/* * IEEE 802.11 RSN / WPA Authenticator * Copyright (c) 2004-2011, Jouni Malinen * * This software may be distributed under the terms of the BSD license. * See README for more details. */ #include "utils/includes.h" #include "utils/common.h" #include "utils/state_machine.h" #include "common/ieee802_11_defs.h" #include "ap/wpa_auth.h" #include "ap/wpa_auth_i.h" #include "ap/wpa_auth_ie.h" #include "utils/wpa_debug.h" #include "hostapd.h" #include "rsn_supp/wpa.h" #include "ap/ap_config.h" #include "common/wpa_common.h" #include "crypto/aes_wrap.h" #include "crypto/crypto.h" #include "crypto/sha1.h" #include "crypto/sha256.h" #include "crypto/random.h" #include "esp_wifi_driver.h" #include "esp_wifi.h" #include "esp_private/wifi.h" #define STATE_MACHINE_DATA struct wpa_state_machine #define STATE_MACHINE_DEBUG_PREFIX "WPA" #define STATE_MACHINE_ADDR sm->addr static void wpa_send_eapol_timeout(void *eloop_ctx, void *timeout_ctx); static int wpa_sm_step(struct wpa_state_machine *sm); static int wpa_verify_key_mic(int akmp, struct wpa_ptk *PTK, u8 *data, size_t data_len); static void wpa_group_sm_step(struct wpa_authenticator *wpa_auth, struct wpa_group *group); static void wpa_request_new_ptk(struct wpa_state_machine *sm); static int wpa_gtk_update(struct wpa_authenticator *wpa_auth, struct wpa_group *group); static int wpa_group_config_group_keys(struct wpa_authenticator *wpa_auth, struct wpa_group *group); static const u32 dot11RSNAConfigGroupUpdateCount = 4; static const u32 dot11RSNAConfigPairwiseUpdateCount = 4; static const u32 eapol_key_timeout_first = 100; /* ms */ static const u32 eapol_key_timeout_subseq = 1000; /* ms */ static const u32 eapol_key_timeout_first_group = 500; /* ms */ #define WPA_SM_MAX_INDEX 16 static void *s_sm_table[WPA_SM_MAX_INDEX]; static u32 s_sm_valid_bitmap = 0; static struct wpa_state_machine * wpa_auth_get_sm(u32 index) { if ( (index < WPA_SM_MAX_INDEX) && (BIT(index) & s_sm_valid_bitmap)){ return s_sm_table[index]; } return NULL; } static void wpa_auth_add_sm(struct wpa_state_machine *sm) { if (sm) { u8 i; for (i=0; iindex = i; wpa_printf( MSG_DEBUG, "add sm, index=%d bitmap=%x\n", i, s_sm_valid_bitmap); return; } } } static void wpa_auth_del_sm(struct wpa_state_machine *sm) { if (sm && (sm->index < WPA_SM_MAX_INDEX)) { if (sm != s_sm_table[sm->index]) { wpa_printf( MSG_INFO, "del sm error %d", sm->index); } s_sm_table[sm->index] = NULL; s_sm_valid_bitmap &= ~BIT(sm->index); wpa_printf( MSG_DEBUG, "del sm, index=%d bitmap=%x\n", sm->index, s_sm_valid_bitmap); } } static inline int wpa_auth_mic_failure_report( struct wpa_authenticator *wpa_auth, const u8 *addr) { return 0; } static inline void wpa_auth_set_eapol(struct wpa_authenticator *wpa_auth, const u8 *addr, wpa_eapol_variable var, int value) { } static inline int wpa_auth_get_eapol(struct wpa_authenticator *wpa_auth, const u8 *addr, wpa_eapol_variable var) { return -1; } static inline const u8 * wpa_auth_get_psk(struct wpa_authenticator *wpa_auth, const u8 *addr, const u8 *prev_psk) { struct hostapd_data *hapd = (struct hostapd_data *)esp_wifi_get_hostap_private_internal(); if (!hapd){ return NULL; } return (u8*)hostapd_get_psk(hapd->conf, addr, prev_psk); } static inline int wpa_auth_get_msk(struct wpa_authenticator *wpa_auth, const u8 *addr, u8 *msk, size_t *len) { return -1; } static inline int wpa_auth_set_key(struct wpa_authenticator *wpa_auth, int vlan_id, enum wpa_alg alg, const u8 *addr, int idx, u8 *key, size_t key_len) { return esp_wifi_set_ap_key_internal(alg, addr, idx, key, key_len); } static inline int wpa_auth_get_seqnum(struct wpa_authenticator *wpa_auth, const u8 *addr, int idx, u8 *seq) { return -1; } /* fix buf for tx for now */ #define WPA_TX_MSG_BUFF_MAXLEN 200 static inline int wpa_auth_send_eapol(struct wpa_authenticator *wpa_auth, const u8 *addr, const u8 *data, size_t data_len, int encrypt) { void *buffer = os_malloc(256); struct l2_ethhdr *eth = buffer; if (!buffer){ wpa_printf( MSG_DEBUG, "send_eapol, buffer=%p\n", buffer); return -1; } memcpy(eth->h_dest, addr, ETH_ALEN); memcpy(eth->h_source, wpa_auth->addr, ETH_ALEN); eth->h_proto = host_to_be16(ETH_P_EAPOL); memcpy((char *)buffer + sizeof(struct l2_ethhdr), data, data_len); esp_wifi_internal_tx(1, buffer, sizeof(struct l2_ethhdr) + data_len); os_free(buffer); return 0; } int wpa_auth_for_each_sta(struct wpa_authenticator *wpa_auth, int (*cb)(struct wpa_state_machine *sm, void *ctx), void *cb_ctx) { return 0; } static void wpa_sta_disconnect(struct wpa_authenticator *wpa_auth, const u8 *addr) { wpa_printf(MSG_DEBUG, "wpa_sta_disconnect STA " MACSTR, MAC2STR(addr)); esp_wifi_ap_deauth_internal((uint8_t*)addr, WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT); return; } static int wpa_use_aes_cmac(struct wpa_state_machine *sm) { int ret = 0; #ifdef CONFIG_IEEE80211R if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) ret = 1; #endif /* CONFIG_IEEE80211R */ #ifdef CONFIG_IEEE80211W if (wpa_key_mgmt_sha256(sm->wpa_key_mgmt)) ret = 1; #endif /* CONFIG_IEEE80211W */ return ret; } static void wpa_rekey_gtk(void *eloop_ctx, void *timeout_ctx) { struct wpa_authenticator *wpa_auth = eloop_ctx; struct wpa_group *group; for (group = wpa_auth->group; group; group = group->next) { group->GTKReKey = TRUE; do { group->changed = FALSE; wpa_group_sm_step(wpa_auth, group); } while (group->changed); } if (wpa_auth->conf.wpa_group_rekey) { eloop_register_timeout(wpa_auth->conf.wpa_group_rekey, 0, wpa_rekey_gtk, wpa_auth, NULL); } } static void wpa_rekey_ptk(void *eloop_ctx, void *timeout_ctx) { struct wpa_state_machine *sm = timeout_ctx; wpa_request_new_ptk(sm); wpa_sm_step(sm); } static int wpa_group_init_gmk_and_counter(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { u8 buf[ETH_ALEN + 8 + sizeof(group)]; u8 rkey[32]; if (os_get_random(group->GMK, WPA_GMK_LEN) < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "GMK", group->GMK, WPA_GMK_LEN); /* * Counter = PRF-256(Random number, "Init Counter", * Local MAC Address || Time) */ memcpy(buf, wpa_auth->addr, ETH_ALEN); wpa_get_ntp_timestamp(buf + ETH_ALEN); memcpy(buf + ETH_ALEN + 8, &group, sizeof(group)); if (os_get_random(rkey, sizeof(rkey)) < 0) return -1; if (sha1_prf(rkey, sizeof(rkey), "Init Counter", buf, sizeof(buf), group->Counter, WPA_NONCE_LEN) < 0) return -1; wpa_hexdump_key(MSG_DEBUG, "Key Counter", group->Counter, WPA_NONCE_LEN); return 0; } static struct wpa_group * wpa_group_init(struct wpa_authenticator *wpa_auth, int vlan_id, int delay_init) { struct wpa_group *group; group = (struct wpa_group *)os_zalloc(sizeof(struct wpa_group)); if (group == NULL) return NULL; group->GTKAuthenticator = TRUE; group->GTK_len = wpa_cipher_key_len(wpa_auth->conf.wpa_group); if (random_pool_ready() != 1) { wpa_printf( MSG_INFO, "WPA: Not enough entropy in random pool " "for secure operations - update keys later when " "the first station connects"); } /* * Set initial GMK/Counter value here. The actual values that will be * used in negotiations will be set once the first station tries to * connect. This allows more time for collecting additional randomness * on embedded devices. */ if (wpa_group_init_gmk_and_counter(wpa_auth, group) < 0) { wpa_printf( MSG_ERROR, "Failed to get random data for WPA " "initialization."); os_free(group); return NULL; } group->GInit = TRUE; if (delay_init) { wpa_printf( MSG_DEBUG, "WPA: Delay group state machine start " "until Beacon frames have been configured\n"); /* Initialization is completed in wpa_init_keys(). */ } else { wpa_group_sm_step(wpa_auth, group); group->GInit = FALSE; wpa_group_sm_step(wpa_auth, group); } return group; } /** * wpa_init - Initialize WPA authenticator * @addr: Authenticator address * @conf: Configuration for WPA authenticator * @cb: Callback functions for WPA authenticator * Returns: Pointer to WPA authenticator data or %NULL on failure */ struct wpa_authenticator * wpa_init(const u8 *addr, struct wpa_auth_config *conf, struct wpa_auth_callbacks *cb) { struct wpa_authenticator *wpa_auth; wpa_auth = (struct wpa_authenticator *)os_zalloc(sizeof(struct wpa_authenticator)); if (wpa_auth == NULL) return NULL; memcpy(wpa_auth->addr, addr, ETH_ALEN); memcpy(&wpa_auth->conf, conf, sizeof(*conf)); if (wpa_auth_gen_wpa_ie(wpa_auth)) { wpa_printf( MSG_ERROR, "Could not generate WPA IE."); os_free(wpa_auth); return NULL; } wpa_auth->group = wpa_group_init(wpa_auth, 0, 0); if (wpa_auth->group == NULL) { os_free(wpa_auth->wpa_ie); os_free(wpa_auth); return NULL; } #ifdef CONFIG_IEEE80211R wpa_auth->ft_pmk_cache = wpa_ft_pmk_cache_init(); if (wpa_auth->ft_pmk_cache == NULL) { wpa_printf( MSG_ERROR, "FT PMK cache initialization failed."); os_free(wpa_auth->wpa_ie); pmksa_cache_auth_deinit(wpa_auth->pmksa); os_free(wpa_auth); return NULL; } #endif /* CONFIG_IEEE80211R */ return wpa_auth; } struct wpa_state_machine * wpa_auth_sta_init(struct wpa_authenticator *wpa_auth, const u8 *addr) { struct wpa_state_machine *sm; sm = (struct wpa_state_machine *)os_zalloc(sizeof(struct wpa_state_machine)); if (sm == NULL) return NULL; memcpy(sm->addr, addr, ETH_ALEN); sm->wpa_auth = wpa_auth; sm->group = wpa_auth->group; wpa_auth_add_sm(sm); return sm; } int wpa_auth_sta_associated(struct wpa_authenticator *wpa_auth, struct wpa_state_machine *sm) { if (wpa_auth == NULL || !wpa_auth->conf.wpa || sm == NULL) return -1; #ifdef CONFIG_IEEE80211R if (sm->ft_completed) { wpa_auth_logger(wpa_auth, sm->addr, LOGGER_DEBUG, "FT authentication already completed - do not " "start 4-way handshake"); return 0; } #endif /* CONFIG_IEEE80211R */ if (sm->started) { memset(&sm->key_replay, 0, sizeof(sm->key_replay)); sm->ReAuthenticationRequest = TRUE; return wpa_sm_step(sm); } sm->started = 1; sm->Init = TRUE; if (wpa_sm_step(sm) == 1) return 1; /* should not really happen */ sm->Init = FALSE; sm->AuthenticationRequest = TRUE; return wpa_sm_step(sm); } void wpa_auth_sta_no_wpa(struct wpa_state_machine *sm) { /* WPA/RSN was not used - clear WPA state. This is needed if the STA * reassociates back to the same AP while the previous entry for the * STA has not yet been removed. */ if (sm == NULL) return; sm->wpa_key_mgmt = 0; } static void wpa_free_sta_sm(struct wpa_state_machine *sm) { wpa_auth_del_sm(sm); if (sm->GUpdateStationKeys) { sm->group->GKeyDoneStations--; sm->GUpdateStationKeys = FALSE; } #ifdef CONFIG_IEEE80211R os_free(sm->assoc_resp_ftie); #endif /* CONFIG_IEEE80211R */ wpa_printf( MSG_DEBUG, "wpa_free_sta_sm: free eapol=%p\n", sm->last_rx_eapol_key); os_free(sm->last_rx_eapol_key); os_free(sm->wpa_ie); os_free(sm); } void wpa_auth_sta_deinit(struct wpa_state_machine *sm) { wpa_printf( MSG_DEBUG, "deinit sm=%p\n", sm); if (sm == NULL) return; ets_timer_disarm(&sm->resend_eapol); ets_timer_done(&sm->resend_eapol); if (sm->in_step_loop) { /* Must not free state machine while wpa_sm_step() is running. * Freeing will be completed in the end of wpa_sm_step(). */ wpa_printf( MSG_DEBUG, "WPA: Registering pending STA state " "machine deinit for " MACSTR, MAC2STR(sm->addr)); sm->pending_deinit = 1; } else wpa_free_sta_sm(sm); } static void wpa_request_new_ptk(struct wpa_state_machine *sm) { if (sm == NULL) return; sm->PTKRequest = TRUE; sm->PTK_valid = 0; } static int wpa_replay_counter_valid(struct wpa_key_replay_counter *ctr, const u8 *replay_counter) { int i; for (i = 0; i < RSNA_MAX_EAPOL_RETRIES; i++) { if (!ctr[i].valid) break; if (memcmp(replay_counter, ctr[i].counter, WPA_REPLAY_COUNTER_LEN) == 0) return 1; } return 0; } static void wpa_replay_counter_mark_invalid(struct wpa_key_replay_counter *ctr, const u8 *replay_counter) { int i; for (i = 0; i < RSNA_MAX_EAPOL_RETRIES; i++) { if (ctr[i].valid && (replay_counter == NULL || memcmp(replay_counter, ctr[i].counter, WPA_REPLAY_COUNTER_LEN) == 0)) ctr[i].valid = FALSE; } } #ifdef CONFIG_IEEE80211R static int ICACHE_FLASH_ATTR ft_check_msg_2_of_4(struct wpa_authenticator *wpa_auth, struct wpa_state_machine *sm, struct wpa_eapol_ie_parse *kde) { struct wpa_ie_data ie; struct rsn_mdie *mdie; if (wpa_parse_wpa_ie_rsn(kde->rsn_ie, kde->rsn_ie_len, &ie) < 0 || ie.num_pmkid != 1 || ie.pmkid == NULL) { wpa_printf( MSG_DEBUG, "FT: No PMKR1Name in " "FT 4-way handshake message 2/4"); return -1; } memcpy(sm->sup_pmk_r1_name, ie.pmkid, PMKID_LEN); wpa_hexdump(MSG_DEBUG, "FT: PMKR1Name from Supplicant", sm->sup_pmk_r1_name, PMKID_LEN); if (!kde->mdie || !kde->ftie) { wpa_printf( MSG_DEBUG, "FT: No %s in FT 4-way handshake " "message 2/4", kde->mdie ? "FTIE" : "MDIE"); return -1; } mdie = (struct rsn_mdie *) (kde->mdie + 2); if (kde->mdie[1] < sizeof(struct rsn_mdie) || memcmp(wpa_auth->conf.mobility_domain, mdie->mobility_domain, MOBILITY_DOMAIN_ID_LEN) != 0) { wpa_printf( MSG_DEBUG, "FT: MDIE mismatch"); return -1; } if (sm->assoc_resp_ftie && (kde->ftie[1] != sm->assoc_resp_ftie[1] || memcmp(kde->ftie, sm->assoc_resp_ftie, 2 + sm->assoc_resp_ftie[1]) != 0)) { wpa_printf( MSG_DEBUG, "FT: FTIE mismatch"); wpa_hexdump(MSG_DEBUG, "FT: FTIE in EAPOL-Key msg 2/4", kde->ftie, kde->ftie_len); wpa_hexdump(MSG_DEBUG, "FT: FTIE in (Re)AssocResp", sm->assoc_resp_ftie, 2 + sm->assoc_resp_ftie[1]); return -1; } return 0; } #endif /* CONFIG_IEEE80211R */ static int wpa_receive_error_report(struct wpa_authenticator *wpa_auth, struct wpa_state_machine *sm, int group) { if (group && wpa_auth->conf.wpa_group != WPA_CIPHER_TKIP) { } else if (!group && sm->pairwise != WPA_CIPHER_TKIP) { } else { if (wpa_auth_mic_failure_report(wpa_auth, sm->addr) > 0) return 1; /* STA entry was removed */ } /* * Error report is not a request for a new key handshake, but since * Authenticator may do it, let's change the keys now anyway. */ wpa_request_new_ptk(sm); return 0; } void wpa_receive(struct wpa_authenticator *wpa_auth, struct wpa_state_machine *sm, u8 *data, size_t data_len) { struct ieee802_1x_hdr *hdr; struct wpa_eapol_key *key; u16 key_info, key_data_length; enum { PAIRWISE_2, PAIRWISE_4, GROUP_2, REQUEST, SMK_M1, SMK_M3, SMK_ERROR } msg; struct wpa_eapol_ie_parse kde; int ft; const u8 *eapol_key_ie; size_t eapol_key_ie_len; if (wpa_auth == NULL || !wpa_auth->conf.wpa || sm == NULL) return; if (data_len < sizeof(*hdr) + sizeof(*key)) return; hdr = (struct ieee802_1x_hdr *) data; key = (struct wpa_eapol_key *) (hdr + 1); key_info = WPA_GET_BE16(key->key_info); key_data_length = WPA_GET_BE16(key->key_data_length); wpa_printf( MSG_DEBUG, "WPA: Received EAPOL-Key from " MACSTR " key_info=0x%x type=%u key_data_length=%u\n", MAC2STR(sm->addr), key_info, key->type, key_data_length); if (key_data_length > data_len - sizeof(*hdr) - sizeof(*key)) { wpa_printf( MSG_INFO, "WPA: Invalid EAPOL-Key frame - " "key_data overflow (%d > %lu)\n", key_data_length, (unsigned long) (data_len - sizeof(*hdr) - sizeof(*key))); return; } if (sm->wpa == WPA_VERSION_WPA2) { if (key->type == EAPOL_KEY_TYPE_WPA) { /* * Some deployed station implementations seem to send * msg 4/4 with incorrect type value in WPA2 mode. */ wpa_printf( MSG_DEBUG, "Workaround: Allow EAPOL-Key " "with unexpected WPA type in RSN mode\n"); } else if (key->type != EAPOL_KEY_TYPE_RSN) { wpa_printf( MSG_DEBUG, "Ignore EAPOL-Key with " "unexpected type %d in RSN mode\n", key->type); return; } } else { if (key->type != EAPOL_KEY_TYPE_WPA) { wpa_printf( MSG_DEBUG, "Ignore EAPOL-Key with " "unexpected type %d in WPA mode\n", key->type); return; } } wpa_hexdump(MSG_DEBUG, "WPA: Received Key Nonce", key->key_nonce, WPA_NONCE_LEN); wpa_hexdump(MSG_DEBUG, "WPA: Received Replay Counter", key->replay_counter, WPA_REPLAY_COUNTER_LEN); /* FIX: verify that the EAPOL-Key frame was encrypted if pairwise keys * are set */ if ((key_info & (WPA_KEY_INFO_SMK_MESSAGE | WPA_KEY_INFO_REQUEST)) == (WPA_KEY_INFO_SMK_MESSAGE | WPA_KEY_INFO_REQUEST)) { if (key_info & WPA_KEY_INFO_ERROR) { msg = SMK_ERROR; } else { msg = SMK_M1; } } else if (key_info & WPA_KEY_INFO_SMK_MESSAGE) { msg = SMK_M3; } else if (key_info & WPA_KEY_INFO_REQUEST) { msg = REQUEST; } else if (!