER_OC_IDLE_STATE_LOW, TIMER_OC_IDLE_STATE_HIGH ocnidlestate: TIMER_OCN_IDLE_STATE_LOW, TIMER_OCN_IDLE_STATE_HIGH \param[out] none \retval none */ void timer_channel_output_config(uint32_t timer_periph, uint16_t channel, timer_oc_parameter_struct *ocpara) { switch(channel) { /* configure TIMER_CH_0 */ case TIMER_CH_0: /* reset the CH0EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH0EN); /* set the CH0EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)ocpara->outputstate; /* reset the CH0P bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH0P); /* set the CH0P bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)ocpara->ocpolarity; if((TIMER0 == timer_periph) || (TIMER7 == timer_periph) || (TIMER19 == timer_periph) || (TIMER20 == timer_periph)) { /* reset the MCH0EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH0EN); /* set the MCH0EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)ocpara->outputnstate; /* reset the MCH0P bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH0P); /* set the MCH0P bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)ocpara->ocnpolarity; /* reset the ISO0 bit */ TIMER_CTL1(timer_periph) &= (~(uint32_t)TIMER_CTL1_ISO0); /* set the ISO0 bit */ TIMER_CTL1(timer_periph) |= (uint32_t)ocpara->ocidlestate; /* reset the ISO0N bit */ TIMER_CTL1(timer_periph) &= (~(uint32_t)TIMER_CTL1_ISO0N); /* set the ISO0N bit */ TIMER_CTL1(timer_periph) |= (uint32_t)ocpara->ocnidlestate; } TIMER_CHCTL0(timer_periph) &= ~(uint32_t)TIMER_CHCTL0_CH0MS; break; /* configure TIMER_CH_1 */ case TIMER_CH_1: /* reset the CH1EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH1EN); /* set the CH1EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(ocpara->outputstate) << 4U); /* reset the CH1P bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH1P); /* set the CH1P bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(ocpara->ocpolarity) << 4U); if((TIMER0 == timer_periph) || (TIMER7 == timer_periph) || (TIMER19 == timer_periph) || (TIMER20 == timer_periph)) { /* reset the MCH1EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH1EN); /* set the MCH1EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(ocpara->outputnstate) << 4U); /* reset the MCH1P bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH1P); /* set the MCH1P bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(ocpara->ocnpolarity) << 4U); /* reset the ISO1 bit */ TIMER_CTL1(timer_periph) &= (~(uint32_t)TIMER_CTL1_ISO1); /* set the ISO1 bit */ TIMER_CTL1(timer_periph) |= (uint32_t)((uint32_t)(ocpara->ocidlestate) << 2U); /* reset the ISO1N bit */ TIMER_CTL1(timer_periph) &= (~(uint32_t)TIMER_CTL1_ISO1N); /* set the ISO1N bit */ TIMER_CTL1(timer_periph) |= (uint32_t)((uint32_t)(ocpara->ocnidlestate) << 2U); } TIMER_CHCTL0(timer_periph) &= ~(uint32_t)TIMER_CHCTL0_CH1MS; break; /* configure TIMER_CH_2 */ case TIMER_CH_2: /* reset the CH2EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH2EN); /* set the CH2EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(ocpara->outputstate) << 8U); /* reset the CH2P bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH2P); /* set the CH2P bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(ocpara->ocpolarity) << 8U); if((TIMER0 == timer_periph) || (TIMER7 == timer_periph) || (TIMER19 == timer_periph) || (TIMER20 == timer_periph)) { /* reset the MCH2EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH2EN); /* set the MCH2EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(ocpara->outputnstate) << 8U); /* reset the MCH2P bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH2P); /* set the MCH2P bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(ocpara->ocnpolarity) << 8U); /* reset the ISO2 bit */ TIMER_CTL1(timer_periph) &= (~(uint32_t)TIMER_CTL1_ISO2); /* set the ISO2 bit */ TIMER_CTL1(timer_periph) |= (uint32_t)((uint32_t)(ocpara->ocidlestate) << 4U); /* reset the ISO2N bit */ TIMER_CTL1(timer_periph) &= (~(uint32_t)TIMER_CTL1_ISO2N); /* set the ISO2N bit */ TIMER_CTL1(timer_periph) |= (uint32_t)((uint32_t)(ocpara->ocnidlestate) << 4U); } TIMER_CHCTL1(timer_periph) &= ~(uint32_t)TIMER_CHCTL1_CH2MS; break; /* configure TIMER_CH_3 */ case TIMER_CH_3: /* reset the CH3EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH3EN); /* set the CH3EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(ocpara->outputstate) << 12U); /* reset the CH3P bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH3P); /* set the CH3P bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(ocpara->ocpolarity) << 12U); if((TIMER0 == timer_periph) || (TIMER7 == timer_periph) || (TIMER19 == timer_periph) || (TIMER20 == timer_periph)) { /* reset the MCH3EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH3EN); /* set the MCH3EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(ocpara->outputnstate) << 12U); /* reset the MCH3P bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH3P); /* set the MCH3P bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(ocpara->ocnpolarity) << 12U); /* reset the ISO3 bit */ TIMER_CTL1(timer_periph) &= (~(uint32_t)TIMER_CTL1_ISO3); /* set the ISO3 bit */ TIMER_CTL1(timer_periph) |= (uint32_t)((uint32_t)(ocpara->ocidlestate) << 6U); /* reset the ISO3N bit */ TIMER_CTL1(timer_periph) &= (~(uint32_t)TIMER_CTL1_ISO3N); /* set the ISO3N bit */ TIMER_CTL1(timer_periph) |= (uint32_t)((uint32_t)(ocpara->ocnidlestate) << 6U); } TIMER_CHCTL1(timer_periph) &= ~(uint32_t)TIMER_CHCTL1_CH3MS; break; default: break; } } /*! \brief configure TIMER channel output compare mode \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_1: TIMER channel 1(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_2: TIMER channel 2(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_3: TIMER channel 3(TIMERx(x=0,1,7,19,20)) \arg TIMER_MCH_0: TIMER multi mode channel 0(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_1: TIMER multi mode channel 1(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_2: TIMER multi mode channel 2(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_3: TIMER multi mode channel 3(TIMERx(x=0,7,19,20)) \param[in] ocmode: channel output compare mode only one parameter can be selected which is shown as below: \arg TIMER_OC_MODE_TIMING: timing mode \arg TIMER_OC_MODE_ACTIVE: active mode \arg TIMER_OC_MODE_INACTIVE: inactive mode \arg TIMER_OC_MODE_TOGGLE: toggle mode \arg TIMER_OC_MODE_LOW: force low mode \arg TIMER_OC_MODE_HIGH: force high mode \arg TIMER_OC_MODE_PWM0: PWM mode 0 \arg TIMER_OC_MODE_PWM1: PWM mode 1 \param[out] none \retval none */ void timer_channel_output_mode_config(uint32_t timer_periph, uint16_t channel, uint16_t ocmode) { switch(channel) { /* configure TIMER_CH_0 */ case TIMER_CH_0: TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH0COMCTL); TIMER_CHCTL0(timer_periph) |= (uint32_t)ocmode; break; /* configure TIMER_CH_1 */ case TIMER_CH_1: TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH1COMCTL); TIMER_CHCTL0(timer_periph) |= (uint32_t)((uint32_t)(ocmode) << 8U); break; /* configure TIMER_CH_2 */ case TIMER_CH_2: TIMER_CHCTL1(timer_periph) &= (~(uint32_t)TIMER_CHCTL1_CH2COMCTL); TIMER_CHCTL1(timer_periph) |= (uint32_t)ocmode; break; /* configure TIMER_CH_3 */ case TIMER_CH_3: TIMER_CHCTL1(timer_periph) &= (~(uint32_t)TIMER_CHCTL1_CH3COMCTL); TIMER_CHCTL1(timer_periph) |= (uint32_t)((uint32_t)(ocmode) << 8U); break; /* configure TIMER_MCH_0 */ case TIMER_MCH_0: TIMER_MCHCTL0(timer_periph) &= (~(uint32_t)TIMER_MCHCTL0_MCH0COMCTL); TIMER_MCHCTL0(timer_periph) |= (uint32_t)ocmode; break; /* configure TIMER_MCH_1 */ case TIMER_MCH_1: TIMER_MCHCTL0(timer_periph) &= (~(uint32_t)TIMER_MCHCTL0_MCH1COMCTL); TIMER_MCHCTL0(timer_periph) |= (uint32_t)((uint32_t)(ocmode) << 8U); break; /* configure TIMER_MCH_2 */ case TIMER_MCH_2: TIMER_MCHCTL1(timer_periph) &= (~(uint32_t)TIMER_MCHCTL1_MCH2COMCTL); TIMER_MCHCTL1(timer_periph) |= (uint32_t)ocmode; break; /* configure TIMER_MCH_3 */ case TIMER_MCH_3: TIMER_MCHCTL1(timer_periph) &= (~(uint32_t)TIMER_MCHCTL1_MCH3COMCTL); TIMER_MCHCTL1(timer_periph) |= (uint32_t)((uint32_t)(ocmode) << 8U); break; default: break; } } /*! \brief configure TIMER channel output pulse value \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_1: TIMER channel 1(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_2: TIMER channel 2(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_3: TIMER channel 3(TIMERx(x=0,1,7,19,20)) \arg TIMER_MCH_0: TIMER multi mode channel 0(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_1: TIMER multi mode channel 1(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_2: TIMER multi mode channel 2(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_3: TIMER multi mode channel 3(TIMERx(x=0,7,19,20)) \param[in] pulse: channel output pulse value \param[out] none \retval none */ void timer_channel_output_pulse_value_config(uint32_t timer_periph, uint16_t channel, uint32_t pulse) { switch(channel) { /* configure TIMER_CH_0 */ case TIMER_CH_0: TIMER_CH0CV(timer_periph) = (uint32_t)pulse; break; /* configure TIMER_CH_1 */ case TIMER_CH_1: TIMER_CH1CV(timer_periph) = (uint32_t)pulse; break; /* configure TIMER_CH_2 */ case TIMER_CH_2: TIMER_CH2CV(timer_periph) = (uint32_t)pulse; break; /* configure TIMER_CH_3 */ case TIMER_CH_3: TIMER_CH3CV(timer_periph) = (uint32_t)pulse; break; /* configure TIMER_MCH_0 */ case TIMER_MCH_0: TIMER_MCH0CV(timer_periph) = (uint32_t)pulse; break; /* configure TIMER_MCH_1 */ case TIMER_MCH_1: TIMER_MCH1CV(timer_periph) = (uint32_t)pulse; break; /* configure TIMER_MCH_2 */ case TIMER_MCH_2: TIMER_MCH2CV(timer_periph) = (uint32_t)pulse; break; /* configure TIMER_MCH_3 */ case TIMER_MCH_3: TIMER_MCH3CV(timer_periph) = (uint32_t)pulse; break; default: break; } } /*! \brief configure TIMER channel output shadow function \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_1: TIMER channel 1(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_2: TIMER channel 2(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_3: TIMER channel 3(TIMERx(x=0,1,7,19,20)) \arg TIMER_MCH_0: TIMER multi mode channel 0(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_1: TIMER multi mode channel 1(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_2: TIMER multi mode channel 2(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_3: TIMER multi mode channel 3(TIMERx(x=0,7,19,20)) \param[in] ocshadow: channel output compare shadow only one parameter can be selected which is shown as below: \arg TIMER_OC_SHADOW_ENABLE: channel output compare shadow enable \arg TIMER_OC_SHADOW_DISABLE: channel output compare shadow disable \arg TIMER_OMC_SHADOW_ENABLE: multi mode channel output compare shadow enable \arg TIMER_OMC_SHADOW_DISABLE: multi mode channel output compare shadow disable \param[out] none \retval none */ void timer_channel_output_shadow_config(uint32_t timer_periph, uint16_t channel, uint16_t ocshadow) { switch(channel) { /* configure TIMER_CH_0 */ case TIMER_CH_0: TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH0COMSEN); TIMER_CHCTL0(timer_periph) |= (uint32_t)ocshadow; break; /* configure TIMER_CH_1 */ case TIMER_CH_1: TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH1COMSEN); TIMER_CHCTL0(timer_periph) |= (uint32_t)((uint32_t)(ocshadow) << 8U); break; /* configure TIMER_CH_2 */ case TIMER_CH_2: TIMER_CHCTL1(timer_periph) &= (~(uint32_t)TIMER_CHCTL1_CH2COMSEN); TIMER_CHCTL1(timer_periph) |= (uint32_t)ocshadow; break; /* configure TIMER_CH_3 */ case TIMER_CH_3: TIMER_CHCTL1(timer_periph) &= (~(uint32_t)TIMER_CHCTL1_CH3COMSEN); TIMER_CHCTL1(timer_periph) |= (uint32_t)((uint32_t)(ocshadow) << 8U); break; /* configure TIMER_MCH_0 */ case TIMER_MCH_0: TIMER_MCHCTL0(timer_periph) &= (~(uint32_t)TIMER_MCHCTL0_MCH0COMSEN); TIMER_MCHCTL0(timer_periph) |= (uint32_t)ocshadow; break; /* configure TIMER_MCH_1 */ case TIMER_MCH_1: TIMER_MCHCTL0(timer_periph) &= (~(uint32_t)TIMER_MCHCTL0_MCH1COMSEN); TIMER_MCHCTL0(timer_periph) |= (uint32_t)((uint32_t)(ocshadow) << 8U); break; /* configure TIMER_MCH_2 */ case TIMER_MCH_2: TIMER_MCHCTL1(timer_periph) &= (~(uint32_t)TIMER_MCHCTL1_MCH2COMSEN); TIMER_MCHCTL1(timer_periph) |= (uint32_t)ocshadow; break; /* configure TIMER_MCH_3 */ case TIMER_MCH_3: TIMER_MCHCTL1(timer_periph) &= (~(uint32_t)TIMER_MCHCTL1_MCH3COMSEN); TIMER_MCHCTL1(timer_periph) |= (uint32_t)((uint32_t)(ocshadow) << 8U); break; default: break; } } /*! \brief configure TIMER channel output clear function \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_1: TIMER channel 1(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_2: TIMER channel 2(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_3: TIMER channel 3(TIMERx(x=0,1,7,19,20)) \arg TIMER_MCH_0: TIMER multi mode channel 0(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_1: TIMER multi mode channel 1(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_2: TIMER multi mode channel 2(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_3: TIMER multi mode channel 3(TIMERx(x=0,7,19,20)) \param[in] occlear: channel output clear function only one parameter can be selected which is shown as below: \arg TIMER_OC_CLEAR_ENABLE: channel output clear function enable \arg TIMER_OC_CLEAR_DISABLE: channel output clear function disable \arg TIMER_OMC_CLEAR_ENABLE: multi mode channel output clear function enable \arg TIMER_OMC_CLEAR_DISABLE: multi mode channel output clear function disable \param[out] none \retval none */ void timer_channel_output_clear_config(uint32_t timer_periph, uint16_t channel, uint16_t occlear) { switch(channel) { /* configure TIMER_CH_0 */ case TIMER_CH_0: TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH0COMCEN); TIMER_CHCTL0(timer_periph) |= (uint32_t)occlear; break; /* configure TIMER_CH_1 */ case TIMER_CH_1: TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH1COMCEN); TIMER_CHCTL0(timer_periph) |= (uint32_t)((uint32_t)occlear << 8U); break; /* configure TIMER_CH_2 */ case TIMER_CH_2: TIMER_CHCTL1(timer_periph) &= (~(uint32_t)TIMER_CHCTL1_CH2COMCEN); TIMER_CHCTL1(timer_periph) |= (uint32_t)occlear; break; /* configure TIMER_CH_3 */ case TIMER_CH_3: TIMER_CHCTL1(timer_periph) &= (~(uint32_t)TIMER_CHCTL1_CH3COMCEN); TIMER_CHCTL1(timer_periph) |= (uint32_t)((uint32_t)occlear << 8U); break; /* configure TIMER_MCH_0 */ case TIMER_MCH_0: TIMER_MCHCTL0(timer_periph) &= (~(uint32_t)TIMER_MCHCTL0_MCH0COMCEN); TIMER_MCHCTL0(timer_periph) |= (uint32_t)occlear; break; /* configure TIMER_MCH_1 */ case TIMER_MCH_1: TIMER_MCHCTL0(timer_periph) &= (~(uint32_t)TIMER_MCHCTL0_MCH1COMCEN); TIMER_MCHCTL0(timer_periph) |= (uint32_t)((uint32_t)occlear << 8U); break; /* configure TIMER_MCH_2 */ case TIMER_MCH_2: TIMER_MCHCTL1(timer_periph) &= (~(uint32_t)TIMER_MCHCTL1_MCH2COMCEN); TIMER_MCHCTL1(timer_periph) |= (uint32_t)occlear; break; /* configure TIMER_MCH_3 */ case TIMER_MCH_3: TIMER_MCHCTL1(timer_periph) &= (~(uint32_t)TIMER_MCHCTL1_MCH3COMCEN); TIMER_MCHCTL1(timer_periph) |= (uint32_t)((uint32_t)occlear << 8U); break; default: break; } } /*! \brief configure TIMER channel output polarity \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_1: TIMER channel 1(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_2: TIMER channel 2(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_3: TIMER channel 3(TIMERx(x=0,1,7,19,20)) \arg TIMER_MCH_0: TIMER multi mode channel 0(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_1: TIMER multi mode channel 1(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_2: TIMER multi mode channel 2(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_3: TIMER multi mode channel 3(TIMERx(x=0,7,19,20)) \param[in] ocpolarity: channel output polarity only one parameter can be selected which is shown as below: \arg TIMER_OC_POLARITY_HIGH: channel output polarity is high \arg TIMER_OC_POLARITY_LOW: channel output polarity is low \arg TIMER_OMC_POLARITY_HIGH: multi mode channel output polarity is high \arg TIMER_OMC_POLARITY_LOW: multi mode channel output polarity is low \param[out] none \retval none */ void timer_channel_output_polarity_config(uint32_t timer_periph, uint16_t channel, uint16_t ocpolarity) { switch(channel) { /* configure TIMER_CH_0 */ case TIMER_CH_0: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH0P); TIMER_CHCTL2(timer_periph) |= (uint32_t)ocpolarity; break; /* configure TIMER_CH_1 */ case TIMER_CH_1: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH1P); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)ocpolarity << 4U); break; /* configure TIMER_CH_2 */ case TIMER_CH_2: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH2P); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)ocpolarity << 8U); break; /* configure TIMER_CH_3 */ case TIMER_CH_3: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH3P); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)ocpolarity << 12U); break; /* configure TIMER_MCH_0 */ case TIMER_MCH_0: TIMER_MCHCTL2(timer_periph) &= (~(uint32_t)TIMER_MCHCTL2_MCH0FP); TIMER_MCHCTL2(timer_periph) |= (uint32_t)ocpolarity; break; /* configure TIMER_MCH_1 */ case TIMER_MCH_1: TIMER_MCHCTL2(timer_periph) &= (~(uint32_t)TIMER_MCHCTL2_MCH1FP); TIMER_MCHCTL2(timer_periph) |= (uint32_t)((uint32_t)ocpolarity << 2U); break; /* configure TIMER_MCH_2 */ case TIMER_MCH_2: TIMER_MCHCTL2(timer_periph) &= (~(uint32_t)TIMER_MCHCTL2_MCH2FP); TIMER_MCHCTL2(timer_periph) |= (uint32_t)((uint32_t)ocpolarity << 4U); break; /* configure TIMER_MCH_3 */ case TIMER_MCH_3: TIMER_MCHCTL2(timer_periph) &= (~(uint32_t)TIMER_MCHCTL2_MCH3FP); TIMER_MCHCTL2(timer_periph) |= (uint32_t)((uint32_t)ocpolarity << 6U); break; default: break; } } /*! \brief configure TIMER channel complementary output polarity \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0(TIMERx(x=0,7,19,20)) \arg TIMER_CH_1: TIMER channel 1(TIMERx(x=0,7,19,20)) \arg TIMER_CH_2: TIMER channel 2(TIMERx(x=0,7,19,20)) \arg TIMER_CH_3: TIMER channel 3(TIMERx(x=0,7,19,20)) \param[in] ocnpolarity: channel complementary output polarity only one parameter can be selected which is shown as below: \arg TIMER_OCN_POLARITY_HIGH: channel complementary output polarity is high \arg TIMER_OCN_POLARITY_LOW: channel complementary output polarity is low \param[out] none \retval none */ void timer_channel_complementary_output_polarity_config(uint32_t timer_periph, uint16_t channel, uint16_t ocnpolarity) { switch(channel) { /* configure TIMER_CH_0 */ case TIMER_CH_0: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH0P); TIMER_CHCTL2(timer_periph) |= (uint32_t)ocnpolarity; break; /* configure TIMER_CH_1 */ case TIMER_CH_1: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH1P); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)ocnpolarity << 4U); break; /* configure TIMER_CH_2 */ case TIMER_CH_2: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH2P); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)ocnpolarity << 8U); break; /* configure TIMER_CH_3 */ case TIMER_CH_3: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH3P); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)ocnpolarity << 12U); break; default: break; } } /*! \brief configure TIMER channel enable state \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_1: TIMER channel 1(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_2: TIMER channel 2(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_3: TIMER channel 3(TIMERx(x=0,1,7,19,20)) \arg TIMER_MCH_0: TIMER multi mode channel 0(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_1: TIMER multi mode channel 1(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_2: TIMER multi mode channel 2(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_3: TIMER multi mode channel 3(TIMERx(x=0,7,19,20)) \param[in] state: TIMER channel enable state only one parameter can be selected which is shown as below: \arg TIMER_CCX_ENABLE: channel enable \arg TIMER_CCX_DISABLE: channel disable \arg TIMER_MCCX_ENABLE: multi mode channel enable \arg TIMER_MCCX_DISABLE: multi mode channel disable \param[out] none \retval none */ void timer_channel_output_state_config(uint32_t timer_periph, uint16_t channel, uint32_t state) { switch(channel) { /* configure TIMER_CH_0 */ case TIMER_CH_0: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH0EN); TIMER_CHCTL2(timer_periph) |= (uint32_t)state; break; /* configure TIMER_CH_1 */ case TIMER_CH_1: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH1EN); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)state << 4U); break; /* configure TIMER_CH_2 */ case TIMER_CH_2: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH2EN); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)state << 8U); break; /* configure TIMER_CH_3 */ case TIMER_CH_3: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH3EN); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)state << 12U); break; /* configure TIMER_MCH_0 */ case TIMER_MCH_0: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH0EN); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)state); break; /* configure TIMER_MCH_1 */ case TIMER_MCH_1: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH1EN); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(state << 4U)); break; /* configure TIMER_MCH_2 */ case TIMER_MCH_2: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH2EN); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(state << 8U)); break; /* configure TIMER_MCH_3 */ case TIMER_MCH_3: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH3EN); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(state << 12U)); break; default: break; } } /*! \brief configure TIMER channel complementary output enable state \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0(TIMERx(x=0,7,19,20)) \arg TIMER_CH_1: TIMER channel 1(TIMERx(x=0,7,19,20)) \arg TIMER_CH_2: TIMER channel 2(TIMERx(x=0,7,19,20)) \arg TIMER_CH_3: TIMER channel 3(TIMERx(x=0,7,19,20)) \param[in] ocnstate: TIMER channel complementary output enable state only one parameter can be selected which is shown as below: \arg TIMER_CCXN_ENABLE: channel complementary enable \arg TIMER_CCXN_DISABLE: channel complementary disable \param[out] none \retval none */ void timer_channel_complementary_output_state_config(uint32_t timer_periph, uint16_t channel, uint16_t ocnstate) { switch(channel) { /* configure TIMER_CH_0 */ case TIMER_CH_0: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH0EN); TIMER_CHCTL2(timer_periph) |= (uint32_t)ocnstate; break; /* configure TIMER_CH_1 */ case TIMER_CH_1: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH1EN); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)ocnstate << 