/****************************************************************************** * * Copyright (C) 2022-2023 Maxim Integrated Products, Inc. (now owned by * Analog Devices, Inc.), * Copyright (C) 2023-2024 Analog Devices, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ #include "mxc_device.h" #include "mxc_assert.h" #include "mxc_errors.h" #include "mxc_sys.h" #include "gcr_regs.h" #include "flc_regs.h" #include "lp.h" void MXC_LP_EnterSleepMode(void) { MXC_LP_ClearWakeStatus(); // set block detect bit MXC_PWRSEQ->lpcn |= MXC_F_PWRSEQ_LPCN_VCORE_DET_BYPASS; // Clear SLEEPDEEP bit SCB->SCR &= ~SCB_SCR_SLEEPDEEP_Msk; // Go into Sleep mode and wait for an interrupt to wake the processor __WFI(); } void MXC_LP_EnterDeepSleepMode(void) { MXC_LP_ClearWakeStatus(); // set block detect bit MXC_PWRSEQ->lpcn |= MXC_F_PWRSEQ_LPCN_VCORE_DET_BYPASS; // Set SLEEPDEEP bit SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk; // Go into Deepsleep mode and wait for an interrupt to wake the processor __WFI(); } void MXC_LP_EnterBackupMode(void) { MXC_LP_ClearWakeStatus(); // set block detect bit MXC_PWRSEQ->lpcn |= MXC_F_PWRSEQ_LPCN_VCORE_DET_BYPASS; MXC_GCR->pm &= ~MXC_F_GCR_PM_MODE; MXC_GCR->pm |= MXC_S_GCR_PM_MODE_BACKUP; while (1) {} // Should never reach this line - device will jump to backup vector on exit from background mode. } void MXC_LP_EnterStorageMode(void) { MXC_LP_ClearWakeStatus(); /*set block detect bit */ MXC_PWRSEQ->lpcn |= MXC_F_PWRSEQ_LPCN_VCORE_DET_BYPASS; MXC_PWRSEQ->lpcn |= MXC_F_PWRSEQ_LPCN_STORAGE_EN; MXC_GCR->pm &= ~MXC_F_GCR_PM_MODE; MXC_GCR->pm |= MXC_S_GCR_PM_MODE_BACKUP; while (1) {} // Should never reach this line - device will jump to backup vector on exit from background mode. } void MXC_LP_EnterShutDownMode(void) { MXC_GCR->pm &= ~MXC_F_GCR_PM_MODE; MXC_GCR->pm |= MXC_S_GCR_PM_MODE_SHUTDOWN; while (1) {} // Should never reach this line - device will reset on exit from shutdown mode. } int MXC_LP_SetOVR(mxc_lp_ovr_t ovr) { uint32_t current_clock, div; int error; // Ensure part is operating from internal LDO for core power if (MXC_PWRSEQ->lpcn & MXC_F_PWRSEQ_LPCN_LDO_DIS) { return E_BAD_STATE; } // Select the 8KHz nanoring (no guarantee 32KHz is attached) as system clock source current_clock = MXC_GCR->clkctrl & MXC_F_GCR_CLKCTRL_SYSCLK_SEL; if (current_clock == MXC_SYS_CLOCK_IPO) { error = MXC_SYS_Clock_Select(MXC_SYS_CLOCK_INRO); if (error != E_NO_ERROR) { return error; } } // Set flash wait state for any clock so its not to low after clock changes. MXC_GCR->memctrl = (MXC_GCR->memctrl & ~(MXC_F_GCR_MEMCTRL_FWS)) | (0x5UL << MXC_F_GCR_MEMCTRL_FWS_POS); // Set the OVR bits // The OVR enums in mxc_lp_ovr_t equals to their appropriate register setting. MXC_SETFIELD(MXC_PWRSEQ->lpcn, MXC_F_PWRSEQ_LPCN_OVR, ovr); // Set LVE bit if (ovr == MXC_LP_OVR_0_9) { MXC_FLC0->ctrl |= MXC_F_FLC_CTRL_LVE; } else { MXC_FLC0->ctrl &= ~(MXC_F_FLC_CTRL_LVE); } // Revert the clock to original state if it was IPO if (current_clock == MXC_SYS_CLOCK_IPO) { error = MXC_SYS_Clock_Select(MXC_SYS_CLOCK_IPO); if (error != E_NO_ERROR) { return error; } } // Update SystemCoreClock variable SystemCoreClockUpdate(); // Get the clock divider div = (MXC_GCR->clkctrl & MXC_F_GCR_CLKCTRL_SYSCLK_DIV) >> MXC_F_GCR_CLKCTRL_SYSCLK_DIV_POS; // Set Flash Wait States if (ovr == MXC_LP_OVR_0_9) { if (div == 0) { MXC_GCR->memctrl = (MXC_GCR->memctrl & ~(MXC_F_GCR_MEMCTRL_FWS)) | (0x2UL << MXC_F_GCR_MEMCTRL_FWS_POS); } else { MXC_GCR->memctrl = (MXC_GCR->memctrl & ~(MXC_F_GCR_MEMCTRL_FWS)) | (0x1UL << MXC_F_GCR_MEMCTRL_FWS_POS); } } else if (ovr == MXC_LP_OVR_1_0) { if (div == 0) { MXC_GCR->memctrl = (MXC_GCR->memctrl & ~(MXC_F_GCR_MEMCTRL_FWS)) | (0x2UL << MXC_F_GCR_MEMCTRL_FWS_POS); } else { MXC_GCR->memctrl = (MXC_GCR->memctrl & ~(MXC_F_GCR_MEMCTRL_FWS)) | (0x1UL << MXC_F_GCR_MEMCTRL_FWS_POS); } } else { if (div == 0) { MXC_GCR->memctrl = (MXC_GCR->memctrl & ~(MXC_F_GCR_MEMCTRL_FWS)) | (0x4UL << MXC_F_GCR_MEMCTRL_FWS_POS); } else if (div == 1) { MXC_GCR->memctrl = (MXC_GCR->memctrl & ~(MXC_F_GCR_MEMCTRL_FWS)) | (0x2UL << MXC_F_GCR_MEMCTRL_FWS_POS); } else { MXC_GCR->memctrl = (MXC_GCR->memctrl & ~(MXC_F_GCR_MEMCTRL_FWS)) | (0x1UL << MXC_F_GCR_MEMCTRL_FWS_POS); } } // Caller must perform peripheral reset return E_NO_ERROR; } void MXC_LP_RetentionRegEnable(void) { MXC_PWRSEQ->lpcn |= MXC_F_PWRSEQ_LPCN_RETREG_EN; } void MXC_LP_RetentionRegDisable(void) { MXC_PWRSEQ->lpcn &= ~MXC_F_PWRSEQ_LPCN_RETREG_EN; } int MXC_LP_RetentionRegIsEnabled(void) { return (MXC_PWRSEQ->lpcn & MXC_F_PWRSEQ_LPCN_RETREG_EN); } void MXC_LP_BandgapOn(void) { MXC_PWRSEQ->lpcn &= ~MXC_F_PWRSEQ_LPCN_BG_DIS; } void MXC_LP_BandgapOff(void) { MXC_PWRSEQ->lpcn |= MXC_F_PWRSEQ_LPCN_BG_DIS; } int MXC_LP_BandgapIsOn(void) { return (MXC_PWRSEQ->lpcn & MXC_F_PWRSEQ_LPCN_BG_DIS); } void MXC_LP_PORVCOREoreMonitorEnable(void) { MXC_PWRSEQ->lpcn &= ~MXC_F_PWRSEQ_LPCN_VCOREPOR_DIS; } void MXC_LP_PORVCOREoreMonitorDisable(void) { MXC_PWRSEQ->lpcn |= MXC_F_PWRSEQ_LPCN_VCOREPOR_DIS; } int MXC_LP_PORVCOREoreMonitorIsEnabled(void) { return (MXC_PWRSEQ->lpcn & MXC_F_PWRSEQ_LPCN_VCOREPOR_DIS); } void MXC_LP_LDOEnable(void) { MXC_PWRSEQ->lpcn &= ~MXC_F_PWRSEQ_LPCN_LDO_DIS; } void MXC_LP_LDODisable(void) { MXC_PWRSEQ->lpcn |= MXC_F_PWRSEQ_LPCN_LDO_DIS; } int MXC_LP_LDOIsEnabled(void) { return (MXC_PWRSEQ->lpcn & MXC_F_PWRSEQ_LPCN_LDO_DIS); } void MXC_LP_FastWakeupEnable(void) { MXC_PWRSEQ->lpcn |= MXC_F_PWRSEQ_LPCN_FASTWK_EN; } void MXC_LP_FastWakeupDisable(void) { MXC_PWRSEQ->lpcn &= ~MXC_F_PWRSEQ_LPCN_FASTWK_EN; } int MXC_LP_FastWakeupIsEnabled(void) { return (MXC_PWRSEQ->lpcn & MXC_F_PWRSEQ_LPCN_FASTWK_EN); } void MXC_LP_ClearWakeStatus(void) { // Write 1 to clear MXC_PWRSEQ->lpwkst0 = 0xFFFFFFFF; MXC_PWRSEQ->lpwkst1 = 0xFFFFFFFF; MXC_PWRSEQ->lppwkst = 0xFFFFFFFF; } void MXC_LP_EnableGPIOWakeup(mxc_gpio_cfg_t *wu_pins) { MXC_GCR->pm |= MXC_F_GCR_PM_GPIO_WE; switch (1 << MXC_GPIO_GET_IDX(wu_pins->port)) { case MXC_GPIO_PORT_0: MXC_PWRSEQ->lpwken0 |= wu_pins->mask; break; case MXC_GPIO_PORT_1: MXC_PWRSEQ->lpwken1 |= wu_pins->mask; } } void MXC_LP_DisableGPIOWakeup(mxc_gpio_cfg_t *wu_pins) { switch (1 << MXC_GPIO_GET_IDX(wu_pins->port)) { case MXC_GPIO_PORT_0: MXC_PWRSEQ->lpwken0 &= ~wu_pins->mask; break; case MXC_GPIO_PORT_1: MXC_PWRSEQ->lpwken1 &= ~wu_pins->mask; } if (MXC_PWRSEQ->lpwken1 == 0 && MXC_PWRSEQ->lpwken0 == 0) { MXC_GCR->pm &= ~MXC_F_GCR_PM_GPIO_WE; } } void MXC_LP_EnableRTCAlarmWakeup(void) { MXC_GCR->pm |= MXC_F_GCR_PM_RTC_WE; } void MXC_LP_DisableRTCAlarmWakeup(void) { MXC_GCR->pm &= ~MXC_F_GCR_PM_RTC_WE; } void MXC_LP_EnableTimerWakeup(mxc_tmr_regs_t *tmr) { MXC_ASSERT(MXC_TMR_GET_IDX(tmr) > 3); if (tmr == MXC_TMR4) { MXC_GCR->pm |= MXC_F_GCR_PM_LPTMR0_WE; MXC_PWRSEQ->lppwken |= MXC_F_PWRSEQ_LPPWKEN_LPTMR0; } else { MXC_GCR->pm |= MXC_F_GCR_PM_LPTMR1_WE; MXC_PWRSEQ->lppwken |= MXC_F_PWRSEQ_LPPWKEN_LPTMR1; } } void MXC_LP_DisableTimerWakeup(mxc_tmr_regs_t *tmr) { MXC_ASSERT(MXC_TMR_GET_IDX(tmr) > 3); if (tmr == MXC_TMR4) { MXC_GCR->pm &= ~MXC_F_GCR_PM_LPTMR0_WE; MXC_PWRSEQ->lppwken &= ~MXC_F_PWRSEQ_LPPWKEN_LPTMR0; } else { MXC_GCR->pm &= ~MXC_F_GCR_PM_LPTMR1_WE; MXC_PWRSEQ->lppwken &= ~MXC_F_PWRSEQ_LPPWKEN_LPTMR1; } } void MXC_LP_EnableUARTWakeup(void) { MXC_GCR->pm |= MXC_F_GCR_PM_LPUART0_WE; MXC_PWRSEQ->lppwken |= MXC_F_PWRSEQ_LPPWKEN_LPUART0; } void MXC_LP_DisableUARTWakeup(void) { MXC_GCR->pm &= ~MXC_F_GCR_PM_LPUART0_WE; MXC_PWRSEQ->lppwken &= ~MXC_F_PWRSEQ_LPPWKEN_LPUART0; } int MXC_LP_ConfigDeepSleepClocks(uint32_t mask) { if (!(mask & (MXC_F_GCR_PM_IBRO_PD | MXC_F_GCR_PM_IPO_PD | MXC_F_GCR_PM_ERFO_PD))) { return E_BAD_PARAM; } MXC_GCR->pm |= mask; return E_NO_ERROR; } void MXC_LP_SysRam0LightSleepEnable(void) { MXC_GCR->memctrl |= MXC_F_GCR_MEMCTRL_RAM0LS_EN; } void MXC_LP_SysRam1LightSleepEnable(void) { MXC_GCR->memctrl |= MXC_F_GCR_MEMCTRL_RAM1LS_EN; } void MXC_LP_SysRam2LightSleepEnable(void) { MXC_GCR->memctrl |= MXC_F_GCR_MEMCTRL_RAM2LS_EN; } void MXC_LP_SysRam3LightSleepEnable(void) { MXC_GCR->memctrl |= MXC_F_GCR_MEMCTRL_RAM3LS_EN; } void MXC_LP_ICache0LightSleepEnable(void) { MXC_GCR->memctrl |= MXC_F_GCR_MEMCTRL_ICC0LS_EN; } void MXC_LP_ROMLightSleepEnable(void) { MXC_GCR->memctrl |= MXC_F_GCR_MEMCTRL_ROMLS_EN; } void MXC_LP_SysRam0LightSleepDisable(void) { MXC_GCR->memctrl &= ~MXC_F_GCR_MEMCTRL_RAM0LS_EN; } void MXC_LP_SysRam1LightSleepDisable(void) { MXC_GCR->memctrl &= ~MXC_F_GCR_MEMCTRL_RAM1LS_EN; } void MXC_LP_SysRam2LightSleepDisable(void) { MXC_GCR->memctrl &= ~MXC_F_GCR_MEMCTRL_RAM2LS_EN; } void MXC_LP_SysRam3LightSleepDisable(void) { MXC_GCR->memctrl &= ~MXC_F_GCR_MEMCTRL_RAM3LS_EN; } void MXC_LP_ICache0LightSleepDisable(void) { MXC_GCR->memctrl &= ~MXC_F_GCR_MEMCTRL_ICC0LS_EN; } void MXC_LP_ROMLightSleepDisable(void) { MXC_GCR->memctrl &= ~MXC_F_GCR_MEMCTRL_ROMLS_EN; } void MXC_LP_SysRam0Shutdown(void) { MXC_PWRSEQ->lpmemsd |= MXC_F_PWRSEQ_LPMEMSD_RAM0; } void MXC_LP_SysRam0PowerUp(void) { MXC_PWRSEQ->lpmemsd &= ~MXC_F_PWRSEQ_LPMEMSD_RAM0; } void MXC_LP_SysRam1Shutdown(void) { MXC_PWRSEQ->lpmemsd |= MXC_F_PWRSEQ_LPMEMSD_RAM1; } void MXC_LP_SysRam1PowerUp(void) { MXC_PWRSEQ->lpmemsd &= ~MXC_F_PWRSEQ_LPMEMSD_RAM1; } void MXC_LP_SysRam2Shutdown(void) { MXC_PWRSEQ->lpmemsd |= MXC_F_PWRSEQ_LPMEMSD_RAM2; } void MXC_LP_SysRam2PowerUp(void) { MXC_PWRSEQ->lpmemsd &= ~MXC_F_PWRSEQ_LPMEMSD_RAM2; } void MXC_LP_SysRam3Shutdown(void) { MXC_PWRSEQ->lpmemsd |= MXC_F_PWRSEQ_LPMEMSD_RAM3; } void MXC_LP_SysRam3PowerUp(void) { MXC_PWRSEQ->lpmemsd &= ~MXC_F_PWRSEQ_LPMEMSD_RAM3; }