(key_info & WPA_KEY_INFO_KEY_TYPE)) { msg = GROUP_2; } else if (key_data_length == 0) { msg = PAIRWISE_4; } else { msg = PAIRWISE_2; } /* TODO: key_info type validation for PeerKey */ if (msg == REQUEST || msg == PAIRWISE_2 || msg == PAIRWISE_4 || msg == GROUP_2) { u16 ver = key_info & WPA_KEY_INFO_TYPE_MASK; if (sm->pairwise == WPA_CIPHER_CCMP || sm->pairwise == WPA_CIPHER_GCMP) { if (wpa_use_aes_cmac(sm) && !wpa_key_mgmt_suite_b(sm->wpa_key_mgmt) && ver != WPA_KEY_INFO_TYPE_AES_128_CMAC) { return; } if (!wpa_use_aes_cmac(sm) && ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) { return; } } } if (key_info & WPA_KEY_INFO_REQUEST) { if (sm->req_replay_counter_used && os_memcmp(key->replay_counter, sm->req_replay_counter, WPA_REPLAY_COUNTER_LEN) <= 0) { return; } } if (!(key_info & WPA_KEY_INFO_REQUEST) && !wpa_replay_counter_valid(sm->key_replay, key->replay_counter)) { int i; if (msg == PAIRWISE_2 && wpa_replay_counter_valid(sm->prev_key_replay, key->replay_counter) && sm->wpa_ptk_state == WPA_PTK_PTKINITNEGOTIATING && memcmp(sm->SNonce, key->key_nonce, WPA_NONCE_LEN) != 0) { /* * Some supplicant implementations (e.g., Windows XP * WZC) update SNonce for each EAPOL-Key 2/4. This * breaks the workaround on accepting any of the * pending requests, so allow the SNonce to be updated * even if we have already sent out EAPOL-Key 3/4. */ sm->update_snonce = 1; wpa_replay_counter_mark_invalid(sm->prev_key_replay, key->replay_counter); goto continue_processing; } if (msg == PAIRWISE_2 && wpa_replay_counter_valid(sm->prev_key_replay, key->replay_counter) && sm->wpa_ptk_state == WPA_PTK_PTKINITNEGOTIATING) { } else { } for (i = 0; i < RSNA_MAX_EAPOL_RETRIES; i++) { if (!sm->key_replay[i].valid) break; wpa_hexdump(MSG_DEBUG, "pending replay counter", sm->key_replay[i].counter, WPA_REPLAY_COUNTER_LEN); } wpa_hexdump(MSG_DEBUG, "received replay counter", key->replay_counter, WPA_REPLAY_COUNTER_LEN); return; } continue_processing: switch (msg) { case PAIRWISE_2: if (sm->wpa_ptk_state != WPA_PTK_PTKSTART && sm->wpa_ptk_state != WPA_PTK_PTKCALCNEGOTIATING && (!sm->update_snonce || sm->wpa_ptk_state != WPA_PTK_PTKINITNEGOTIATING)) { return; } random_add_randomness(key->key_nonce, WPA_NONCE_LEN); if (sm->group->reject_4way_hs_for_entropy) { /* * The system did not have enough entropy to generate * strong random numbers. Reject the first 4-way * handshake(s) and collect some entropy based on the * information from it. Once enough entropy is * available, the next atempt will trigger GMK/Key * Counter update and the station will be allowed to * continue. */ wpa_printf( MSG_DEBUG, "WPA: Reject 4-way handshake to " "collect more entropy for random number " "generation"); random_mark_pool_ready(); wpa_sta_disconnect(wpa_auth, sm->addr); return; } if (wpa_parse_kde_ies((u8 *) (key + 1), key_data_length, &kde) < 0) { return; } if (kde.rsn_ie) { eapol_key_ie = kde.rsn_ie; eapol_key_ie_len = kde.rsn_ie_len; } else { eapol_key_ie = kde.wpa_ie; eapol_key_ie_len = kde.wpa_ie_len; } ft = sm->wpa == WPA_VERSION_WPA2 && wpa_key_mgmt_ft(sm->wpa_key_mgmt); if (sm->wpa_ie == NULL || wpa_compare_rsn_ie(ft, sm->wpa_ie, sm->wpa_ie_len, eapol_key_ie, eapol_key_ie_len)) { if (sm->wpa_ie) { wpa_hexdump(MSG_DEBUG, "WPA IE in AssocReq", sm->wpa_ie, sm->wpa_ie_len); } wpa_hexdump(MSG_DEBUG, "WPA IE in msg 2/4", eapol_key_ie, eapol_key_ie_len); /* MLME-DEAUTHENTICATE.request */ wpa_sta_disconnect(wpa_auth, sm->addr); return; } #ifdef CONFIG_IEEE80211R if (ft && ft_check_msg_2_of_4(wpa_auth, sm, &kde) < 0) { wpa_sta_disconnect(wpa_auth, sm->addr); return; } #endif /* CONFIG_IEEE80211R */ break; case PAIRWISE_4: if (sm->wpa_ptk_state != WPA_PTK_PTKINITNEGOTIATING || !sm->PTK_valid) { return; } break; case GROUP_2: if (sm->wpa_ptk_group_state != WPA_PTK_GROUP_REKEYNEGOTIATING || !sm->PTK_valid) { return; } break; #ifdef CONFIG_PEERKEY case SMK_M1: case SMK_M3: case SMK_ERROR: if (!wpa_auth->conf.peerkey) { wpa_printf( MSG_DEBUG, "RSN: SMK M1/M3/Error, but " "PeerKey use disabled - ignoring message"); return; } if (!sm->PTK_valid) { return; } break; #else /* CONFIG_PEERKEY */ case SMK_M1: case SMK_M3: case SMK_ERROR: return; /* STSL disabled - ignore SMK messages */ #endif /* CONFIG_PEERKEY */ case REQUEST: break; } if (key_info & WPA_KEY_INFO_ACK) { return; } if (!(key_info & WPA_KEY_INFO_MIC)) { return; } sm->MICVerified = FALSE; if (sm->PTK_valid && !sm->update_snonce) { if (wpa_verify_key_mic(sm->wpa_key_mgmt, &sm->PTK, data, data_len)) { return; } sm->MICVerified = TRUE; eloop_cancel_timeout(wpa_send_eapol_timeout, wpa_auth, sm); ets_timer_disarm(&sm->resend_eapol); ets_timer_done(&sm->resend_eapol); sm->pending_1_of_4_timeout = 0; } if (key_info & WPA_KEY_INFO_REQUEST) { if (sm->MICVerified) { sm->req_replay_counter_used = 1; memcpy(sm->req_replay_counter, key->replay_counter, WPA_REPLAY_COUNTER_LEN); } else { return; } /* * TODO: should decrypt key data field if encryption was used; * even though MAC address KDE is not normally encrypted, * supplicant is allowed to encrypt it. */ if (msg == SMK_ERROR) { #ifdef CONFIG_PEERKEY wpa_smk_error(wpa_auth, sm, key); #endif /* CONFIG_PEERKEY */ return; } else if (key_info & WPA_KEY_INFO_ERROR) { if (wpa_receive_error_report( wpa_auth, sm, !(key_info & WPA_KEY_INFO_KEY_TYPE)) > 0) return; /* STA entry was removed */ } else if (key_info & WPA_KEY_INFO_KEY_TYPE) { wpa_request_new_ptk(sm); #ifdef CONFIG_PEERKEY } else if (msg == SMK_M1) { wpa_smk_m1(wpa_auth, sm, key); #endif /* CONFIG_PEERKEY */ } else if (key_data_length > 0 && wpa_parse_kde_ies((const u8 *) (key + 1), key_data_length, &kde) == 0 && kde.mac_addr) { } else { eloop_cancel_timeout(wpa_rekey_gtk, wpa_auth, NULL); wpa_rekey_gtk(wpa_auth, NULL); } } else { /* Do not allow the same key replay counter to be reused. */ wpa_replay_counter_mark_invalid(sm->key_replay, key->replay_counter); if (msg == PAIRWISE_2) { /* * Maintain a copy of the pending EAPOL-Key frames in * case the EAPOL-Key frame was retransmitted. This is * needed to allow EAPOL-Key msg 2/4 reply to another * pending msg 1/4 to update the SNonce to work around * unexpected supplicant behavior. */ memcpy(sm->prev_key_replay, sm->key_replay, sizeof(sm->key_replay)); } else { memset(sm->prev_key_replay, 0, sizeof(sm->prev_key_replay)); } /* * Make sure old valid counters are not accepted anymore and * do not get copied again. */ wpa_replay_counter_mark_invalid(sm->key_replay, NULL); } #ifdef CONFIG_PEERKEY if (msg == SMK_M3) { wpa_smk_m3(wpa_auth, sm, key); return; } #endif /* CONFIG_PEERKEY */ wpa_printf( MSG_DEBUG, "wpa_rx: free eapol=%p\n", sm->last_rx_eapol_key); os_free(sm->last_rx_eapol_key); sm->last_rx_eapol_key = (u8 *)os_malloc(data_len); if (sm->last_rx_eapol_key == NULL) return; wpa_printf( MSG_DEBUG, "wpa_rx: new eapol=%p\n", sm->last_rx_eapol_key); memcpy(sm->last_rx_eapol_key, data, data_len); sm->last_rx_eapol_key_len = data_len; sm->rx_eapol_key_secure = !!(key_info & WPA_KEY_INFO_SECURE); sm->EAPOLKeyReceived = TRUE; sm->EAPOLKeyPairwise = !!(key_info & WPA_KEY_INFO_KEY_TYPE); sm->EAPOLKeyRequest = !!