4U); break; /* configure TIMER_CH_2 */ case TIMER_CH_2: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH2EN); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)ocnstate << 8U); break; /* configure TIMER_CH_3 */ case TIMER_CH_3: TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH3EN); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)ocnstate << 12U); break; default: break; } } /*! \brief initialize TIMER channel input parameter struct with a default value \param[in] icpara: TIMER channel input parameter struct \param[out] none \retval none */ void timer_channel_input_struct_para_init(timer_ic_parameter_struct *icpara) { /* initialize the channel input parameter struct member with the default value */ icpara->icpolarity = TIMER_IC_POLARITY_RISING; icpara->icselection = TIMER_IC_SELECTION_DIRECTTI; icpara->icprescaler = TIMER_IC_PSC_DIV1; icpara->icfilter = 0U; } /*! \brief configure TIMER input capture parameter \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_1: TIMER channel 1(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_2: TIMER channel 2(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_3: TIMER channel 3(TIMERx(x=0,1,7,19,20)) \arg TIMER_MCH_0: TIMER multi mode channel 0(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_1: TIMER multi mode channel 1(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_2: TIMER multi mode channel 2(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_3: TIMER multi mode channel 3(TIMERx(x=0,7,19,20)) \param[in] icpara: TIMER channel input parameter struct icpolarity: TIMER_IC_POLARITY_RISING, TIMER_IC_POLARITY_FALLING, TIMER_IC_POLARITY_BOTH_EDGE icselection: TIMER_IC_SELECTION_DIRECTTI, TIMER_IC_SELECTION_INDIRECTTI, TIMER_IC_SELECTION_ITS, TIMER_IC_SELECTION_PAIR icprescaler: TIMER_IC_PSC_DIV1, TIMER_IC_PSC_DIV2, TIMER_IC_PSC_DIV4, TIMER_IC_PSC_DIV8 icfilter: 0~15 \param[out] none \retval none */ void timer_input_capture_config(uint32_t timer_periph, uint16_t channel, timer_ic_parameter_struct *icpara) { switch(channel) { /* configure TIMER_CH_0 */ case TIMER_CH_0: /* reset the CH0EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH0EN); /* reset the CH0P and MCH0P bits */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)(TIMER_CHCTL2_CH0P | TIMER_CHCTL2_MCH0P)); TIMER_CHCTL2(timer_periph) |= (uint32_t)(icpara->icpolarity); /* reset the CH0MS bit */ TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH0MS); if(TIMER_IC_SELECTION_PAIR == icpara->icselection) { TIMER_CHCTL0(timer_periph) |= (uint32_t)((uint32_t)(icpara->icselection) << 28U); } else { TIMER_CHCTL0(timer_periph) |= (uint32_t)(icpara->icselection); } /* reset the CH0CAPFLT bit */ TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH0CAPFLT); TIMER_CHCTL0(timer_periph) |= (uint32_t)((uint32_t)(icpara->icfilter) << 4U); /* set the CH0EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)TIMER_CHCTL2_CH0EN; break; /* configure TIMER_CH_1 */ case TIMER_CH_1: /* reset the CH1EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH1EN); /* reset the CH1P and MCH1P bits */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)(TIMER_CHCTL2_CH1P | TIMER_CHCTL2_MCH1P)); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(icpara->icpolarity) << 4U); /* reset the CH1MS bit */ TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH1MS); if(TIMER_IC_SELECTION_PAIR == icpara->icselection) { TIMER_CHCTL0(timer_periph) |= (uint32_t)((uint32_t)(icpara->icselection) << 29U); } else { TIMER_CHCTL0(timer_periph) |= (uint32_t)((uint32_t)(icpara->icselection) << 8U); } /* reset the CH1CAPFLT bit */ TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH1CAPFLT); TIMER_CHCTL0(timer_periph) |= (uint32_t)((uint32_t)(icpara->icfilter) << 12U); /* set the CH1EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)TIMER_CHCTL2_CH1EN; break; /* configure TIMER_CH_2 */ case TIMER_CH_2: /* reset the CH2EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH2EN); /* reset the CH2P and MCH2P bits */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)(TIMER_CHCTL2_CH2P | TIMER_CHCTL2_MCH2P)); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(icpara->icpolarity) << 8U); /* reset the CH2MS bit */ TIMER_CHCTL1(timer_periph) &= (~(uint32_t)TIMER_CHCTL1_CH2MS); if(TIMER_IC_SELECTION_PAIR == icpara->icselection) { TIMER_CHCTL1(timer_periph) |= (uint32_t)((uint32_t)(icpara->icselection) << 28U); } else { TIMER_CHCTL1(timer_periph) |= (uint32_t)(icpara->icselection); } /* reset the CH2CAPFLT bit */ TIMER_CHCTL1(timer_periph) &= (~(uint32_t)TIMER_CHCTL1_CH2CAPFLT); TIMER_CHCTL1(timer_periph) |= (uint32_t)((uint32_t)(icpara->icfilter) << 4U); /* set the CH2EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)TIMER_CHCTL2_CH2EN; break; /* configure TIMER_CH_3 */ case TIMER_CH_3: /* reset the CH3EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH3EN); /* reset the CH3P bits */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)(TIMER_CHCTL2_CH3P | TIMER_CHCTL2_MCH3P)); TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(icpara->icpolarity) << 12U); /* reset the CH3MS bit */ TIMER_CHCTL1(timer_periph) &= (~(uint32_t)TIMER_CHCTL1_CH3MS); if(TIMER_IC_SELECTION_PAIR == icpara->icselection) { TIMER_CHCTL1(timer_periph) |= (uint32_t)((uint32_t)(icpara->icselection) << 29U); } else { TIMER_CHCTL1(timer_periph) |= (uint32_t)((uint32_t)(icpara->icselection) << 8U); } /* reset the CH3CAPFLT bit */ TIMER_CHCTL1(timer_periph) &= (~(uint32_t)TIMER_CHCTL1_CH3CAPFLT); TIMER_CHCTL1(timer_periph) |= (uint32_t)((uint32_t)(icpara->icfilter) << 12U); /* set the CH3EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)TIMER_CHCTL2_CH3EN; break; /* configure TIMER_MCH_0 */ case TIMER_MCH_0: /* reset the MCH0EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH0EN); /* reset the MCH0FP bits */ TIMER_MCHCTL2(timer_periph) &= (~(uint32_t)(TIMER_MCHCTL2_MCH0FP)); switch(icpara->icpolarity) { case TIMER_IC_POLARITY_RISING: TIMER_MCHCTL2(timer_periph) |= TIMER_IMC_POLARITY_RISING; break; case TIMER_IC_POLARITY_FALLING: TIMER_MCHCTL2(timer_periph) |= TIMER_IMC_POLARITY_FALLING; break; case TIMER_IC_POLARITY_BOTH_EDGE: TIMER_MCHCTL2(timer_periph) |= TIMER_IMC_POLARITY_BOTH_EDGE; break; default: break; } /* reset the MCH0MS bit */ TIMER_MCHCTL0(timer_periph) &= (~(uint32_t)TIMER_MCHCTL0_MCH0MS); if(TIMER_IC_SELECTION_PAIR == icpara->icselection) { TIMER_MCHCTL0(timer_periph) |= ((uint32_t)icpara->icselection << 28U); } else { TIMER_MCHCTL0(timer_periph) |= (uint32_t)(icpara->icselection); } /* reset the MCH0CAPFLT bit */ TIMER_MCHCTL0(timer_periph) &= (~(uint32_t)TIMER_MCHCTL0_MCH0CAPFLT); TIMER_MCHCTL0(timer_periph) |= (uint32_t)((uint32_t)(icpara->icfilter) << 4U); /* set the MCH0EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)TIMER_CHCTL2_MCH0EN; break; /* configure TIMER_MCH_1 */ case TIMER_MCH_1: /* reset the MCH1EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH1EN); /* reset the MCH1FP bits */ TIMER_MCHCTL2(timer_periph) &= (~(uint32_t)(TIMER_MCHCTL2_MCH1FP)); switch(icpara->icpolarity) { case TIMER_IC_POLARITY_RISING: TIMER_MCHCTL2(timer_periph) |= ((uint32_t)TIMER_IMC_POLARITY_RISING << 2U); break; case TIMER_IC_POLARITY_FALLING: TIMER_MCHCTL2(timer_periph) |= ((uint32_t)TIMER_IMC_POLARITY_FALLING << 2U); break; case TIMER_IC_POLARITY_BOTH_EDGE: TIMER_MCHCTL2(timer_periph) |= ((uint32_t)TIMER_IMC_POLARITY_BOTH_EDGE << 2U); break; default: break; } /* reset the MCH1MS bit */ TIMER_MCHCTL0(timer_periph) &= (~(uint32_t)TIMER_MCHCTL0_MCH1MS); if(TIMER_IC_SELECTION_PAIR == icpara->icselection) { TIMER_MCHCTL0(timer_periph) |= ((uint32_t)icpara->icselection << 29U); } else { TIMER_MCHCTL0(timer_periph) |= ((uint32_t)(icpara->icselection) << 8U); } /* reset the MCH1CAPFLT bit */ TIMER_MCHCTL0(timer_periph) &= (~(uint32_t)TIMER_MCHCTL0_MCH1CAPFLT); TIMER_MCHCTL0(timer_periph) |= (uint32_t)((uint32_t)(icpara->icfilter) << 12U); /* set the MCH1EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)TIMER_CHCTL2_MCH1EN; break; /* configure TIMER_MCH_2 */ case TIMER_MCH_2: /* reset the MCH2EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH2EN); /* reset the MCH2FP bits */ TIMER_MCHCTL2(timer_periph) &= (~(uint32_t)(TIMER_MCHCTL2_MCH2FP)); switch(icpara->icpolarity) { case TIMER_IC_POLARITY_RISING: TIMER_MCHCTL2(timer_periph) |= ((uint32_t)TIMER_IMC_POLARITY_RISING << 4U); break; case TIMER_IC_POLARITY_FALLING: TIMER_MCHCTL2(timer_periph) |= ((uint32_t)TIMER_IMC_POLARITY_FALLING << 4U); break; case TIMER_IC_POLARITY_BOTH_EDGE: TIMER_MCHCTL2(timer_periph) |= ((uint32_t)TIMER_IMC_POLARITY_BOTH_EDGE << 4U); break; default: break; } /* reset the MCH2MS bit */ TIMER_MCHCTL1(timer_periph) &= (~(uint32_t)TIMER_MCHCTL1_MCH2MS); if(TIMER_IC_SELECTION_PAIR == icpara->icselection) { TIMER_MCHCTL1(timer_periph) |= ((uint32_t)icpara->icselection << 28U); } else { TIMER_MCHCTL1(timer_periph) |= ((uint32_t)(icpara->icselection)); } /* reset the MCH2CAPFLT bit */ TIMER_MCHCTL1(timer_periph) &= (~(uint32_t)TIMER_MCHCTL1_MCH2CAPFLT); TIMER_MCHCTL1(timer_periph) |= (uint32_t)((uint32_t)(icpara->icfilter) << 4U); /* set the MCH2EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)TIMER_CHCTL2_MCH2EN; break; /* configure TIMER_MCH_3 */ case TIMER_MCH_3: /* reset the MCH3EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH3EN); /* reset the MCH3FP bits */ TIMER_MCHCTL2(timer_periph) &= (~(uint32_t)(TIMER_MCHCTL2_MCH3FP)); switch(icpara->icpolarity) { case TIMER_IC_POLARITY_RISING: TIMER_MCHCTL2(timer_periph) |= ((uint32_t)TIMER_IMC_POLARITY_RISING << 6U); break; case TIMER_IC_POLARITY_FALLING: TIMER_MCHCTL2(timer_periph) |= ((uint32_t)TIMER_IMC_POLARITY_FALLING << 6U); break; case TIMER_IC_POLARITY_BOTH_EDGE: TIMER_MCHCTL2(timer_periph) |= ((uint32_t)TIMER_IMC_POLARITY_BOTH_EDGE << 6U); break; default: break; } /* reset the MCH3MS bit */ TIMER_MCHCTL1(timer_periph) &= (~(uint32_t)TIMER_MCHCTL1_MCH3MS); if(TIMER_IC_SELECTION_PAIR == icpara->icselection) { TIMER_MCHCTL1(timer_periph) |= ((uint32_t)icpara->icselection << 29U); } else { TIMER_MCHCTL1(timer_periph) |= ((uint32_t)(icpara->icselection) << 8U); } /* reset the MCH3CAPFLT bit */ TIMER_MCHCTL1(timer_periph) &= (~(uint32_t)TIMER_MCHCTL1_MCH3CAPFLT); TIMER_MCHCTL1(timer_periph) |= (uint32_t)((uint32_t)(icpara->icfilter) << 12U); /* set the MCH3EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)TIMER_CHCTL2_MCH3EN; break; default: break; } /* configure TIMER channel input capture prescaler value */ timer_channel_input_capture_prescaler_config(timer_periph, channel, (uint16_t)(icpara->icprescaler)); } /*! \brief configure TIMER channel input capture prescaler value \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_1: TIMER channel 1(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_2: TIMER channel 2(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_3: TIMER channel 3(TIMERx(x=0,1,7,19,20)) \arg TIMER_MCH_0: TIMER multi mode channel 0(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_1: TIMER multi mode channel 1(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_2: TIMER multi mode channel 2(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_3: TIMER multi mode channel 3(TIMERx(x=0,7,19,20)) \param[in] prescaler: channel input capture prescaler value only one parameter can be selected which is shown as