# SPDX-FileCopyrightText: Copyright 2024 Arm Limited and/or its affiliates # # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the License); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an AS IS BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import Lib.op_utils import tensorflow as tf import math import numpy as np from tensorflow.lite.python.interpreter import Interpreter from tensorflow.lite.python.interpreter import OpResolverType import tf_keras as keras class Op_batch_matmul(Lib.op_utils.Op_type): def get_shapes(params): shapes = {} shapes["lhs_input_tensor"] = (params["lhs_batch"], params["lhs_height"], params["lhs_rows"], params["lhs_cols"]) shapes["rhs_input_tensor"] = (params["rhs_batch"], params["rhs_height"], params["rhs_rows"], params["rhs_cols"]) shapes["representational_dataset"] = (params["lhs_batch"], params["lhs_height"], params["lhs_rows"], params["lhs_cols"]) shapes["representational_dataset2"] = (params["rhs_batch"], params["rhs_height"], params["rhs_rows"], params["rhs_cols"]) shapes["different_in_shapes"]=True return shapes def generate_keras_model(shapes, params): tf.keras.backend.clear_session() input_shape_lhs = (params["lhs_batch"], params["lhs_height"], params["lhs_rows"], params["lhs_cols"]) input_shape_rhs = (params["rhs_batch"], params["rhs_height"], params["rhs_rows"], params["rhs_cols"]) input_lhs = keras.layers.Input(batch_input_shape=input_shape_lhs) input_rhs = keras.layers.Input(batch_input_shape=input_shape_rhs) layer = tf.matmul(input_lhs, input_rhs, transpose_a=params["adj_x"], transpose_b=params["adj_y"]) model = keras.Model([input_lhs, input_rhs], [layer]) return model def generate_data_tflite(tflite_fname, params): tensors = {} effective_scales = {} scales = {} generated_params = {} aliases = {} # To be removed aliases["output_multiplier"] = "output_mult" aliases["output"] = "output_ref" interpreter = Interpreter(str(tflite_fname), experimental_op_resolver_type=OpResolverType.BUILTIN_REF) interpreter.allocate_tensors() tensor_details = interpreter.get_tensor_details() lhs = tensor_details[0] rhs = tensor_details[1] input_details = interpreter.get_input_details() (scales["lhs_scale"], scales["lhs_zero_point"]) = input_details[0]['quantization'] (scales["rhs_scale"], scales["rhs_zero_point"]) = input_details[1]['quantization'] output_details = interpreter.get_output_details() (scales["output_scale"], scales["output_zero_point"]) = output_details[0]['quantization'] tensors["lhs_input_tensor"] = interpreter.get_tensor(lhs['index']) tensors["rhs_input_tensor"] = interpreter.get_tensor(rhs['index']) tensors["lhs_transposed_tensor"] = tf.transpose(tensors["lhs_input_tensor"], [0,1,3,2]).numpy() tensors["rhs_transposed_tensor"] = tf.transpose(tensors["rhs_input_tensor"], [0,1,3,2]).numpy() minval = Lib.op_utils.get_dtype_min(params["input_data_type"]) maxval = Lib.op_utils.get_dtype_max(params["input_data_type"]) n_output = output_details[0]['shape'][0] h_output = output_details[0]['shape'][1] w_output = output_details[0]['shape'][2] c_output = output_details[0]['shape'][3] generated_params["dst_size"] = n_output * h_output * w_output * c_output generated_params["output_batch"] = n_output generated_params["output_height"] = h_output generated_params["output_rows"] = w_output generated_params["output_cols"] = c_output generated_params["lhs_offset"] = -lhs['quantization_parameters']['zero_points'][0] generated_params["rhs_offset"] = -rhs['quantization_parameters']['zero_points'][0] generated_params["output_offset"] = output_details[0]['quantization'][1] generated_params["activation_min"] = minval generated_params["activation_max"] = maxval def quantize_scale(scales): effective_output_scale = scales["lhs_scale"] * scales["rhs_scale"] / scales["output_scale"] significand, shift = math.frexp(effective_output_scale) significand_q31 = round(significand * (1 << 31)) return significand_q31, shift mult, shift = quantize_scale(scales) generated_params["output_multiplier"] = mult generated_params["output_shift"] = shift return Lib.op_utils.Generated_data(generated_params, tensors, scales, effective_scales, aliases)