(key_info & WPA_KEY_INFO_REQUEST); memcpy(sm->SNonce, key->key_nonce, WPA_NONCE_LEN); wpa_sm_step(sm); } static int wpa_gmk_to_gtk(const u8 *gmk, const char *label, const u8 *addr, const u8 *gnonce, u8 *gtk, size_t gtk_len) { u8 data[ETH_ALEN + WPA_NONCE_LEN + 8 + 16]; u8 *pos; int ret = 0; /* GTK = PRF-X(GMK, "Group key expansion", * AA || GNonce || Time || random data) * The example described in the IEEE 802.11 standard uses only AA and * GNonce as inputs here. Add some more entropy since this derivation * is done only at the Authenticator and as such, does not need to be * exactly same. */ memcpy(data, addr, ETH_ALEN); memcpy(data + ETH_ALEN, gnonce, WPA_NONCE_LEN); pos = data + ETH_ALEN + WPA_NONCE_LEN; wpa_get_ntp_timestamp(pos); pos += 8; if (os_get_random(pos, 16) < 0) ret = -1; #ifdef CONFIG_IEEE80211W sha256_prf(gmk, WPA_GMK_LEN, label, data, sizeof(data), gtk, gtk_len); #else /* CONFIG_IEEE80211W */ if (sha1_prf(gmk, WPA_GMK_LEN, label, data, sizeof(data), gtk, gtk_len) < 0) ret = -1; #endif /* CONFIG_IEEE80211W */ return ret; } static void wpa_send_eapol_timeout(void *eloop_ctx, void *timeout_ctx) { struct wpa_state_machine *sm = timeout_ctx; sm->pending_1_of_4_timeout = 0; sm->TimeoutEvt = TRUE; wpa_sm_step(sm); } void __wpa_send_eapol(struct wpa_authenticator *wpa_auth, struct wpa_state_machine *sm, int key_info, const u8 *key_rsc, const u8 *nonce, const u8 *kde, size_t kde_len, int keyidx, int encr, int force_version) { struct ieee802_1x_hdr *hdr; struct wpa_eapol_key *key; size_t len; int alg; int key_data_len, pad_len = 0; u8 *buf, *pos; int version, pairwise; int i; wpa_printf( MSG_DEBUG, "wpa_auth=%p sm=%p kdersc=%p kde=%p nounce=%p kde_len=%u keyidx=%d encr=%d force=%d\n", wpa_auth,sm, key_rsc, kde, nonce, kde_len, keyidx, encr, force_version); len = sizeof(struct ieee802_1x_hdr) + sizeof(struct wpa_eapol_key); if (force_version) version = force_version; else if (wpa_use_aes_cmac(sm)) version = WPA_KEY_INFO_TYPE_AES_128_CMAC; else if (sm->pairwise != WPA_CIPHER_TKIP) version = WPA_KEY_INFO_TYPE_HMAC_SHA1_AES; else version = WPA_KEY_INFO_TYPE_HMAC_MD5_RC4; pairwise = key_info & WPA_KEY_INFO_KEY_TYPE; wpa_printf( MSG_DEBUG, "WPA: Send EAPOL(version=%d secure=%d mic=%d " "ack=%d install=%d pairwise=%d kde_len=%lu keyidx=%d " "encr=%d)\n", version, (key_info & WPA_KEY_INFO_SECURE) ? 1 : 0, (key_info & WPA_KEY_INFO_MIC) ? 1 : 0, (key_info & WPA_KEY_INFO_ACK) ? 1 : 0, (key_info & WPA_KEY_INFO_INSTALL) ? 1 : 0, pairwise, (unsigned long) kde_len, keyidx, encr); key_data_len = kde_len; if ((version == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES || version == WPA_KEY_INFO_TYPE_AES_128_CMAC) && encr) { pad_len = key_data_len % 8; if (pad_len) pad_len = 8 - pad_len; key_data_len += pad_len + 8; } len += key_data_len; hdr = (struct ieee802_1x_hdr *)os_zalloc(len); if (hdr == NULL) return; hdr->version = wpa_auth->conf.eapol_version; hdr->type = IEEE802_1X_TYPE_EAPOL_KEY; hdr->length = host_to_be16(len - sizeof(*hdr)); key = (struct wpa_eapol_key *) (hdr + 1); key->type = sm->wpa == WPA_VERSION_WPA2 ? EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA; key_info |= version; if (encr && sm->wpa == WPA_VERSION_WPA2) key_info |= WPA_KEY_INFO_ENCR_KEY_DATA; if (sm->wpa != WPA_VERSION_WPA2) key_info |= keyidx << WPA_KEY_INFO_KEY_INDEX_SHIFT; WPA_PUT_BE16(key->key_info, key_info); alg = pairwise ? sm->pairwise : wpa_auth->conf.wpa_group; WPA_PUT_BE16(key->key_length, wpa_cipher_key_len(alg)); if (key_info & WPA_KEY_INFO_SMK_MESSAGE) WPA_PUT_BE16(key->key_length, 0); /* FIX: STSL: what to use as key_replay_counter? */ for (i = RSNA_MAX_EAPOL_RETRIES - 1; i > 0; i--) { sm->key_replay[i].valid = sm->key_replay[i - 1].valid; memcpy(sm->key_replay[i].counter, sm->key_replay[i - 1].counter, WPA_REPLAY_COUNTER_LEN); } inc_byte_array(sm->key_replay[0].counter, WPA_REPLAY_COUNTER_LEN); memcpy(key->replay_counter, sm->key_replay[0].counter, WPA_REPLAY_COUNTER_LEN); sm->key_replay[0].valid = TRUE; if (nonce) memcpy(key->key_nonce, nonce, WPA_NONCE_LEN); if (key_rsc) memcpy(key->key_rsc, key_rsc, WPA_KEY_RSC_LEN); if (kde && !encr) { memcpy(key + 1, kde, kde_len); WPA_PUT_BE16(key->key_data_length, kde_len); } else if (encr && kde) { buf = (u8 *)os_zalloc(key_data_len); if (buf == NULL) { os_free(hdr); return; } pos = buf; memcpy(pos, kde, kde_len); pos += kde_len; if (pad_len) *pos++ = 0xdd; wpa_hexdump_key(MSG_DEBUG, "Plaintext EAPOL-Key Key Data", buf, key_data_len); if (version == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES || version == WPA_KEY_INFO_TYPE_AES_128_CMAC) { if (aes_wrap(sm->PTK.kek, 16, (key_data_len - 8) / 8, buf, (u8 *) (key + 1))) { os_free(hdr); os_free(buf); return; } WPA_PUT_BE16(key->key_data_length, key_data_len); } else { u8 ek[32]; memcpy(key->key_iv, sm->group->Counter + WPA_NONCE_LEN - 16, 16); inc_byte_array(sm->group->Counter, WPA_NONCE_LEN); memcpy(ek, key->key_iv, 16); memcpy(ek + 16, sm->PTK.kek, 16); memcpy(key + 1, buf, key_data_len); rc4_skip(ek, 32, 256, (u8 *) (key + 1), key_data_len); WPA_PUT_BE16(key->key_data_length, key_data_len); } os_free(buf); } if (key_info & WPA_KEY_INFO_MIC) { if (!sm->PTK_valid) { os_free(hdr); return; } wpa_eapol_key_mic(sm->PTK.kck, sm->PTK.kck_len, sm->wpa_key_mgmt, version, (u8 *) hdr, len, key->key_mic); } wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_inc_EapolFramesTx, 1); wpa_auth_send_eapol(wpa_auth, sm->addr, (u8 *) hdr, len, sm->pairwise_set); os_free(hdr); } int hostap_eapol_resend_process(void *timeout_ctx) { u32 index = (u32)timeout_ctx; struct wpa_state_machine *sm = wpa_auth_get_sm(index); wpa_printf( MSG_DEBUG, "resend eapol1"); if(sm) { sm->pending_1_of_4_timeout = 0; sm->TimeoutEvt = TRUE; sm->in_step_loop = 0; wpa_sm_step(sm); } else { wpa_printf( MSG_INFO, "Station left, stop send EAPOL frame"); } return ESP_OK; } void resend_eapol_handle(void *timeout_ctx) { wifi_ipc_config_t cfg; cfg.fn = hostap_eapol_resend_process; cfg.arg = timeout_ctx; cfg.arg_size = 0; esp_wifi_ipc_internal(&cfg, false); } static void wpa_send_eapol(struct wpa_authenticator *wpa_auth, struct wpa_state_machine *sm, int key_info, const u8 *key_rsc, const u8 *nonce, const u8 *kde, size_t kde_len, int keyidx, int encr) { int timeout_ms; int pairwise = key_info & WPA_KEY_INFO_KEY_TYPE; int ctr; if (sm == NULL) return; __wpa_send_eapol(wpa_auth, sm, key_info, key_rsc, nonce, kde, kde_len, keyidx, encr, 0); ctr = pairwise ? sm->TimeoutCtr : sm->GTimeoutCtr; if (ctr == 1 && wpa_auth->conf.tx_status) timeout_ms = pairwise ? eapol_key_timeout_first : eapol_key_timeout_first_group; else timeout_ms = eapol_key_timeout_subseq; if (pairwise && ctr == 1 && !