below: \arg TIMER_IC_PSC_DIV1: no prescaler \arg TIMER_IC_PSC_DIV2: divided by 2 \arg TIMER_IC_PSC_DIV4: divided by 4 \arg TIMER_IC_PSC_DIV8: divided by 8 \param[out] none \retval none */ void timer_channel_input_capture_prescaler_config(uint32_t timer_periph, uint16_t channel, uint16_t prescaler) { switch(channel) { /* configure TIMER_CH_0 */ case TIMER_CH_0: TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH0CAPPSC); TIMER_CHCTL0(timer_periph) |= (uint32_t)prescaler; break; /* configure TIMER_CH_1 */ case TIMER_CH_1: TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH1CAPPSC); TIMER_CHCTL0(timer_periph) |= ((uint32_t)prescaler << 8U); break; /* configure TIMER_CH_2 */ case TIMER_CH_2: TIMER_CHCTL1(timer_periph) &= (~(uint32_t)TIMER_CHCTL1_CH2CAPPSC); TIMER_CHCTL1(timer_periph) |= (uint32_t)prescaler; break; /* configure TIMER_CH_3 */ case TIMER_CH_3: TIMER_CHCTL1(timer_periph) &= (~(uint32_t)TIMER_CHCTL1_CH3CAPPSC); TIMER_CHCTL1(timer_periph) |= ((uint32_t)prescaler << 8U); break; /* configure TIMER_MCH_0 */ case TIMER_MCH_0: TIMER_MCHCTL0(timer_periph) &= (~(uint32_t)TIMER_MCHCTL0_MCH0CAPPSC); TIMER_MCHCTL0(timer_periph) |= (uint32_t)prescaler; break; /* configure TIMER_MCH_1 */ case TIMER_MCH_1: TIMER_MCHCTL0(timer_periph) &= (~(uint32_t)TIMER_MCHCTL0_MCH1CAPPSC); TIMER_MCHCTL0(timer_periph) |= ((uint32_t)prescaler << 8U); break; /* configure TIMER_MCH_2 */ case TIMER_MCH_2: TIMER_MCHCTL1(timer_periph) &= (~(uint32_t)TIMER_MCHCTL1_MCH2CAPPSC); TIMER_MCHCTL1(timer_periph) |= (uint32_t)prescaler; break; /* configure TIMER_MCH_3 */ case TIMER_MCH_3: TIMER_MCHCTL1(timer_periph) &= (~(uint32_t)TIMER_MCHCTL1_MCH3CAPPSC); TIMER_MCHCTL1(timer_periph) |= ((uint32_t)prescaler << 8U); break; default: break; } } /*! \brief read TIMER channel capture compare register value \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_1: TIMER channel 1(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_2: TIMER channel 2(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_3: TIMER channel 3(TIMERx(x=0,1,7,19,20)) \arg TIMER_MCH_0: TIMER multi mode channel 0(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_1: TIMER multi mode channel 1(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_2: TIMER multi mode channel 2(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_3: TIMER multi mode channel 3(TIMERx(x=0,7,19,20)) \param[out] none \retval channel capture compare register value(0~65535) */ uint32_t timer_channel_capture_value_register_read(uint32_t timer_periph, uint16_t channel) { uint32_t count_value = 0U; switch(channel) { case TIMER_CH_0: /* read TIMER_CH_0 capture compare register value */ count_value = TIMER_CH0CV(timer_periph); break; case TIMER_CH_1: /* read TIMER_CH_1 capture compare register value */ count_value = TIMER_CH1CV(timer_periph); break; case TIMER_CH_2: /* read TIMER_CH_2 capture compare register value */ count_value = TIMER_CH2CV(timer_periph); break; case TIMER_CH_3: /* read TIMER_CH_3 capture compare register value */ count_value = TIMER_CH3CV(timer_periph); break; case TIMER_MCH_0: /* read TIMER_MCH_0 capture compare register value */ count_value = TIMER_MCH0CV(timer_periph); break; case TIMER_MCH_1: /* read TIMER_MCH_1 capture compare register value */ count_value = TIMER_MCH1CV(timer_periph); break; case TIMER_MCH_2: /* read TIMER_MCH_2 capture compare register value */ count_value = TIMER_MCH2CV(timer_periph); break; case TIMER_MCH_3: /* read TIMER_MCH_3 capture compare register value */ count_value = TIMER_MCH3CV(timer_periph); break; default: break; } return (count_value); } /*! \brief configure TIMER input pwm capture function \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0 \arg TIMER_CH_1: TIMER channel 1 \param[in] icpwm: TIMER channel input pwm parameter struct icpolarity: TIMER_IC_POLARITY_RISING, TIMER_IC_POLARITY_FALLING icselection: TIMER_IC_SELECTION_DIRECTTI, TIMER_IC_SELECTION_INDIRECTTI icprescaler: TIMER_IC_PSC_DIV1, TIMER_IC_PSC_DIV2, TIMER_IC_PSC_DIV4, TIMER_IC_PSC_DIV8 icfilter: 0~15 \param[out] none \retval none */ void timer_input_pwm_capture_config(uint32_t timer_periph, uint16_t channel, timer_ic_parameter_struct *icpwm) { uint16_t icpolarity = 0U; uint16_t icselection = 0U; /* set channel input polarity */ if(TIMER_IC_POLARITY_RISING == icpwm->icpolarity) { icpolarity = TIMER_IC_POLARITY_FALLING; } else { icpolarity = TIMER_IC_POLARITY_RISING; } /* set channel input mode selection */ if(TIMER_IC_SELECTION_DIRECTTI == icpwm->icselection) { icselection = TIMER_IC_SELECTION_INDIRECTTI; } else { icselection = TIMER_IC_SELECTION_DIRECTTI; } if(TIMER_CH_0 == channel) { /* reset the CH0EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH0EN); /* reset the CH0P and MCH0P bits */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)(TIMER_CHCTL2_CH0P | TIMER_CHCTL2_MCH0P)); /* set the CH0P and MCH0P bits */ TIMER_CHCTL2(timer_periph) |= (uint32_t)(icpwm->icpolarity); /* reset the CH0MS bit */ TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH0MS); /* set the CH0MS bit */ TIMER_CHCTL0(timer_periph) |= (uint32_t)(icpwm->icselection); /* reset the CH0CAPFLT bit */ TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH0CAPFLT); /* set the CH0CAPFLT bit */ TIMER_CHCTL0(timer_periph) |= ((uint32_t)(icpwm->icfilter) << 4U); /* set the CH0EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)TIMER_CHCTL2_CH0EN; /* configure TIMER channel input capture prescaler value */ timer_channel_input_capture_prescaler_config(timer_periph, TIMER_CH_0, (uint16_t)(icpwm->icprescaler)); /* reset the CH1EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH1EN); /* reset the CH1P and MCH1P bits */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)(TIMER_CHCTL2_CH1P | TIMER_CHCTL2_MCH1P)); /* set the CH1P and MCH1P bits */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)icpolarity << 4U); /* reset the CH1MS bit */ TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH1MS); /* set the CH1MS bit */ TIMER_CHCTL0(timer_periph) |= (uint32_t)((uint32_t)icselection << 8U); /* reset the CH1CAPFLT bit */ TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH1CAPFLT); /* set the CH1CAPFLT bit */ TIMER_CHCTL0(timer_periph) |= (uint32_t)((uint32_t)(icpwm->icfilter) << 12U); /* set the CH1EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)TIMER_CHCTL2_CH1EN; /* configure TIMER channel input capture prescaler value */ timer_channel_input_capture_prescaler_config(timer_periph, TIMER_CH_1, (uint16_t)(icpwm->icprescaler)); } else { /* reset the CH1EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH1EN); /* reset the CH1P and MCH1P bits */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)(TIMER_CHCTL2_CH1P | TIMER_CHCTL2_MCH1P)); /* set the CH1P and MCH1P bits */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(icpwm->icpolarity) << 4U); /* reset the CH1MS bit */ TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH1MS); /* set the CH1MS bit */ TIMER_CHCTL0(timer_periph) |= (uint32_t)((uint32_t)(icpwm->icselection) << 8U); /* reset the CH1CAPFLT bit */ TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH1CAPFLT); /* set the CH1CAPFLT bit */ TIMER_CHCTL0(timer_periph) |= (uint32_t)((uint32_t)(icpwm->icfilter) << 12U); /* set the CH1EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)TIMER_CHCTL2_CH1EN; /* configure TIMER channel input capture prescaler value */ timer_channel_input_capture_prescaler_config(timer_periph, TIMER_CH_1, (uint16_t)(icpwm->icprescaler)); /* reset the CH0EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH0EN); /* reset the CH0P and MCH0P bits */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)(TIMER_CHCTL2_CH0P | TIMER_CHCTL2_MCH0P)); /* set the CH0P and MCH0P bits */ TIMER_CHCTL2(timer_periph) |= (uint32_t)icpolarity; /* reset the CH0MS bit */ TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH0MS); /* set the CH0MS bit */ TIMER_CHCTL0(timer_periph) |= (uint32_t)icselection; /* reset the CH0CAPFLT bit */ TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH0CAPFLT); /* set the CH0CAPFLT bit */ TIMER_CHCTL0(timer_periph) |= ((uint32_t)(icpwm->icfilter) << 4U); /* set the CH0EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)TIMER_CHCTL2_CH0EN; /* configure TIMER channel input capture prescaler value */ timer_channel_input_capture_prescaler_config(timer_periph, TIMER_CH_0, (uint16_t)(icpwm->icprescaler)); } } /*! \brief configure TIMER hall sensor mode \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] hallmode: only one parameter can be selected which is shown as below: \arg TIMER_HALLINTERFACE_ENABLE: TIMER hall sensor mode enable \arg TIMER_HALLINTERFACE_DISABLE: TIMER hall sensor mode disable \param[out] none \retval none */ void timer_hall_mode_config(uint32_t timer_periph, uint32_t hallmode) { if(TIMER_HALLINTERFACE_ENABLE == hallmode) { TIMER_CTL1(timer_periph) |= (uint32_t)TIMER_CTL1_TI0S; } else if(TIMER_HALLINTERFACE_DISABLE == hallmode) { TIMER_CTL1(timer_periph) &= ~(uint32_t)TIMER_CTL1_TI0S; } else { /* illegal parameters */ } } /*! \brief initialize TIMER multi mode channel output parameter struct \param[in] omcpara: TIMER multi mode channel output parameter struct \param[out] none \retval none */ void timer_multi_mode_channel_output_parameter_struct_init(timer_omc_parameter_struct *omcpara) { /* initialize the multi mode channel output parameter struct with the default value */ omcpara->outputmode = TIMER_MCH_MODE_COMPLEMENTARY; omcpara->outputstate = TIMER_MCCX_DISABLE; omcpara->ocpolarity = TIMER_OMC_POLARITY_LOW; } /*! \brief configure TIMER multi mode channel output function \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_MCH_0: TIMER multi mode channel 0(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_1: TIMER multi mode channel 1(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_2: TIMER multi mode channel 2(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_3: TIMER multi mode channel 3(TIMERx(x=0,7,19,20)) \param[in] omcpara: TIMER multi mode channel output parameter struct outputmode: TIMER_MCH_MODE_INDEPENDENTLY, TIMER_MCH_MODE_MIRRORED, TIMER_MCH_MODE_COMPLEMENTARY outputstate: TIMER_MCCX_ENABLE, TIMER_MCCX_DISABLE ocpolarity: TIMER_OMC_POLARITY_HIGH, TIMER_OMC_POLARITY_LOW \param[out] none \retval none */ void timer_multi_mode_channel_output_config(uint32_t timer_periph, uint16_t channel, timer_omc_parameter_struct *omcpara) { switch(channel) { /* configure TIMER_MCH_0 */ case TIMER_MCH_0: TIMER_CTL2(timer_periph) &= (~(uint32_t)((uint32_t)TIMER_MCH_MODE_MASK << 20U)); TIMER_CTL2(timer_periph) |= (uint32_t)((uint32_t)(omcpara->outputmode) << 20U); /* reset the MCH0EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH0EN); /* set the MCH0EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(omcpara->outputstate)); /* reset the MCH0FP bit */ TIMER_MCHCTL2(timer_periph) &= (~(uint32_t)TIMER_MCHCTL2_MCH0FP); /* set the MCH0FP bit */ TIMER_MCHCTL2(timer_periph) |= (uint32_t)omcpara->ocpolarity; TIMER_MCHCTL0(timer_periph) &= (~(uint32_t)TIMER_MCHCTL0_MCH0MS); break; /* configure TIMER_MCH_1 */ case TIMER_MCH_1: TIMER_CTL2(timer_periph) &= (~(uint32_t)((uint32_t)TIMER_MCH_MODE_MASK << 22U)); TIMER_CTL2(timer_periph) |= (uint32_t)((uint32_t)(omcpara->outputmode) << 22U); /* reset the MCH1EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH1EN); /* set