(key_info & WPA_KEY_INFO_MIC)) sm->pending_1_of_4_timeout = 1; wpa_printf( MSG_DEBUG, "WPA: Use EAPOL-Key timeout of %u ms (retry " "counter %d)\n", timeout_ms, ctr); eloop_register_timeout(timeout_ms / 1000, (timeout_ms % 1000) * 1000, wpa_send_eapol_timeout, wpa_auth, sm); ets_timer_disarm(&sm->resend_eapol); ets_timer_setfn(&sm->resend_eapol, (ETSTimerFunc *)resend_eapol_handle, (void*)(sm->index)); ets_timer_arm(&sm->resend_eapol, 1000, 0); } static int wpa_verify_key_mic(int akmp, struct wpa_ptk *PTK, u8 *data, size_t data_len) { struct ieee802_1x_hdr *hdr; struct wpa_eapol_key *key; u16 key_info; int ret = 0; u8 mic[WPA_EAPOL_KEY_MIC_MAX_LEN]; size_t mic_len = 16; if (data_len < sizeof(*hdr) + sizeof(*key)){ wpa_printf( MSG_DEBUG, "invalid data length, len=%u\n", data_len); return -1; } hdr = (struct ieee802_1x_hdr *) data; key = (struct wpa_eapol_key *) (hdr + 1); key_info = WPA_GET_BE16(key->key_info); os_memcpy(mic, key->key_mic, mic_len); os_memset(key->key_mic, 0, mic_len); if (wpa_eapol_key_mic(PTK->kck, PTK->kck_len, akmp, key_info & WPA_KEY_INFO_TYPE_MASK, data, data_len, key->key_mic) || os_memcmp_const(mic, key->key_mic, mic_len) != 0) ret = -1; os_memcpy(key->key_mic, mic, mic_len); return ret; } void wpa_remove_ptk(struct wpa_state_machine *sm) { sm->PTK_valid = FALSE; memset(&sm->PTK, 0, sizeof(sm->PTK)); wpa_auth_set_key(sm->wpa_auth, 0, WIFI_WPA_ALG_NONE, sm->addr, 0, NULL, 0); sm->pairwise_set = FALSE; eloop_cancel_timeout(wpa_rekey_ptk, sm->wpa_auth, sm); } int wpa_auth_sm_event(struct wpa_state_machine *sm, wpa_event event) { int remove_ptk = 1; if (sm == NULL) return -1; switch (event) { case WPA_AUTH: case WPA_ASSOC: break; case WPA_DEAUTH: case WPA_DISASSOC: sm->DeauthenticationRequest = TRUE; break; case WPA_REAUTH: case WPA_REAUTH_EAPOL: if (!sm->started) { /* * When using WPS, we may end up here if the STA * manages to re-associate without the previous STA * entry getting removed. Consequently, we need to make * sure that the WPA state machines gets initialized * properly at this point. */ wpa_printf( MSG_DEBUG, "WPA state machine had not been " "started - initialize now"); sm->started = 1; sm->Init = TRUE; if (wpa_sm_step(sm) == 1) return 1; /* should not really happen */ sm->Init = FALSE; sm->AuthenticationRequest = TRUE; break; } if (sm->GUpdateStationKeys) { /* * Reauthentication cancels the pending group key * update for this STA. */ sm->group->GKeyDoneStations--; sm->GUpdateStationKeys = FALSE; sm->PtkGroupInit = TRUE; } sm->ReAuthenticationRequest = TRUE; break; case WPA_ASSOC_FT: #ifdef CONFIG_IEEE80211R wpa_printf( MSG_DEBUG, "FT: Retry PTK configuration " "after association"); wpa_ft_install_ptk(sm); /* Using FT protocol, not WPA auth state machine */ sm->ft_completed = 1; return 0; #else /* CONFIG_IEEE80211R */ break; #endif /* CONFIG_IEEE80211R */ } #ifdef CONFIG_IEEE80211R sm->ft_completed = 0; #endif /* CONFIG_IEEE80211R */ #ifdef CONFIG_IEEE80211W if (sm->mgmt_frame_prot && event == WPA_AUTH) remove_ptk = 0; #endif /* CONFIG_IEEE80211W */ if (remove_ptk) { sm->PTK_valid = FALSE; memset(&sm->PTK, 0, sizeof(sm->PTK)); if (event != WPA_REAUTH_EAPOL) wpa_remove_ptk(sm); } return wpa_sm_step(sm); } SM_STATE(WPA_PTK, INITIALIZE) { SM_ENTRY_MA(WPA_PTK, INITIALIZE, wpa_ptk); if (sm->Init) { /* Init flag is not cleared here, so avoid busy * loop by claiming nothing changed. */ sm->changed = FALSE; } sm->keycount = 0; if (sm->GUpdateStationKeys) sm->group->GKeyDoneStations--; sm->GUpdateStationKeys = FALSE; if (sm->wpa == WPA_VERSION_WPA) sm->PInitAKeys = FALSE; if (1 /* Unicast cipher supported AND (ESS OR ((IBSS or WDS) and * Local AA > Remote AA)) */) { sm->Pair = TRUE; } wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portEnabled, 0); wpa_remove_ptk(sm); wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portValid, 0); sm->TimeoutCtr = 0; if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt)) { wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_authorized, 0); } } SM_STATE(WPA_PTK, DISCONNECT) { SM_ENTRY_MA(WPA_PTK, DISCONNECT, wpa_ptk); sm->Disconnect = FALSE; wpa_sta_disconnect(sm->wpa_auth, sm->addr); } SM_STATE(WPA_PTK, DISCONNECTED) { SM_ENTRY_MA(WPA_PTK, DISCONNECTED, wpa_ptk); sm->DeauthenticationRequest = FALSE; } SM_STATE(WPA_PTK, AUTHENTICATION) { SM_ENTRY_MA(WPA_PTK, AUTHENTICATION, wpa_ptk); memset(&sm->PTK, 0, sizeof(sm->PTK)); sm->PTK_valid = FALSE; wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portControl_Auto, 1); wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portEnabled, 1); sm->AuthenticationRequest = FALSE; } static void wpa_group_ensure_init(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { if (group->first_sta_seen) return; /* * System has run bit further than at the time hostapd was started * potentially very early during boot up. This provides better chances * of collecting more randomness on embedded systems. Re-initialize the * GMK and Counter here to improve their strength if there was not * enough entropy available immediately after system startup. */ wpa_printf( MSG_DEBUG, "WPA: Re-initialize GMK/Counter on first " "station\n"); if (random_pool_ready() != 1) { wpa_printf( MSG_INFO, "WPA: Not enough entropy in random pool " "to proceed - reject first 4-way handshake"); group->reject_4way_hs_for_entropy = TRUE; } else { group->first_sta_seen = TRUE; group->reject_4way_hs_for_entropy = FALSE; } wpa_group_init_gmk_and_counter(wpa_auth, group); wpa_gtk_update(wpa_auth, group); wpa_group_config_group_keys(wpa_auth, group); } SM_STATE(WPA_PTK, AUTHENTICATION2) { SM_ENTRY_MA(WPA_PTK, AUTHENTICATION2, wpa_ptk); wpa_group_ensure_init(sm->wpa_auth, sm->group); /* * Definition of ANonce selection in IEEE Std 802.11i-2004 is somewhat * ambiguous. The Authenticator state machine uses a counter that is * incremented by one for each 4-way handshake. However, the security * analysis of 4-way handshake points out that unpredictable nonces * help in preventing precomputation attacks. Instead of the state * machine definition, use an unpredictable nonce value here to provide * stronger protection against potential precomputation attacks. */ if (os_get_random(sm->ANonce, WPA_NONCE_LEN)) { wpa_printf( MSG_ERROR, "WPA: Failed to get random data for " "ANonce."); wpa_sta_disconnect(sm->wpa_auth, sm->addr); return; } wpa_hexdump(MSG_DEBUG, "WPA: Assign ANonce", sm->ANonce, WPA_NONCE_LEN); sm->ReAuthenticationRequest = FALSE; /* IEEE 802.11i does not clear TimeoutCtr here, but this is more * logical place than INITIALIZE since AUTHENTICATION2 can be * re-entered on ReAuthenticationRequest without going through * INITIALIZE. */ sm->TimeoutCtr = 0; } SM_STATE(WPA_PTK, INITPMK) { u8 msk[2 * PMK_LEN]; size_t len = 2 * PMK_LEN; SM_ENTRY_MA(WPA_PTK, INITPMK, wpa_ptk); #ifdef CONFIG_IEEE80211R sm->xxkey_len = 0; #endif /* CONFIG_IEEE80211R */ if (wpa_auth_get_msk(sm->wpa_auth, sm->addr, msk, &len) == 0) { wpa_printf( MSG_DEBUG, "WPA: PMK from EAPOL state machine " "(len=%lu)", (unsigned long) len); memcpy(sm->PMK, msk, PMK_LEN); #ifdef CONFIG_IEEE80211R if (len >= 2 * PMK_LEN) { memcpy(sm->xxkey, msk + PMK_LEN, PMK_LEN); sm->xxkey_len = PMK_LEN; } #endif /* CONFIG_IEEE80211R */ } else { wpa_printf( MSG_DEBUG, "WPA: Could not get PMK"); } sm->req_replay_counter_used = 0; /* IEEE 802.11i does not set keyRun to FALSE, but not doing this * will break reauthentication since EAPOL state machines may not be * get into AUTHENTICATING state that clears keyRun before WPA state * machine enters AUTHENTICATION2 state and goes immediately to INITPMK * state and takes PMK from the previously used AAA Key. This will * eventually fail in 4-Way Handshake because Supplicant uses PMK * derived from the new AAA Key. Setting keyRun = FALSE here seems to * be good workaround for this issue. */ wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyRun, 0); } SM_STATE(WPA_PTK, INITPSK) { const u8 *psk; SM_ENTRY_MA(WPA_PTK, INITPSK, wpa_ptk); psk = wpa_auth_get_psk(sm->wpa_auth, sm->addr, NULL); if (psk) { memcpy(sm->PMK, psk, PMK_LEN); #ifdef CONFIG_IEEE80211R memcpy(sm->xxkey, psk, PMK_LEN); sm->xxkey_len = PMK_LEN; #endif /* CONFIG_IEEE80211R */ } sm->req_replay_counter_used = 0; } SM_STATE(WPA_PTK, PTKSTART) { u8 buf[2 + RSN_SELECTOR_LEN + PMKID_LEN], *pmkid = NULL; size_t pmkid_len = 0; SM_ENTRY_MA(WPA_PTK, PTKSTART, wpa_ptk); sm->PTKRequest = FALSE; sm->TimeoutEvt = FALSE; sm->TimeoutCtr++; if (sm->TimeoutCtr > (int) dot11RSNAConfigPairwiseUpdateCount) { /* No point in sending the EAPOL-Key - we will disconnect * immediately following this. */ return; } /* * TODO: Could add PMKID even with WPA2-PSK, but only if there is only * one possible PSK for this STA. */ if (sm->wpa == WPA_VERSION_WPA2 && wpa_key_mgmt_wpa_ieee8021x(sm->wpa_key_mgmt)) { pmkid = buf; pmkid_len = 2 + RSN_SELECTOR_LEN + PMKID_LEN; pmkid[0] = WLAN_EID_VENDOR_SPECIFIC; pmkid[1] = RSN_SELECTOR_LEN + PMKID_LEN; RSN_SELECTOR_PUT(&pmkid[2], RSN_KEY_DATA_PMKID); { /* * Calculate PMKID since no PMKSA cache entry was * available with pre-calculated PMKID. */ rsn_pmkid(sm->PMK, PMK_LEN, sm->wpa_auth->addr, sm->addr, &pmkid[2 + RSN_SELECTOR_LEN], wpa_key_mgmt_sha256(sm->wpa_key_mgmt)); } } wpa_send_eapol(sm->wpa_auth, sm, WPA_KEY_INFO_ACK | WPA_KEY_INFO_KEY_TYPE, NULL, sm->ANonce, pmkid, pmkid_len, 0, 0); } static int wpa_derive_ptk(struct wpa_state_machine *sm, const u8 *snonce, const u8 *pmk, struct wpa_ptk *ptk) { #ifdef CONFIG_IEEE80211R size_t ptk_len = sm->pairwise != WPA_CIPHER_TKIP ? 48 : 64; if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) return wpa_auth_derive_ptk_ft(sm, pmk, ptk, ptk_len); #endif /* CONFIG_IEEE80211R */ return wpa_pmk_to_ptk(pmk, PMK_LEN, "Pairwise key expansion", sm->wpa_auth->addr, sm->addr, sm->ANonce, snonce, ptk, sm->wpa_key_mgmt, sm->pairwise); } SM_STATE(WPA_PTK, PTKCALCNEGOTIATING) { struct wpa_ptk PTK; int ok = 0; const u8 *pmk = NULL; SM_ENTRY_MA(WPA_PTK, PTKCALCNEGOTIATING, wpa_ptk); sm->EAPOLKeyReceived = FALSE; sm->update_snonce = FALSE; /* WPA with IEEE 802.1X: use the derived PMK from EAP * WPA-PSK: iterate through possible PSKs and select the one matching * the packet */ for (;;) { if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt)) { wpa_printf( MSG_DEBUG, "wpa psk\n"); pmk = wpa_auth_get_psk(sm->wpa_auth, sm->addr, pmk); if (pmk == NULL){ wpa_printf( MSG_DEBUG, "pmk is null\n"); break; } } else { pmk = sm->PMK; } wpa_derive_ptk(sm, sm->SNonce, pmk, &PTK); if (wpa_verify_key_mic(sm->wpa_key_mgmt, &PTK, sm->last_rx_eapol_key, sm->last_rx_eapol_key_len) == 0) { wpa_printf( MSG_DEBUG, "mic verify ok, pmk=%p\n", pmk); ok = 1; break; } else { wpa_printf( MSG_DEBUG, "mic verify fail, pmk=%p\n", pmk); } if (!wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt)){ wpa_printf( MSG_DEBUG, "wpa_key_mgmt=%x\n", sm->wpa_key_mgmt); break; } } if (!ok) { return; } #ifdef CONFIG_IEEE80211R if (sm->wpa == WPA_VERSION_WPA2 && wpa_key_mgmt_ft(sm->wpa_key_mgmt)) { /* * Verify that PMKR1Name from EAPOL-Key message 2/4 matches * with the value we derived. */ if (memcmp(sm->sup_pmk_r1_name, sm->pmk_r1_name, WPA_PMK_NAME_LEN) != 0) { wpa_hexdump(MSG_DEBUG, "FT: PMKR1Name from " "Supplicant", sm->sup_pmk_r1_name, WPA_PMK_NAME_LEN); wpa_hexdump(MSG_DEBUG, "FT: Derived PMKR1Name", sm->pmk_r1_name, WPA_PMK_NAME_LEN); return; } } #endif /* CONFIG_IEEE80211R */ sm->pending_1_of_4_timeout = 0; eloop_cancel_timeout(wpa_send_eapol_timeout, sm->wpa_auth, sm); if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) && sm->PMK != pmk) { /* PSK may have changed from the previous choice, so update * state machine data based on whatever PSK was selected here. */ memcpy(sm->PMK, pmk, PMK_LEN); } sm->MICVerified = TRUE; memcpy(&sm->PTK, &PTK, sizeof(PTK)); sm->PTK_valid = TRUE; } SM_STATE(WPA_PTK, PTKCALCNEGOTIATING2) { SM_ENTRY_MA(WPA_PTK, PTKCALCNEGOTIATING2, wpa_ptk); sm->TimeoutCtr = 0; } #ifdef CONFIG_IEEE80211W static int ieee80211w_kde_len(struct wpa_state_machine *sm) { if (sm->mgmt_frame_prot) { return 2 + RSN_SELECTOR_LEN + sizeof(struct wpa_igtk_kde); } return 0; } static u8 * ieee80211w_kde_add(struct wpa_state_machine *sm, u8 *pos) { struct wpa_igtk_kde igtk; struct wpa_group *gsm = sm->group; if (!sm->mgmt_frame_prot) return pos; igtk.keyid[0] = gsm->GN_igtk; igtk.keyid[1] = 0; if (gsm->wpa_group_state != WPA_GROUP_SETKEYSDONE || wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN_igtk, igtk.pn) < 0) memset(igtk.pn, 0, sizeof(igtk.pn)); memcpy(igtk.igtk, gsm->IGTK[gsm->GN_igtk - 4], WPA_IGTK_LEN); if (sm->wpa_auth->conf.disable_gtk) { /* * Provide unique random IGTK to each STA to prevent use of * IGTK in the BSS. */ if (os_get_random(igtk.igtk, WPA_IGTK_LEN) < 0) return pos; } pos = wpa_add_kde(pos, RSN_KEY_DATA_IGTK, (const u8 *) &igtk, sizeof(igtk), NULL, 0); return pos; } #else /* CONFIG_IEEE80211W */ static int ieee80211w_kde_len(struct wpa_state_machine *sm) { return 0; } static u8 * ieee80211w_kde_add(struct wpa_state_machine *sm, u8 *pos) { return pos; } #endif /* CONFIG_IEEE80211W */ SM_STATE(WPA_PTK, PTKINITNEGOTIATING) { u8 rsc[WPA_KEY_RSC_LEN], *_rsc, *gtk, *kde, *pos, dummy_gtk[32]; size_t gtk_len, kde_len; struct wpa_group *gsm = sm->group; u8 *wpa_ie; int wpa_ie_len, secure, keyidx, encr = 0; SM_ENTRY_MA(WPA_PTK, PTKINITNEGOTIATING, wpa_ptk); sm->TimeoutEvt = FALSE; sm->TimeoutCtr++; if (sm->TimeoutCtr > (int) dot11RSNAConfigPairwiseUpdateCount) { /* No point in sending the EAPOL-Key - we will disconnect * immediately following this. */ return; } /* Send EAPOL(1, 1, 1, Pair, P, RSC, ANonce, MIC(PTK), RSNIE, [MDIE], GTK[GN], IGTK, [FTIE], [TIE * 2]) */ memset(rsc, 0, WPA_KEY_RSC_LEN); wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN, rsc); /* If FT is used, wpa_auth->wpa_ie includes both RSNIE and MDIE */ wpa_ie = sm->wpa_auth->wpa_ie; wpa_ie_len = sm->wpa_auth->wpa_ie_len; if (sm->wpa == WPA_VERSION_WPA && (sm->wpa_auth->conf.wpa & WPA_PROTO_RSN) && wpa_ie_len > wpa_ie[1] + 2 && wpa_ie[0] == WLAN_EID_RSN) { /* WPA-only STA, remove RSN IE */ wpa_ie = wpa_ie + wpa_ie[1] + 2; wpa_ie_len = wpa_ie[1] + 2; } if (sm->wpa == WPA_VERSION_WPA2) { /* WPA2 send GTK in the 4-way handshake */ secure = 1; gtk = gsm->GTK[gsm->GN - 1]; gtk_len = gsm->GTK_len; if (sm->wpa_auth->conf.disable_gtk) { /* * Provide unique random GTK to each STA to prevent use * of GTK in the BSS. */ if (os_get_random(dummy_gtk, gtk_len) < 0) return; gtk = dummy_gtk; } keyidx = gsm->GN; _rsc = rsc; encr = 1; } else { /* WPA does not include GTK in msg 3/4 */ secure = 0; gtk = NULL; gtk_len = 0; keyidx = 0; _rsc = NULL; if (sm->rx_eapol_key_secure) { /* * It looks like Windows 7 supplicant tries to use * Secure bit in msg 2/4 after having reported Michael * MIC failure and it then rejects the 4-way handshake * if msg 3/4 does not set Secure bit. Work around this * by setting the Secure bit here even in the case of * WPA if the supplicant used it first. */ secure = 1; } } kde_len = wpa_ie_len + ieee80211w_kde_len(sm); if (gtk) kde_len += 2 + RSN_SELECTOR_LEN + 2 + gtk_len; #ifdef CONFIG_IEEE80211R if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) { kde_len += 2 + PMKID_LEN; /* PMKR1Name into RSN IE */ kde_len += 300; /* FTIE + 2 * TIE */ } #endif /* CONFIG_IEEE80211R */ kde = (u8 *)os_malloc(kde_len); if (kde == NULL) return; pos = kde; memcpy(pos, wpa_ie, wpa_ie_len); pos += wpa_ie_len; #ifdef CONFIG_IEEE80211R if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) { int res = wpa_insert_pmkid(kde, pos - kde, sm->pmk_r1_name); if (res < 0) { wpa_printf( MSG_ERROR, "FT: Failed to insert " "PMKR1Name into RSN IE in EAPOL-Key data"); os_free(kde); return; } pos += res; } #endif /* CONFIG_IEEE80211R */ if (gtk) { u8 hdr[2]; hdr[0] = keyidx & 0x03; hdr[1] = 0; pos = wpa_add_kde(pos, RSN_KEY_DATA_GROUPKEY, hdr, 2, gtk, gtk_len); } pos = ieee80211w_kde_add(sm, pos); #ifdef CONFIG_IEEE80211R if (wpa_key_mgmt_ft(sm->wpa_key_mgmt)) { int res; struct wpa_auth_config *conf; conf = &sm->wpa_auth->conf; res = wpa_write_ftie(conf, conf->r0_key_holder, conf->r0_key_holder_len, NULL, NULL, pos, kde + kde_len - pos, NULL, 0); if (res < 0) { wpa_printf( MSG_ERROR, "FT: Failed to insert FTIE " "into EAPOL-Key Key Data"); os_free(kde); return; } pos += res; /* TIE[ReassociationDeadline] (TU) */ *pos++ = WLAN_EID_TIMEOUT_INTERVAL; *pos++ = 5; *pos++ = WLAN_TIMEOUT_REASSOC_DEADLINE; WPA_PUT_LE32(pos, conf->reassociation_deadline); pos += 4; /* TIE[KeyLifetime] (seconds) */ *pos++ = WLAN_EID_TIMEOUT_INTERVAL; *pos++ = 5; *pos++ = WLAN_TIMEOUT_KEY_LIFETIME; WPA_PUT_LE32(pos, conf->r0_key_lifetime * 60); pos += 4; } #endif /* CONFIG_IEEE80211R */ wpa_send_eapol(sm->wpa_auth, sm, (secure ? WPA_KEY_INFO_SECURE : 0) | WPA_KEY_INFO_MIC | WPA_KEY_INFO_ACK | WPA_KEY_INFO_INSTALL | WPA_KEY_INFO_KEY_TYPE, _rsc, sm->ANonce, kde, pos - kde, keyidx, encr); os_free(kde); } SM_STATE(WPA_PTK, PTKINITDONE) { SM_ENTRY_MA(WPA_PTK, PTKINITDONE, wpa_ptk); sm->EAPOLKeyReceived = FALSE; if (sm->Pair) { enum wpa_alg alg = wpa_cipher_to_alg(sm->pairwise); int klen = wpa_cipher_key_len(sm->pairwise); if (wpa_auth_set_key(sm->wpa_auth, 0, alg, sm->addr, 0, sm->PTK.tk, klen)) { wpa_sta_disconnect(sm->wpa_auth, sm->addr); return; } /* FIX: MLME-SetProtection.Request(TA, Tx_Rx) */ sm->pairwise_set = TRUE; if (sm->wpa_auth->conf.wpa_ptk_rekey) { eloop_cancel_timeout(wpa_rekey_ptk, sm->wpa_auth, sm); eloop_register_timeout(sm->wpa_auth->conf. wpa_ptk_rekey, 0, wpa_rekey_ptk, sm->wpa_auth, sm); } if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt)) { wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_authorized, 1); } } if (0 /* IBSS == TRUE */) { sm->keycount++; if (sm->keycount == 2) { wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portValid, 1); } } else { wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_portValid, 1); } wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyAvailable, 0); wpa_auth_set_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyDone, 1); if (sm->wpa == WPA_VERSION_WPA) sm->PInitAKeys = TRUE; else sm->has_GTK = TRUE; { esp_wifi_wpa_ptk_init_done_internal(sm->addr); } #ifdef CONFIG_IEEE80211R wpa_ft_push_pmk_r1(sm->wpa_auth, sm->addr); #endif /* CONFIG_IEEE80211R */ } SM_STEP(WPA_PTK) { if (sm->Init) SM_ENTER(WPA_PTK, INITIALIZE); else if (sm->Disconnect /* || FIX: dot11RSNAConfigSALifetime timeout */) { SM_ENTER(WPA_PTK, DISCONNECT); } else if (sm->DeauthenticationRequest) SM_ENTER(WPA_PTK, DISCONNECTED); else if (sm->AuthenticationRequest) SM_ENTER(WPA_PTK, AUTHENTICATION); else if (sm->ReAuthenticationRequest) SM_ENTER(WPA_PTK, AUTHENTICATION2); else if (sm->PTKRequest) SM_ENTER(WPA_PTK, PTKSTART); else switch (sm->wpa_ptk_state) { case WPA_PTK_INITIALIZE: break; case WPA_PTK_DISCONNECT: SM_ENTER(WPA_PTK, DISCONNECTED); break; case WPA_PTK_DISCONNECTED: SM_ENTER(WPA_PTK, INITIALIZE); break; case WPA_PTK_AUTHENTICATION: SM_ENTER(WPA_PTK, AUTHENTICATION2); break; case WPA_PTK_AUTHENTICATION2: if (wpa_key_mgmt_wpa_ieee8021x(sm->wpa_key_mgmt) && wpa_auth_get_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyRun) > 0) SM_ENTER(WPA_PTK, INITPMK); else if (wpa_key_mgmt_wpa_psk(sm->wpa_key_mgmt) /* FIX: && 802.1X::keyRun */) SM_ENTER(WPA_PTK, INITPSK); break; case WPA_PTK_INITPMK: if (wpa_auth_get_eapol(sm->wpa_auth, sm->addr, WPA_EAPOL_keyAvailable) > 0) SM_ENTER(WPA_PTK, PTKSTART); else { SM_ENTER(WPA_PTK, DISCONNECT); } break; case WPA_PTK_INITPSK: if (wpa_auth_get_psk(sm->wpa_auth, sm->addr, NULL)) SM_ENTER(WPA_PTK, PTKSTART); else { SM_ENTER(WPA_PTK, DISCONNECT); } break; case WPA_PTK_PTKSTART: if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest && sm->EAPOLKeyPairwise) SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING); else if (sm->TimeoutCtr > (int) dot11RSNAConfigPairwiseUpdateCount) { SM_ENTER(WPA_PTK, DISCONNECT); } else if (sm->TimeoutEvt) SM_ENTER(WPA_PTK, PTKSTART); break; case WPA_PTK_PTKCALCNEGOTIATING: if (sm->MICVerified) SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING2); else if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest && sm->EAPOLKeyPairwise) SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING); else if (sm->TimeoutEvt) SM_ENTER(WPA_PTK, PTKSTART); break; case WPA_PTK_PTKCALCNEGOTIATING2: SM_ENTER(WPA_PTK, PTKINITNEGOTIATING); break; case WPA_PTK_PTKINITNEGOTIATING: if (sm->update_snonce) SM_ENTER(WPA_PTK, PTKCALCNEGOTIATING); else if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest && sm->EAPOLKeyPairwise && sm->MICVerified) SM_ENTER(WPA_PTK, PTKINITDONE); else if (sm->TimeoutCtr > (int) dot11RSNAConfigPairwiseUpdateCount) { SM_ENTER(WPA_PTK, DISCONNECT); } else if (sm->TimeoutEvt) SM_ENTER(WPA_PTK, PTKINITNEGOTIATING); break; case WPA_PTK_PTKINITDONE: break; } } SM_STATE(WPA_PTK_GROUP, IDLE) { SM_ENTRY_MA(WPA_PTK_GROUP, IDLE, wpa_ptk_group); if (sm->Init) { /* Init flag is not cleared here, so avoid busy * loop by claiming nothing changed. */ sm->changed = FALSE; } sm->GTimeoutCtr = 0; } SM_STATE(WPA_PTK_GROUP, REKEYNEGOTIATING) { u8 rsc[WPA_KEY_RSC_LEN]; struct wpa_group *gsm = sm->group; u8 *kde, *pos, hdr[2]; size_t kde_len; u8 *gtk, dummy_gtk[32]; SM_ENTRY_MA(WPA_PTK_GROUP, REKEYNEGOTIATING, wpa_ptk_group); sm->GTimeoutCtr++; if (sm->GTimeoutCtr > (int) dot11RSNAConfigGroupUpdateCount) { /* No point in sending the EAPOL-Key - we will disconnect * immediately following this. */ return; } if (sm->wpa == WPA_VERSION_WPA) sm->PInitAKeys = FALSE; sm->TimeoutEvt = FALSE; /* Send EAPOL(1, 1, 1, !Pair, G, RSC, GNonce, MIC(PTK), GTK[GN]) */ memset(rsc, 0, WPA_KEY_RSC_LEN); if (gsm->wpa_group_state == WPA_GROUP_SETKEYSDONE) wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN, rsc); gtk = gsm->GTK[gsm->GN - 1]; if (sm->wpa_auth->conf.disable_gtk) { /* * Provide unique random GTK to each STA to prevent use * of GTK in the BSS. */ if (os_get_random(dummy_gtk, gsm->GTK_len) < 0) return; gtk = dummy_gtk; } if (sm->wpa == WPA_VERSION_WPA2) { kde_len = 2 + RSN_SELECTOR_LEN + 2 + gsm->GTK_len + ieee80211w_kde_len(sm); kde = (u8 *)os_malloc(kde_len); if (kde == NULL) return; pos = kde; hdr[0] = gsm->GN & 0x03; hdr[1] = 0; pos = wpa_add_kde(pos, RSN_KEY_DATA_GROUPKEY, hdr, 2, gtk, gsm->GTK_len); pos = ieee80211w_kde_add(sm, pos); } else { kde = gtk; pos = kde + gsm->GTK_len; } wpa_send_eapol(sm->wpa_auth, sm, WPA_KEY_INFO_SECURE | WPA_KEY_INFO_MIC | WPA_KEY_INFO_ACK | (!sm->Pair ? WPA_KEY_INFO_INSTALL : 0), rsc, gsm->GNonce, kde, pos - kde, gsm->GN, 1); if (sm->wpa == WPA_VERSION_WPA2) os_free(kde); // NOLINT(clang-analyzer-unix.Malloc) } SM_STATE(WPA_PTK_GROUP, REKEYESTABLISHED) { SM_ENTRY_MA(WPA_PTK_GROUP, REKEYESTABLISHED, wpa_ptk_group); sm->EAPOLKeyReceived = FALSE; if (sm->GUpdateStationKeys) sm->group->GKeyDoneStations--; sm->GUpdateStationKeys = FALSE; sm->GTimeoutCtr = 0; /* FIX: MLME.SetProtection.Request(TA, Tx_Rx) */ sm->has_GTK = TRUE; } SM_STATE(WPA_PTK_GROUP, KEYERROR) { SM_ENTRY_MA(WPA_PTK_GROUP, KEYERROR, wpa_ptk_group); if (sm->GUpdateStationKeys) sm->group->GKeyDoneStations--; sm->GUpdateStationKeys = FALSE; sm->Disconnect = TRUE; } SM_STEP(WPA_PTK_GROUP) { if (sm->Init || sm->PtkGroupInit) { SM_ENTER(WPA_PTK_GROUP, IDLE); sm->PtkGroupInit = FALSE; } else switch (sm->wpa_ptk_group_state) { case WPA_PTK_GROUP_IDLE: if (sm->GUpdateStationKeys || (sm->wpa == WPA_VERSION_WPA && sm->PInitAKeys)) SM_ENTER(WPA_PTK_GROUP, REKEYNEGOTIATING); break; case WPA_PTK_GROUP_REKEYNEGOTIATING: if (sm->EAPOLKeyReceived && !sm->EAPOLKeyRequest && !sm->EAPOLKeyPairwise && sm->MICVerified) SM_ENTER(WPA_PTK_GROUP, REKEYESTABLISHED); else if (sm->GTimeoutCtr > (int) dot11RSNAConfigGroupUpdateCount) SM_ENTER(WPA_PTK_GROUP, KEYERROR); else if (sm->TimeoutEvt) SM_ENTER(WPA_PTK_GROUP, REKEYNEGOTIATING); break; case WPA_PTK_GROUP_KEYERROR: SM_ENTER(WPA_PTK_GROUP, IDLE); break; case WPA_PTK_GROUP_REKEYESTABLISHED: SM_ENTER(WPA_PTK_GROUP, IDLE); break; } } static int wpa_gtk_update(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { int ret = 0; memcpy(group->GNonce, group->Counter, WPA_NONCE_LEN); inc_byte_array(group->Counter, WPA_NONCE_LEN); if (wpa_gmk_to_gtk(group->GMK, "Group key expansion", wpa_auth->addr, group->GNonce, group->GTK[group->GN - 1], group->GTK_len) < 0) ret = -1; wpa_hexdump_key(MSG_DEBUG, "GTK", group->GTK[group->GN - 1], group->GTK_len); #ifdef CONFIG_IEEE80211W if (wpa_auth->conf.ieee80211w != NO_MGMT_FRAME_PROTECTION) { memcpy(group->GNonce, group->Counter, WPA_NONCE_LEN); inc_byte_array(group->Counter, WPA_NONCE_LEN); if (wpa_gmk_to_gtk(group->GMK, "IGTK key expansion", wpa_auth->addr, group->GNonce, group->IGTK[group->GN_igtk - 4], WPA_IGTK_LEN) < 0) ret = -1; wpa_hexdump_key(MSG_DEBUG, "IGTK", group->IGTK[group->GN_igtk - 4], WPA_IGTK_LEN); } #endif /* CONFIG_IEEE80211W */ return ret; } static void wpa_group_gtk_init(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { wpa_printf( MSG_DEBUG, "WPA: group state machine entering state " "GTK_INIT (VLAN-ID %d)\n", group->vlan_id); group->changed = FALSE; /* GInit is not cleared here; avoid loop */ group->wpa_group_state = WPA_GROUP_GTK_INIT; /* GTK[0..N] = 0 */ memset(group->GTK, 0, sizeof(group->GTK)); group->GN = 1; group->GM = 2; #ifdef CONFIG_IEEE80211W group->GN_igtk = 4; group->GM_igtk = 5; #endif /* CONFIG_IEEE80211W */ /* GTK[GN] = CalcGTK() */ wpa_gtk_update(wpa_auth, group); } static int wpa_group_update_sta(struct wpa_state_machine *sm, void *ctx) { if (ctx != NULL && ctx != sm->group) return 0; if (sm->wpa_ptk_state != WPA_PTK_PTKINITDONE) { sm->GUpdateStationKeys = FALSE; return 0; } if (sm->GUpdateStationKeys) { /* * This should not really happen, so add a debug log entry. * Since we clear the GKeyDoneStations before the loop, the * station needs to be counted here anyway. */ } /* Do not rekey GTK/IGTK when STA is in WNM-Sleep Mode */ if (sm->is_wnmsleep) return 0; sm->group->GKeyDoneStations++; sm->GUpdateStationKeys = TRUE; wpa_sm_step(sm); return 0; } #ifdef CONFIG_WNM_AP /* update GTK when exiting WNM-Sleep Mode */ void wpa_wnmsleep_rekey_gtk(struct wpa_state_machine *sm) { if (sm->is_wnmsleep) return; wpa_group_update_sta(sm, NULL); } void wpa_set_wnmsleep(struct wpa_state_machine *sm, int flag) { sm->is_wnmsleep = !!flag; } int wpa_wnmsleep_gtk_subelem(struct wpa_state_machine *sm, u8 *pos) { struct wpa_group *gsm = sm->group; u8 *start = pos; /* * GTK subelement: * Sub-elem ID[1] | Length[1] | Key Info[2] | Key Length[1] | RSC[8] | * Key[5..32] */ *pos++ = WNM_SLEEP_SUBELEM_GTK; *pos++ = 11 + gsm->GTK_len; /* Key ID in B0-B1 of Key Info */ WPA_PUT_LE16(pos, gsm->GN & 0x03); pos += 2; *pos++ = gsm->GTK_len; if (wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN, pos) != 0) return 0; pos += 8; memcpy(pos, gsm->GTK[gsm->GN - 1], gsm->GTK_len); pos += gsm->GTK_len; wpa_printf( MSG_DEBUG, "WNM: GTK Key ID %u in WNM-Sleep Mode exit", gsm->GN); wpa_hexdump_key(MSG_DEBUG, "WNM: GTK in WNM-Sleep Mode exit", gsm->GTK[gsm->GN - 1], gsm->GTK_len); return pos - start; } #ifdef CONFIG_IEEE80211W int wpa_wnmsleep_igtk_subelem(struct wpa_state_machine *sm, u8 *pos) { struct wpa_group *gsm = sm->group; u8 *start = pos; /* * IGTK subelement: * Sub-elem ID[1] | Length[1] | KeyID[2] | PN[6] | Key[16] */ *pos++ = WNM_SLEEP_SUBELEM_IGTK; *pos++ = 2 + 6 + WPA_IGTK_LEN; WPA_PUT_LE16(pos, gsm->GN_igtk); pos += 2; if (wpa_auth_get_seqnum(sm->wpa_auth, NULL, gsm->GN_igtk, pos) != 0) return 0; pos += 6; memcpy(pos, gsm->IGTK[gsm->GN_igtk - 4], WPA_IGTK_LEN); pos += WPA_IGTK_LEN; wpa_printf( MSG_DEBUG, "WNM: IGTK Key ID %u in WNM-Sleep Mode exit", gsm->GN_igtk); wpa_hexdump_key(MSG_DEBUG, "WNM: IGTK in WNM-Sleep Mode exit", gsm->IGTK[gsm->GN_igtk - 4], WPA_IGTK_LEN); return pos - start; } #endif /* CONFIG_IEEE80211W */ #endif /* CONFIG_WNM_AP */ static void wpa_group_setkeys(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { int tmp; wpa_printf( MSG_DEBUG, "WPA: group state machine entering state " "SETKEYS (VLAN-ID %d)\n", group->vlan_id); group->changed = TRUE; group->wpa_group_state = WPA_GROUP_SETKEYS; group->GTKReKey = FALSE; tmp = group->GM; group->GM = group->GN; group->GN = tmp; #ifdef CONFIG_IEEE80211W tmp = group->GM_igtk; group->GM_igtk = group->GN_igtk; group->GN_igtk = tmp; #endif /* CONFIG_IEEE80211W */ /* "GKeyDoneStations = GNoStations" is done in more robust way by * counting the STAs that are marked with GUpdateStationKeys instead of * including all STAs that could be in not-yet-completed state. */ wpa_gtk_update(wpa_auth, group); if (group->GKeyDoneStations) { wpa_printf( MSG_DEBUG, "wpa_group_setkeys: Unexpected " "GKeyDoneStations=%d when starting new GTK rekey", group->GKeyDoneStations); group->GKeyDoneStations = 0; } wpa_auth_for_each_sta(wpa_auth, wpa_group_update_sta, group); wpa_printf( MSG_DEBUG, "wpa_group_setkeys: GKeyDoneStations=%d", group->GKeyDoneStations); } static int wpa_group_config_group_keys(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { int ret = 0; if (wpa_auth_set_key(wpa_auth, group->vlan_id, wpa_cipher_to_alg(wpa_auth->conf.wpa_group), (uint8_t *)broadcast_ether_addr, group->GN, group->GTK[group->GN - 1], group->GTK_len) < 0) ret = -1; #ifdef CONFIG_IEEE80211W if (wpa_auth->conf.ieee80211w != NO_MGMT_FRAME_PROTECTION && wpa_auth_set_key(wpa_auth, group->vlan_id, WIFI_WPA_ALG_IGTK, broadcast_ether_addr, group->GN_igtk, group->IGTK[group->GN_igtk - 4], WPA_IGTK_LEN) < 0) ret = -1; #endif /* CONFIG_IEEE80211W */ return ret; } static int wpa_group_setkeysdone(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { wpa_printf( MSG_DEBUG, "WPA: group state machine entering state " "SETKEYSDONE (VLAN-ID %d)\n", group->vlan_id); group->changed = TRUE; group->wpa_group_state = WPA_GROUP_SETKEYSDONE; if (wpa_group_config_group_keys(wpa_auth, group) < 0) return -1; return 0; } static void wpa_group_sm_step(struct wpa_authenticator *wpa_auth, struct wpa_group *group) { if (group->GInit) { wpa_group_gtk_init(wpa_auth, group); } else if (group->wpa_group_state == WPA_GROUP_GTK_INIT && group->GTKAuthenticator) { wpa_group_setkeysdone(wpa_auth, group); } else if (group->wpa_group_state == WPA_GROUP_SETKEYSDONE && group->GTKReKey) { wpa_group_setkeys(wpa_auth, group); } else if (group->wpa_group_state == WPA_GROUP_SETKEYS) { if (group->GKeyDoneStations == 0) wpa_group_setkeysdone(wpa_auth, group); else if (group->GTKReKey) wpa_group_setkeys(wpa_auth, group); } } static int wpa_sm_step(struct wpa_state_machine *sm) { if (sm == NULL) return 0; if (sm->in_step_loop) { /* This should not happen, but if it does, make sure we do not * end up freeing the state machine too early by exiting the * recursive call. */ wpa_printf( MSG_ERROR, "WPA: wpa_sm_step() called recursively"); return 0; } sm->in_step_loop = 1; do { if (sm->pending_deinit) break; sm->changed = FALSE; sm->wpa_auth->group->changed = FALSE; SM_STEP_RUN(WPA_PTK); if (sm->pending_deinit) break; SM_STEP_RUN(WPA_PTK_GROUP); if (sm->pending_deinit) break; wpa_group_sm_step(sm->wpa_auth, sm->group); } while (sm->changed || sm->wpa_auth->group->changed); sm->in_step_loop = 0; if (sm->pending_deinit) { wpa_printf( MSG_DEBUG, "WPA: Completing pending STA state " "machine deinit for " MACSTR, MAC2STR(sm->addr)); wpa_free_sta_sm(sm); return 1; } return 0; } bool wpa_ap_join(void** sm, uint8_t *bssid, uint8_t *wpa_ie, uint8_t wpa_ie_len) { struct hostapd_data *hapd = (struct hostapd_data*)esp_wifi_get_hostap_private_internal(); struct wpa_state_machine **wpa_sm; if (!sm || !bssid || !wpa_ie){ return false; } wpa_sm = (struct wpa_state_machine **)sm; if (hapd) { if (hapd->wpa_auth->conf.wpa) { if (*wpa_sm){ wpa_auth_sta_deinit(*wpa_sm); } *wpa_sm = wpa_auth_sta_init(hapd->wpa_auth, bssid); wpa_printf( MSG_DEBUG, "init wpa sm=%p\n", *wpa_sm); if (*wpa_sm == NULL) { return false; } if (wpa_validate_wpa_ie(hapd->wpa_auth, *wpa_sm, wpa_ie, wpa_ie_len)) { return false; } } wpa_auth_sta_associated(hapd->wpa_auth, *wpa_sm); } return true; } bool wpa_ap_remove(void* sm) { struct wpa_state_machine *wpa_sm; if (!sm) return false; wpa_sm = (struct wpa_state_machine*)sm; wpa_auth_sta_deinit(wpa_sm); return true; }