the MCH1EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(omcpara->outputstate) << 4U); /* reset the MCH1FP bit */ TIMER_MCHCTL2(timer_periph) &= (~(uint32_t)TIMER_MCHCTL2_MCH1FP); /* set the MCH1FP bit */ TIMER_MCHCTL2(timer_periph) |= (uint32_t)((uint32_t)(omcpara->ocpolarity) << 2U); TIMER_MCHCTL0(timer_periph) &= (~(uint32_t)TIMER_MCHCTL0_MCH1MS); break; /* configure TIMER_MCH_2 */ case TIMER_MCH_2: TIMER_CTL2(timer_periph) &= (~(uint32_t)((uint32_t)TIMER_MCH_MODE_MASK << 24U)); TIMER_CTL2(timer_periph) |= (uint32_t)((uint32_t)(omcpara->outputmode) << 24U); /* reset the MCH2EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH2EN); /* set the MCH2EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(omcpara->outputstate) << 8U); /* reset the MCH2FP bit */ TIMER_MCHCTL2(timer_periph) &= (~(uint32_t)TIMER_MCHCTL2_MCH2FP); /* set the MCH2FP bit */ TIMER_MCHCTL2(timer_periph) |= (uint32_t)((uint32_t)(omcpara->ocpolarity) << 4U); TIMER_MCHCTL1(timer_periph) &= (~(uint32_t)TIMER_MCHCTL1_MCH2MS); break; /* configure TIMER_MCH_3 */ case TIMER_MCH_3: TIMER_CTL2(timer_periph) &= (~(uint32_t)((uint32_t)TIMER_MCH_MODE_MASK << 26U)); TIMER_CTL2(timer_periph) |= (uint32_t)((uint32_t)(omcpara->outputmode) << 26U); /* reset the MCH3EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_MCH3EN); /* set the MCH3EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)(omcpara->outputstate) << 12U); /* reset the MCH3FP bit */ TIMER_MCHCTL2(timer_periph) &= (~(uint32_t)TIMER_MCHCTL2_MCH3FP); /* set the MCH3FP bit */ TIMER_MCHCTL2(timer_periph) |= (uint32_t)((uint32_t)(omcpara->ocpolarity) << 6U); TIMER_MCHCTL1(timer_periph) &= (~(uint32_t)TIMER_MCHCTL1_MCH3MS); break; default: break; } } /*! \brief multi mode channel mode select \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_MCH_0: TIMER multi mode channel 0(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_1: TIMER multi mode channel 1(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_2: TIMER multi mode channel 2(TIMERx(x=0,7,19,20)) \arg TIMER_MCH_3: TIMER multi mode channel 3(TIMERx(x=0,7,19,20)) \param[in] multi_mode_sel: multi mode channel mode selection only one parameter can be selected which is shown as below: \arg TIMER_MCH_MODE_INDEPENDENTLY: multi mode channel work in independently mode \arg TIMER_MCH_MODE_MIRRORED: multi mode channel work in mirrored output mode \arg TIMER_MCH_MODE_COMPLEMENTARY: multi mode channel work in complementary output mode \param[out] none \retval none */ void timer_multi_mode_channel_mode_config(uint32_t timer_periph, uint32_t channel, uint32_t multi_mode_sel) { uint32_t reg = TIMER_CTL2(timer_periph); switch(channel) { /* configure TIMER_MCH_0 */ case TIMER_MCH_0: reg &= (~(uint32_t)((uint32_t)TIMER_MCH_MODE_MASK << 20U)); reg |= (uint32_t)(multi_mode_sel << 20U); break; /* configure TIMER_MCH_1 */ case TIMER_MCH_1: reg &= (~(uint32_t)((uint32_t)TIMER_MCH_MODE_MASK << 22U)); reg |= (uint32_t)(multi_mode_sel << 22U); break; /* configure TIMER_MCH_2 */ case TIMER_MCH_2: reg &= (~(uint32_t)((uint32_t)TIMER_MCH_MODE_MASK << 24U)); reg |= (uint32_t)(multi_mode_sel << 24U); break; /* configure TIMER_MCH_3 */ case TIMER_MCH_3: reg &= (~(uint32_t)((uint32_t)TIMER_MCH_MODE_MASK << 26U)); reg |= (uint32_t)(multi_mode_sel << 26U); break; default: break; } TIMER_CTL2(timer_periph) = reg; } /*! \brief select TIMER input trigger source \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] intrigger: input trigger source only one parameter can be selected which is shown as below: \arg TIMER_SMCFG_TRGSEL_ITI0: internal trigger 0(TIMERx(x=0,1,7,19,20)) \arg TIMER_SMCFG_TRGSEL_ITI1: internal trigger 1(TIMERx(x=0,1,7,19,20)) \arg TIMER_SMCFG_TRGSEL_ITI2: internal trigger 2(TIMERx(x=0,1,7,19,20)) \arg TIMER_SMCFG_TRGSEL_ITI3: internal trigger 3(TIMERx(x=0,1,7,19,20)) \arg TIMER_SMCFG_TRGSEL_CI0F_ED: TI0 edge detector(TIMERx(x=0,1,7,19,20)) \arg TIMER_SMCFG_TRGSEL_CI0FE0: filtered channel 0 input(TIMERx(x=0,1,7,19,20)) \arg TIMER_SMCFG_TRGSEL_CI1FE1: filtered channel 1 input(TIMERx(x=0,1,7,19,20)) \arg TIMER_SMCFG_TRGSEL_ETIFP: filtered external trigger input(TIMERx(x=0,1,7,19,20)) \arg TIMER_SMCFG_TRGSEL_CI2FE2: filtered channel 2 input(TIMERx(x=0,7,19,20)) \arg TIMER_SMCFG_TRGSEL_CI3FE3: filtered channel 3 input(TIMERx(x=0,7,19,20)) \arg TIMER_SMCFG_TRGSEL_MCI0FEM0: filtered multi mode channel 0 input(TIMERx(x=0,7,19,20)) \arg TIMER_SMCFG_TRGSEL_MCI1FEM1: filtered multi mode channel 1 input(TIMERx(x=0,7,19,20)) \arg TIMER_SMCFG_TRGSEL_MCI2FEM2: filtered multi mode channel 2 input(TIMERx(x=0,7,19,20)) \arg TIMER_SMCFG_TRGSEL_MCI3FEM3: filtered multi mode channel 3 input(TIMERx(x=0,7,19,20)) \param[out] none \retval none */ void timer_input_trigger_source_select(uint32_t timer_periph, uint32_t intrigger) { uint32_t reg; reg = TIMER_SMCFG(timer_periph); reg &= (~(uint32_t)TIMER_SMCFG_TRGS); reg |= (uint32_t)intrigger; TIMER_SMCFG(timer_periph) = reg; } /*! \brief select TIMER master mode output trigger source \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[in] outrigger: trigger output source only one parameter can be selected which is shown as below: \arg TIMER_TRI_OUT_SRC_RESET: the UPG bit as trigger output(TIMERx(x=0,1,5,6,7,19,20)) \arg TIMER_TRI_OUT_SRC_ENABLE: the counter enable signal as trigger output(TIMERx(x=0,1,5,6,7,19,20)) \arg TIMER_TRI_OUT_SRC_UPDATE: update event as trigger output(TIMERx(x=0,1,5,6,7,19,20)) \arg TIMER_TRI_OUT_SRC_CH0: a capture or a compare match occurred in channel 0 as trigger output TRGO(TIMERx(x=0,1,7,19,20)) \arg TIMER_TRI_OUT_SRC_O0CPRE: O0CPRE as trigger output(TIMERx(x=0,1,7,19,20)) \arg TIMER_TRI_OUT_SRC_O1CPRE: O1CPRE as trigger output(TIMERx(x=0,1,7,19,20)) \arg TIMER_TRI_OUT_SRC_O2CPRE: O2CPRE as trigger output(TIMERx(x=0,1,7,19,20)) \arg TIMER_TRI_OUT_SRC_O3CPRE: O3CPRE as trigger output(TIMERx(x=0,1,7,19,20)) \param[out] none \retval none */ void timer_master_output_trigger_source_select(uint32_t timer_periph, uint32_t outrigger) { uint32_t reg; reg = TIMER_CTL1(timer_periph); reg &= (~(uint32_t)TIMER_CTL1_MMC); reg |= (uint32_t)outrigger; TIMER_CTL1(timer_periph) = reg; } /*! \brief select TIMER slave mode \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] slavemode: slave mode only one parameter can be selected which is shown as below: \arg TIMER_SLAVE_MODE_DISABLE: slave mode disable \arg TIMER_ENCODER_MODE0: encoder mode 0 \arg TIMER_ENCODER_MODE1: encoder mode 1 \arg TIMER_ENCODER_MODE2: encoder mode 2 \arg TIMER_SLAVE_MODE_RESTART: restart mode \arg TIMER_SLAVE_MODE_PAUSE: pause mode \arg TIMER_SLAVE_MODE_EVENT: event mode \arg TIMER_SLAVE_MODE_EXTERNAL0: external clock mode 0 \param[out] none \retval none */ void timer_slave_mode_select(uint32_t timer_periph, uint32_t slavemode) { uint32_t reg; reg = TIMER_SMCFG(timer_periph); reg &= (~(uint32_t)TIMER_SMCFG_SMC); reg |= (uint32_t)slavemode; TIMER_SMCFG(timer_periph) = reg; } /*! \brief configure TIMER master slave mode \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] masterslave: master slave mode only one parameter can be selected which is shown as below: \arg TIMER_MASTER_SLAVE_MODE_ENABLE: master slave mode enable \arg TIMER_MASTER_SLAVE_MODE_DISABLE: master slave mode disable \param[out] none \retval none */ void timer_master_slave_mode_config(uint32_t timer_periph, uint32_t masterslave) { if(TIMER_MASTER_SLAVE_MODE_ENABLE == masterslave) { TIMER_SMCFG(timer_periph) |= (uint32_t)TIMER_SMCFG_MSM; } else if(TIMER_MASTER_SLAVE_MODE_DISABLE == masterslave) { TIMER_SMCFG(timer_periph) &= ~(uint32_t)TIMER_SMCFG_MSM; } else { /* illegal parameters */ } } /*! \brief configure TIMER external trigger input \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] extprescaler: external trigger prescaler only one parameter can be selected which is shown as below: \arg TIMER_EXT_TRI_PSC_OFF: no divided \arg TIMER_EXT_TRI_PSC_DIV2: divided by 2 \arg TIMER_EXT_TRI_PSC_DIV4: divided by 4 \arg TIMER_EXT_TRI_PSC_DIV8: divided by 8 \param[in] extpolarity: external trigger polarity only one parameter can be selected which is shown as below: \arg TIMER_ETP_FALLING: active low or falling edge active \arg TIMER_ETP_RISING: active high or rising edge active \param[in] extfilter: a value between 0 and 15 \param[out] none \retval none */ void timer_external_trigger_config(uint32_t timer_periph, uint32_t extprescaler, uint32_t extpolarity, uint32_t extfilter) { TIMER_SMCFG(timer_periph) &= (~(uint32_t)(TIMER_SMCFG_ETP | TIMER_SMCFG_ETPSC | TIMER_SMCFG_ETFC)); TIMER_SMCFG(timer_periph) |= (uint32_t)(extprescaler | extpolarity); TIMER_SMCFG(timer_periph) |= (uint32_t)(extfilter << 8U); } /*! \brief configure TIMER quadrature decoder mode \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] decomode: quadrature decoder mode only one parameter can be selected which is shown as below: \arg TIMER_ENCODER_MODE0: counter counts on CI0FE0 edge depending on CI1FE1 level \arg TIMER_ENCODER_MODE1: counter counts on CI1FE1 edge depending on CI0FE0 level \arg TIMER_ENCODER_MODE2: counter counts on both CI0FE0 and CI1FE1 edges depending on the level of the other input \param[in] ic0polarity: input capture polarity only one parameter can be selected which is shown as below: \arg TIMER_IC_POLARITY_RISING: capture rising edge \arg TIMER_IC_POLARITY_FALLING: capture falling edge \arg TIMER_IC_POLARITY_BOTH_EDGE: active both edge \param[in] ic1polarity: input capture polarity only one parameter can be selected which is shown as below: \arg TIMER_IC_POLARITY_RISING: capture rising edge \arg TIMER_IC_POLARITY_FALLING: capture falling edge \arg TIMER_IC_POLARITY_BOTH_EDGE: active both edge \param[out] none \retval none */ void timer_quadrature_decoder_mode_config(uint32_t timer_periph, uint32_t decomode, uint16_t ic0polarity, uint16_t ic1polarity) { /* configure the quadrature decoder mode */ TIMER_SMCFG(timer_periph) &= (~(uint32_t)TIMER_SMCFG_SMC); TIMER_SMCFG(timer_periph) |= (uint32_t)decomode; /* configure input capture selection */ TIMER_CHCTL0(timer_periph) &= (uint32_t)(((~(uint32_t)TIMER_CHCTL0_CH0MS)) & ((~(uint32_t)TIMER_CHCTL0_CH1MS))); TIMER_CHCTL0(timer_periph) |= (uint32_t)(TIMER_IC_SELECTION_DIRECTTI | ((uint32_t)TIMER_IC_SELECTION_DIRECTTI << 8U)); /* configure channel input capture polarity */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)(TIMER_CHCTL2_CH0P | TIMER_CHCTL2_MCH0P)); TIMER_CHCTL2(timer_periph) &= (~(uint32_t)(TIMER_CHCTL2_CH1P | TIMER_CHCTL2_MCH1P)); TIMER_CHCTL2(timer_periph) |= ((uint32_t)ic0polarity | ((uint32_t)ic1polarity << 4U)); } /*! \brief configure TIMER internal clock mode \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[out] none \retval none */ void timer_internal_clock_config(uint32_t timer_periph) { TIMER_SMCFG(timer_periph) &= ~(uint32_t)TIMER_SMCFG_SMC; } /*! \brief configure TIMER the internal trigger as external clock input \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] intrigger: internal trigger selection only one parameter can be selected which is shown as below: \arg TIMER_SMCFG_TRGSEL_ITI0: internal trigger 0 \arg TIMER_SMCFG_TRGSEL_ITI1: internal trigger 1 \arg TIMER_SMCFG_TRGSEL_ITI2: internal trigger 2 \arg TIMER_SMCFG_TRGSEL_ITI3: internal trigger 3 \param[out] none \retval none */ void timer_internal_trigger_as_external_clock_config(uint32_t timer_periph, uint32_t intrigger) { timer_input_trigger_source_select(timer_periph, intrigger); TIMER_SMCFG(timer_periph) &= ~(uint32_t)TIMER_SMCFG_SMC; TIMER_SMCFG(timer_periph) |= (uint32_t)TIMER_SLAVE_MODE_EXTERNAL0; } /*! \brief configure TIMER the external trigger as external clock input \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] extrigger: external trigger selection only one parameter can be selected which is shown as below: \arg TIMER_SMCFG_TRGSEL_CI0F_ED: TI0 edge detector \arg TIMER_SMCFG_TRGSEL_CI0FE0: filtered channel 0 input \arg TIMER_SMCFG_TRGSEL_CI1FE1: filtered channel 1 input \param[in] extpolarity: external input capture polarity only one parameter can be selected which is shown as below: \arg TIMER_IC_POLARITY_RISING: active high or rising edge active \arg TIMER_IC_POLARITY_FALLING: active low or falling edge active \arg TIMER_IC_POLARITY_BOTH_EDGE: active both edge \param[in] extfilter: a value between 0 and 15 \param[out] none \retval none */ void timer_external_trigger_as_external_clock_config(uint32_t timer_periph, uint32_t extrigger, uint16_t extpolarity, uint32_t extfilter) { if(TIMER_SMCFG_TRGSEL_CI1FE1 == extrigger) { /* reset the CH1EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH1EN); /* reset the CH1P and MCH1P bits */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)(TIMER_CHCTL2_CH1P | TIMER_CHCTL2_MCH1P)); /* set the CH1P and MCH1P bits */ TIMER_CHCTL2(timer_periph) |= (uint32_t)((uint32_t)extpolarity << 4U); /* reset the CH1MS bit */ TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH1MS); /* set the CH1MS bit */ TIMER_CHCTL0(timer_periph) |= (uint32_t)((uint32_t)TIMER_IC_SELECTION_DIRECTTI << 8U); /* reset the CH1CAPFLT bit */ TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH1CAPFLT); /* set the CH1CAPFLT bit */ TIMER_CHCTL0(timer_periph) |= (uint32_t)(extfilter << 12U); /* set the CH1EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)TIMER_CHCTL2_CH1EN; } else { /* reset the CH0EN bit */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)TIMER_CHCTL2_CH0EN); /* reset the CH0P and MCH0P bits */ TIMER_CHCTL2(timer_periph) &= (~(uint32_t)(TIMER_CHCTL2_CH0P | TIMER_CHCTL2_MCH0P)); /* set the CH0P and MCH0P bits */ TIMER_CHCTL2(timer_periph) |= (uint32_t)extpolarity; /* reset the CH0MS bit */ TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH0MS); /* set the CH0MS bit */ TIMER_CHCTL0(timer_periph) |= (uint32_t)TIMER_IC_SELECTION_DIRECTTI; /* reset the CH0CAPFLT bit */ TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH0CAPFLT); /* reset the CH0CAPFLT bit */ TIMER_CHCTL0(timer_periph) |= (uint32_t)(extfilter << 4U); /* set the CH0EN bit */ TIMER_CHCTL2(timer_periph) |= (uint32_t)TIMER_CHCTL2_CH0EN; } /* select TIMER input trigger source */ timer_input_trigger_source_select(timer_periph, extrigger); /* reset the SMC bit */ TIMER_SMCFG(timer_periph) &= (~(uint32_t)TIMER_SMCFG_SMC); /* set the SMC bit */ TIMER_SMCFG(timer_periph) |= (uint32_t)TIMER_SLAVE_MODE_EXTERNAL0; } /*! \brief configure TIMER the external clock mode0 \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] extprescaler: external trigger prescaler only one parameter can be selected which is shown as below: \arg TIMER_EXT_TRI_PSC_OFF: no divided \arg TIMER_EXT_TRI_PSC_DIV2: divided by 2 \arg TIMER_EXT_TRI_PSC_DIV4: divided by 4 \arg TIMER_EXT_TRI_PSC_DIV8: divided by 8 \param[in] extpolarity: external input capture polarity only one parameter can be selected which is shown as below: \arg TIMER_ETP_FALLING: active low or falling edge active \arg TIMER_ETP_RISING: active high or rising edge active \param[in] extfilter: a value between 0 and 15 \param[out] none \retval none */ void timer_external_clock_mode0_config(uint32_t timer_periph, uint32_t extprescaler, uint32_t extpolarity, uint32_t extfilter) { /* configure TIMER external trigger input */ timer_external_trigger_config(timer_periph, extprescaler, extpolarity, extfilter); /* reset the SMC bit,TRGS bit */ TIMER_SMCFG(timer_periph) &= (~(uint32_t)(TIMER_SMCFG_SMC | TIMER_SMCFG_TRGS)); /* set the SMC bit,TRGS bit */ TIMER_SMCFG(timer_periph) |= (uint32_t)(TIMER_SLAVE_MODE_EXTERNAL0 | TIMER_SMCFG_TRGSEL_ETIFP); } /*! \brief configure TIMER the external clock mode1 \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] extprescaler: external trigger prescaler only one parameter can be selected which is shown as below: \arg TIMER_EXT_TRI_PSC_OFF: no divided \arg TIMER_EXT_TRI_PSC_DIV2: divided by 2 \arg TIMER_EXT_TRI_PSC_DIV4: divided by 4 \arg TIMER_EXT_TRI_PSC_DIV8: divided by 8 \param[in] extpolarity: external input capture polarity only one parameter can be selected which is shown as below: \arg TIMER_ETP_FALLING: active low or falling edge active \arg TIMER_ETP_RISING: active high or rising edge active \param[in] extfilter: a value between 0 and 15 \param[out] none \retval none */ void timer_external_clock_mode1_config(uint32_t timer_periph, uint32_t extprescaler, uint32_t extpolarity, uint32_t extfilter) { /* configure TIMER external trigger input */ timer_external_trigger_config(timer_periph, extprescaler, extpolarity, extfilter); TIMER_SMCFG(timer_periph) |= (uint32_t)TIMER_SMCFG_SMC1; } /*! \brief disable TIMER the external clock mode1 \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[out] none \retval none */ void timer_external_clock_mode1_disable(uint32_t timer_periph) { TIMER_SMCFG(timer_periph) &= ~(uint32_t)TIMER_SMCFG_SMC1; } /*! \brief configure TIMER channel input remap function \param[in] timer_periph: TIMERx(x=1) \param[in] remap: TIMER channel input remap only one parameter can be selected which is shown as below: \arg TIMER1_CI0_RMP_GPIO: TIMER1 channel 0 input remap to GPIO pin \arg TIMER1_CI0_RMP_LXTAL: TIMER1 channel 0 input remap to LXTAL \arg TIMER1_CI0_RMP_HXTAL: TIMER1 channel 0 input remap to HXTAL/128 \arg TIMER1_CI0_RMP_CKOUT0SEL: TIMER1 channel 0 input remap to CKOUT0SEL \param[out] none \retval none */ void timer_channel_remap_config(uint32_t timer_periph, uint32_t remap) { TIMER_IRMP(timer_periph) = (uint32_t)remap; } /*! \brief configure TIMER write CHxVAL register selection \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] ccsel: write CHxVAL register selection only one parameter can be selected which is shown as below: \arg TIMER_CHVSEL_DISABLE: no effect \arg TIMER_CHVSEL_ENABLE: when write the CHxVAL register, if the write value is same as the CHxVAL value, the write access is ignored \param[out] none \retval none */ void timer_write_chxval_register_config(uint32_t timer_periph, uint16_t ccsel) { if(TIMER_CHVSEL_ENABLE == ccsel) { TIMER_CFG(timer_periph) |= (uint32_t)TIMER_CFG_CHVSEL; } else if(TIMER_CHVSEL_DISABLE == ccsel) { TIMER_CFG(timer_periph) &= ~(uint32_t)TIMER_CFG_CHVSEL; } else { /* illegal parameters */ } } /*! \brief configure TIMER output value selection \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] outsel: output value selection only one parameter can be selected which is shown as below: \arg TIMER_OUTSEL_DISABLE: no effect \arg TIMER_OUTSEL_ENABLE: if POEN and IOS is 0, the output disabled \param[out] none \retval none */ void timer_output_value_selection_config(uint32_t timer_periph, uint16_t outsel) { if(TIMER_OUTSEL_ENABLE == outsel) { TIMER_CFG(timer_periph) |= (uint32_t)TIMER_CFG_OUTSEL; } else if(TIMER_OUTSEL_DISABLE == outsel) { TIMER_CFG(timer_periph) &= ~(uint32_t)TIMER_CFG_OUTSEL; } else { /* illegal parameters */ } } /*! \brief configure TIMER output match pulse selection \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0(x=0,7,19,20) \arg TIMER_CH_1: TIMER channel 1(x=0,7,19,20) \arg TIMER_CH_2: TIMER channel 2(x=0,7,19,20) \arg TIMER_CH_3: TIMER channel 3(x=0,7,19,20) \param[in] pulsesel: output match pulse selection only one parameter can be selected which is shown as below: \arg TIMER_PULSE_OUTPUT_NORMAL: channel output normal \arg TIMER_PULSE_OUTPUT_CNT_UP: pulse output only when counting up \arg TIMER_PULSE_OUTPUT_CNT_DOWN: pulse output only when counting down \arg TIMER_PULSE_OUTPUT_CNT_BOTH: pulse output when counting up or down \param[out] none \retval none */ void timer_output_match_pulse_select(uint32_t timer_periph, uint32_t channel, uint16_t pulsesel) { uint32_t reg; reg = TIMER_CTL2(timer_periph); switch(channel) { /* configure TIMER_CH_0 */ case TIMER_CH_0: reg &= (~(uint32_t)((uint32_t)TIMER_PULSE_OUTPUT_MASK << 8U)); reg |= (uint32_t)((uint32_t)pulsesel << 8U); break; /* configure TIMER_CH_1 */ case TIMER_CH_1: reg &= (~(uint32_t)((uint32_t)TIMER_PULSE_OUTPUT_MASK << 10U)); reg |= (uint32_t)((uint32_t)pulsesel << 10U); break; /* configure TIMER_CH_2 */ case TIMER_CH_2: reg &= (~(uint32_t)((uint32_t)TIMER_PULSE_OUTPUT_MASK << 12U)); reg |= (uint32_t)((uint32_t)pulsesel << 12U); break; /* configure TIMER_CH_3 */ case TIMER_CH_3: reg &= (~(uint32_t)((uint32_t)TIMER_PULSE_OUTPUT_MASK << 14U)); reg |= (uint32_t)((uint32_t)pulsesel << 14U); break; default: break; } TIMER_CTL2(timer_periph) = reg; } /*! \brief configure the TIMER composite PWM mode \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0(x=0,7,19,20) \arg TIMER_CH_1: TIMER channel 1(x=0,7,19,20) \arg TIMER_CH_2: TIMER channel 2(x=0,7,19,20) \arg TIMER_CH_3: TIMER channel 3(x=0,7,19,20) \param[in] newvalue: ENABLE or DISABLE \param[out] none \retval none */ void timer_channel_composite_pwm_mode_config(uint32_t timer_periph, uint32_t channel, ControlStatus newvalue) { if(ENABLE == newvalue) { TIMER_CTL2(timer_periph) |= (uint32_t)(TIMER_CTL2_CH0CPWMEN << channel); } else { TIMER_CTL2(timer_periph) &= (~(uint32_t)(TIMER_CTL2_CH0CPWMEN << channel)); } } /*! \brief configure the TIMER composite PWM mode output pulse value \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0(x=0,7,19,20) \arg TIMER_CH_1: TIMER channel 1(x=0,7,19,20) \arg TIMER_CH_2: TIMER channel 2(x=0,7,19,20) \arg TIMER_CH_3: TIMER channel 3(x=0,7,19,20) \param[in] pulse: channel compare value, 0~65535 \param[in] add_pulse: channel additional compare value, 0~65535 \param[out] none \retval none */ void timer_channel_composite_pwm_mode_output_pulse_value_config(uint32_t timer_periph, uint32_t channel, uint32_t pulse, uint32_t add_pulse) { switch(channel) { /* configure TIMER_CH_0 */ case TIMER_CH_0: TIMER_CH0CV(timer_periph) = (uint32_t)pulse; TIMER_CH0COMV_ADD(timer_periph) = (uint32_t)add_pulse; break; /* configure TIMER_CH_1 */ case TIMER_CH_1: TIMER_CH1CV(timer_periph) = (uint32_t)pulse; TIMER_CH1COMV_ADD(timer_periph) = (uint32_t)add_pulse; break; /* configure TIMER_CH_2 */ case TIMER_CH_2: TIMER_CH2CV(timer_periph) = (uint32_t)pulse; TIMER_CH2COMV_ADD(timer_periph) = (uint32_t)add_pulse; break; /* configure TIMER_CH_3 */ case TIMER_CH_3: TIMER_CH3CV(timer_periph) = (uint32_t)pulse; TIMER_CH3COMV_ADD(timer_periph) = (uint32_t)add_pulse; break; default: break; } } /*! \brief configure TIMER channel additional compare value \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0(x=0,7,19,20) \arg TIMER_CH_1: TIMER channel 1(x=0,7,19,20) \arg TIMER_CH_2: TIMER channel 2(x=0,7,19,20) \arg TIMER_CH_3: TIMER channel 3(x=0,7,19,20) \param[in] value: channel additional compare value, 0~65535 \param[out] none \retval none */ void timer_channel_additional_compare_value_config(uint32_t timer_periph, uint16_t channel, uint32_t value) { switch(channel) { /* configure TIMER_CH_0 */ case TIMER_CH_0: TIMER_CH0COMV_ADD(timer_periph) = (uint32_t)value; break; /* configure TIMER_CH_1 */ case TIMER_CH_1: TIMER_CH1COMV_ADD(timer_periph) = (uint32_t)value; break; /* configure TIMER_CH_2 */ case TIMER_CH_2: TIMER_CH2COMV_ADD(timer_periph) = (uint32_t)value; break; /* configure TIMER_CH_3 */ case TIMER_CH_3: TIMER_CH3COMV_ADD(timer_periph) = (uint32_t)value; break; default: break; } } /*! \brief configure TIMER channel additional output shadow function \param[in] timer_periph: TIMERx(x=0,1,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_1: TIMER channel 1(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_2: TIMER channel 2(TIMERx(x=0,1,7,19,20)) \arg TIMER_CH_3: TIMER channel 3(TIMERx(x=0,1,7,19,20)) \param[in] aocshadow: channel additional output compare shadow only one parameter can be selected which is shown as below: \arg TIMER_ADD_SHADOW_ENABLE: channel additional output compare shadow enable \arg TIMER_ADD_SHADOW_DISABLE: channel additional output compare shadow disable \param[out] none \retval none */ void timer_channel_additional_output_shadow_config(uint32_t timer_periph, uint16_t channel, uint16_t aocshadow) { switch(channel) { /* configure TIMER_CH_0 */ case TIMER_CH_0: TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH0COMADDSEN); TIMER_CHCTL0(timer_periph) |= (uint32_t)((uint32_t)aocshadow << 28U); break; /* configure TIMER_CH_1 */ case TIMER_CH_1: TIMER_CHCTL0(timer_periph) &= (~(uint32_t)TIMER_CHCTL0_CH1COMADDSEN); TIMER_CHCTL0(timer_periph) |= (uint32_t)((uint32_t)aocshadow << 29U); break; /* configure TIMER_CH_2 */ case TIMER_CH_2: TIMER_CHCTL1(timer_periph) &= (~(uint32_t)TIMER_CHCTL1_CH2COMADDSEN); TIMER_CHCTL1(timer_periph) |= (uint32_t)((uint32_t)aocshadow << 28U); break; /* configure TIMER_CH_3 */ case TIMER_CH_3: TIMER_CHCTL1(timer_periph) &= (~(uint32_t)TIMER_CHCTL1_CH3COMADDSEN); TIMER_CHCTL1(timer_periph) |= (uint32_t)((uint32_t)aocshadow << 29U); break; default: break; } } /*! \brief initialize TIMER break external input parameter struct with a default value \param[in] breakinpara: TIMER break external input parameter struct \param[out] none \retval none */ void timer_break_external_input_struct_para_init(timer_break_ext_input_struct *breakinpara) { /* initialize the break parameter struct member with the default value */ breakinpara->filter = 0U; breakinpara->enable = TIMER_IOS_STATE_DISABLE; breakinpara->polarity = TIMER_BRKIN_POLARITY_LOW; } /*! \brief configure break external input \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] break_input: break external input only one parameter can be selected which is shown as below: \arg TIMER_BREAKINPUT_BRK0: TIMER break external input 0 \arg TIMER_BREAKINPUT_BRK1: TIMER break external input 1 \arg TIMER_BREAKINPUT_BRK2: TIMER break external input 2 \arg TIMER_BREAKINPUT_BRK3: TIMER break external input 3 \param[in] breakinpara: break external input parameter struct filter:: 0~15 enable: ENABLE or DISABLE polarity: TIMER_BRKIN_POLARITY_HIGH, TIMER_BRKIN_POLARITY_LOW \param[out] none \retval none */ void timer_break_external_input_config(uint32_t timer_periph, uint32_t break_input, timer_break_ext_input_struct *breakinpara) { uint32_t reg = 0U; reg = TIMER_BRKCFG(timer_periph); reg &= (~(uint32_t)((0x03000000U << (break_input << 1U) | ((uint32_t)0x0000000FU << (break_input << 2U))))); reg |= ((breakinpara->filter << (break_input << 2U)) | (breakinpara->enable << ((break_input << 1U) + 24U)) | (breakinpara->polarity << ((break_input << 1U) + 25U))); TIMER_BRKCFG(timer_periph) = reg; } /*! \brief break external input enable \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] break_input: break external input only one parameter can be selected which is shown as below: \arg TIMER_BREAKINPUT_BRK0: TIMER break external input 0 \arg TIMER_BREAKINPUT_BRK1: TIMER break external input 1 \arg TIMER_BREAKINPUT_BRK2: TIMER break external input 2 \arg TIMER_BREAKINPUT_BRK3: TIMER break external input 3 \param[out] none \retval none */ void timer_break_external_input_enable(uint32_t timer_periph, uint32_t break_input) { TIMER_BRKCFG(timer_periph) |= (uint32_t)(TIMER_BRKCFG_BRK0EN << (break_input << 1U)); } /*! \brief break external input disable \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] break_input: break external input only one parameter can be selected which is shown as below: \arg TIMER_BREAKINPUT_BRK0: TIMER break external input 0 \arg TIMER_BREAKINPUT_BRK1: TIMER break external input 1 \arg TIMER_BREAKINPUT_BRK2: TIMER break external input 2 \arg TIMER_BREAKINPUT_BRK3: TIMER break external input 3 \param[out] none \retval none */ void timer_break_external_input_disable(uint32_t timer_periph, uint32_t break_input) { TIMER_BRKCFG(timer_periph) &= (~(uint32_t)(TIMER_BRKCFG_BRK0EN << (break_input << 1U))); } /*! \brief configure TIMER break external input polarity \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] break_input: break external input only one parameter can be selected which is shown as below: \arg TIMER_BREAKINPUT_BRK0: TIMER break external input 0(TIMERx(x=0,7,19,20) \arg TIMER_BREAKINPUT_BRK1: TIMER break external input 1(TIMERx(x=0,7,19,20) \arg TIMER_BREAKINPUT_BRK2: TIMER break external input 2(TIMERx(x=0,7,19,20) \arg TIMER_BREAKINPUT_BRK3: TIMER break external input 3(TIMERx(x=0,7,19,20) \param[in] polarity: break external input polarity only one parameter can be selected which is shown as below: \arg TIMER_BRKIN_POLARITY_HIGH: break external input polarity is high \arg TIMER_BRKIN_POLARITY_LOW: break external input polarity is low \param[out] none \retval none */ void timer_break_external_input_polarity_config(uint32_t timer_periph, uint32_t break_input, uint32_t polarity) { if(polarity == TIMER_BRKIN_POLARITY_HIGH) { TIMER_BRKCFG(timer_periph) |= (uint32_t)(TIMER_BRKCFG_BRK0P << (break_input << 1U)); } else { TIMER_BRKCFG(timer_periph) &= (~(uint32_t)(TIMER_BRKCFG_BRK0P << (break_input << 1U))); } } /*! \brief configure the TIMER channel break function \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0 \arg TIMER_CH_1: TIMER channel 1 \arg TIMER_CH_2: TIMER channel 2 \arg TIMER_CH_3: TIMER channel 3 \param[in] newvalue: ENABLE or DISABLE \param[out] none \retval none */ void timer_channel_break_control_config(uint32_t timer_periph, uint32_t channel, ControlStatus newvalue) { if(ENABLE == newvalue) { TIMER_CTL2(timer_periph) |= (uint32_t)(TIMER_CTL2_BRKENCH0 << channel); } else { TIMER_CTL2(timer_periph) &= (~(uint32_t)(TIMER_CTL2_BRKENCH0 << channel)); } } /*! \brief configure the TIMER channel free dead time function \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0 \arg TIMER_CH_1: TIMER channel 1 \arg TIMER_CH_2: TIMER channel 2 \arg TIMER_CH_3: TIMER channel 3 \param[in] newvalue: ENABLE or DISABLE \param[out] none \retval none */ void timer_channel_dead_time_config(uint32_t timer_periph, uint32_t channel, ControlStatus newvalue) { if(ENABLE == newvalue) { TIMER_CTL2(timer_periph) |= (uint32_t)(TIMER_CTL2_DTIENCH0 << channel); } else { TIMER_CTL2(timer_periph) &= (~(uint32_t)(TIMER_CTL2_DTIENCH0 << channel)); } } /*! \brief initialize TIMER channel free complementary parameter struct with a default value \param[in] none \param[out] freecompara: TIMER channel free complementary parameter struct \retval none */ void timer_free_complementary_struct_para_init(timer_free_complementary_parameter_struct *freecompara) { /* initialize the channel free complementary parameter struct member with the default value */ freecompara->freecomstate = TIMER_FCCHP_STATE_DISABLE; freecompara->runoffstate = TIMER_ROS_STATE_DISABLE; freecompara->ideloffstate = TIMER_IOS_STATE_DISABLE; freecompara->deadtime = 0U; } /*! \brief configure channel free complementary protection \param[in] timer_periph: TIMERx(x=0,7,19,20) \param[in] channel: TIMER channel only one parameter can be selected which is shown as below: \arg TIMER_CH_0: TIMER channel 0 \arg TIMER_CH_1: TIMER channel 1 \arg TIMER_CH_2: TIMER channel 2 \arg TIMER_CH_3: TIMER channel 3 \param[in] fcpara: TIMER channel free complementary parameter struct freecomstate: TIMER_FCCHP_STATE_ENABLE, TIMER_FCCHP_STATE_DISABLE runoffstate: TIMER_ROS_STATE_ENABLE, TIMER_ROS_STATE_DISABLE ideloffstate: TIMER_IOS_STATE_ENABLE, TIMER_IOS_STATE_DISABLE deadtime: 0~255 \param[out] none \retval none */ void timer_channel_free_complementary_config(uint32_t timer_periph, uint16_t channel, timer_free_complementary_parameter_struct *fcpara) { switch(channel) { case TIMER_CH_0: TIMER_FCCHP0(timer_periph) &= (~(uint32_t)(TIMER_FCCHP0_DTCFG | TIMER_FCCHP0_IOS | TIMER_FCCHP0_ROS | TIMER_FCCHP0_FCCHP0EN)); TIMER_FCCHP0(timer_periph) |= fcpara->deadtime; TIMER_FCCHP0(timer_periph) |= fcpara->ideloffstate; TIMER_FCCHP0(timer_periph) |= fcpara->runoffstate; TIMER_FCCHP0(timer_periph) |= fcpara->freecomstate; break; case TIMER_CH_1: TIMER_FCCHP1(timer_periph) &= (~(uint32_t)(TIMER_FCCHP1_DTCFG | TIMER_FCCHP1_IOS | TIMER_FCCHP1_ROS | TIMER_FCCHP1_FCCHP1EN)); TIMER_FCCHP1(timer_periph) |= fcpara->deadtime; TIMER_FCCHP1(timer_periph) |= fcpara->ideloffstate; TIMER_FCCHP1(timer_periph) |= fcpara->runoffstate; TIMER_FCCHP1(timer_periph) |= fcpara->freecomstate; break; case TIMER_CH_2: TIMER_FCCHP2(timer_periph) &= (~(uint32_t)(TIMER_FCCHP2_DTCFG | TIMER_FCCHP2_IOS | TIMER_FCCHP2_ROS | TIMER_FCCHP2_FCCHP2EN)); TIMER_FCCHP2(timer_periph) |= fcpara->deadtime; TIMER_FCCHP2(timer_periph) |= fcpara->ideloffstate; TIMER_FCCHP2(timer_periph) |= fcpara->runoffstate; TIMER_FCCHP2(timer_periph) |= fcpara->freecomstate; break; case TIMER_CH_3: TIMER_FCCHP3(timer_periph) &= (~(uint32_t)(TIMER_FCCHP3_DTCFG | TIMER_FCCHP3_IOS | TIMER_FCCHP3_ROS | TIMER_FCCHP3_FCCHP3EN)); TIMER_FCCHP3(timer_periph) |= fcpara->deadtime; TIMER_FCCHP3(timer_periph) |= fcpara->ideloffstate; TIMER_FCCHP3(timer_periph) |= fcpara->runoffstate; TIMER_FCCHP3(timer_periph) |= fcpara->freecomstate; break; default: break; } } /*! \brief get TIMER flags \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[in] flag: the TIMER flags only one parameter can be selected which is shown as below: \arg TIMER_FLAG_UP: update flag, TIMERx(x=0,1,5,6,7,19,20) \arg TIMER_FLAG_CH0: channel 0 capture or compare flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_CH1: channel 1 capture or compare flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_CH2: channel 2 capture or compare flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_CH3: channel 3 capture or compare flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_CMT: channel commutation flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_TRG: trigger flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_BRK: break flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_CH0O: channel 0 overcapture flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_CH1O: channel 1 overcapture flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_CH2O: channel 2 overcapture flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_CH3O: channel 3 overcapture flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_MCH0: multi mode channel 0 capture or compare flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_MCH1: multi mode channel 1 capture or compare flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_MCH2: multi mode channel 2 capture or compare flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_MCH3: multi mode channel 3 capture or compare flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_MCH0O: multi mode channel 0 overcapture flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_MCH1O: multi mode channel 1 overcapture flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_MCH2O: multi mode channel 2 overcapture flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_MCH3O: multi mode channel 3 overcapture flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_CH0COMADD: channel 0 additional compare flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_CH1COMADD: channel 1 additional compare flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_CH2COMADD: channel 2 additional compare flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_CH3COMADD: channel 3 additional compare flag, TIMERx(x=0,7,19,20) \param[out] none \retval FlagStatus: SET or RESET */ FlagStatus timer_flag_get(uint32_t timer_periph, uint32_t flag) { if((uint32_t)RESET != (TIMER_INTF(timer_periph) & flag)) { return SET; } else { return RESET; } } /*! \brief clear TIMER flags \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[in] flag: the TIMER flags one or more parameters can be selected which are shown as below: \arg TIMER_FLAG_UP: update flag, TIMERx(x=0,1,5,6,7,19,20) \arg TIMER_FLAG_CH0: channel 0 capture or compare flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_CH1: channel 1 capture or compare flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_CH2: channel 2 capture or compare flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_CH3: channel 3 capture or compare flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_CMT: channel commutation flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_TRG: trigger flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_BRK: break flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_CH0O: channel 0 overcapture flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_CH1O: channel 1 overcapture flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_CH2O: channel 2 overcapture flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_CH3O: channel 3 overcapture flag, TIMERx(x=0,1,7,19,20) \arg TIMER_FLAG_MCH0: multi mode channel 0 capture or compare flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_MCH1: multi mode channel 1 capture or compare flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_MCH2: multi mode channel 2 capture or compare flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_MCH3: multi mode channel 3 capture or compare flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_MCH0O: multi mode channel 0 overcapture flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_MCH1O: multi mode channel 1 overcapture flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_MCH2O: multi mode channel 2 overcapture flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_MCH3O: multi mode channel 3 overcapture flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_CH0COMADD: channel 0 additional compare flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_CH1COMADD: channel 1 additional compare flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_CH2COMADD: channel 2 additional compare flag, TIMERx(x=0,7,19,20) \arg TIMER_FLAG_CH3COMADD: channel 3 additional compare flag, TIMERx(x=0,7,19,20) \param[out] none \retval none */ void timer_flag_clear(uint32_t timer_periph, uint32_t flag) { TIMER_INTF(timer_periph) &= (~(uint32_t)flag); } /*! \brief enable the TIMER interrupt \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[in] interrupt: timer interrupt source one or more parameters can be selected which are shown as below: \arg TIMER_INT_UP: update interrupt, TIMERx(x=0,1,5,6,7,19,20) \arg TIMER_INT_CH0: channel 0 capture or compare interrupt, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_CH1: channel 1 capture or compare interrupt, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_CH2: channel 2 capture or compare interrupt, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_CH3: channel 3 capture or compare interrupt, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_CMT: commutation interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_TRG: trigger interrupt, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_BRK: break interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_MCH0: multi mode channel 0 capture or compare interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_MCH1: multi mode channel 1 capture or compare interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_MCH2: multi mode channel 2 capture or compare interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_MCH3: multi mode channel 3 capture or compare interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_CH0COMADD: channel 0 additional compare interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_CH1COMADD: channel 1 additional compare interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_CH2COMADD: channel 2 additional compare interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_CH3COMADD: channel 3 additional compare interrupt, TIMERx(x=0,7,19,20) \param[out] none \retval none */ void timer_interrupt_enable(uint32_t timer_periph, uint32_t interrupt) { TIMER_DMAINTEN(timer_periph) |= (uint32_t) interrupt; } /*! \brief disable the TIMER interrupt \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[in] interrupt: timer interrupt source one or more parameters can be selected which are shown as below: \arg TIMER_INT_UP: update interrupt, TIMERx(x=0,1,5,6,7,19,20) \arg TIMER_INT_CH0: channel 0 capture or compare interrupt, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_CH1: channel 1 capture or compare interrupt, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_CH2: channel 2 capture or compare interrupt, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_CH3: channel 3 capture or compare interrupt, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_CMT: commutation interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_TRG: trigger interrupt, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_BRK: break interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_MCH0: multi mode channel 0 capture or compare interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_MCH1: multi mode channel 1 capture or compare interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_MCH2: multi mode channel 2 capture or compare interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_MCH3: multi mode channel 3 capture or compare interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_CH0COMADD: channel 0 additional compare interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_CH1COMADD: channel 1 additional compare interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_CH2COMADD: channel 2 additional compare interrupt, TIMERx(x=0,7,19,20) \arg TIMER_INT_CH3COMADD: channel 3 additional compare interrupt, TIMERx(x=0,7,19,20) \param[out] none \retval none */ void timer_interrupt_disable(uint32_t timer_periph, uint32_t interrupt) { TIMER_DMAINTEN(timer_periph) &= (~(uint32_t)interrupt); } /*! \brief get timer interrupt flags \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[in] int_flag: the timer interrupt flags only one parameter can be selected which is shown as below: \arg TIMER_INT_FLAG_UP: update interrupt flag, TIMERx(x=0,1,5,6,7,19,20) \arg TIMER_INT_FLAG_CH0: channel 0 capture or compare interrupt flag, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_FLAG_CH1: channel 1 capture or compare interrupt flag, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_FLAG_CH2: channel 2 capture or compare interrupt flag, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_FLAG_CH3: channel 3 capture or compare interrupt flag, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_FLAG_CMT: channel commutation interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_TRG: trigger interrupt flag, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_FLAG_BRK: break interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_MCH0: multi mode channel 0 capture or compare interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_MCH1: multi mode channel 1 capture or compare interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_MCH2: multi mode channel 2 capture or compare interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_MCH3: multi mode channel 3 capture or compare interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_CH0COMADD: channel 0 additional compare interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_CH1COMADD: channel 1 additional compare interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_CH2COMADD: channel 2 additional compare interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_CH3COMADD: channel 3 additional compare interrupt flag, TIMERx(x=0,7,19,20) \param[out] none \retval FlagStatus: SET or RESET */ FlagStatus timer_interrupt_flag_get(uint32_t timer_periph, uint32_t int_flag) { uint32_t val; val = (TIMER_DMAINTEN(timer_periph) & int_flag); if(((uint32_t)RESET != (TIMER_INTF(timer_periph) & int_flag)) && ((uint32_t)RESET != val)) { return SET; } else { return RESET; } } /*! \brief clear TIMER interrupt flags \param[in] timer_periph: TIMERx(x=0,1,5,6,7,19,20) \param[in] int_flag: the timer interrupt flags one or more parameters can be selected which are shown as below: \arg TIMER_INT_FLAG_UP: update interrupt flag, TIMERx(x=0,1,5,6,7,19,20) \arg TIMER_INT_FLAG_CH0: channel 0 capture or compare interrupt flag, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_FLAG_CH1: channel 1 capture or compare interrupt flag, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_FLAG_CH2: channel 2 capture or compare interrupt flag, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_FLAG_CH3: channel 3 capture or compare interrupt flag, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_FLAG_CMT: channel commutation interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_TRG: trigger interrupt flag, TIMERx(x=0,1,7,19,20) \arg TIMER_INT_FLAG_BRK: break interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_MCH0: multi mode channel 0 capture or compare interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_MCH1: multi mode channel 1 capture or compare interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_MCH2: multi mode channel 2 capture or compare interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_MCH3: multi mode channel 3 capture or compare interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_CH0COMADD: channel 0 additional compare interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_CH1COMADD: channel 1 additional compare interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_CH2COMADD: channel 2 additional compare interrupt flag, TIMERx(x=0,7,19,20) \arg TIMER_INT_FLAG_CH3COMADD: channel 3 additional compare interrupt flag, TIMERx(x=0,7,19,20) \param[out] none \retval none */ void timer_interrupt_flag_clear(uint32_t timer_periph, uint32_t int_flag) { TIMER_INTF(timer_periph) &= (~(uint32_t)int_flag); }