/* * SPDX-FileCopyrightText: Copyright 2022-2023 Arm Limited and/or its affiliates * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* ---------------------------------------------------------------------- * Project: CMSIS NN Library * Title: arm_avgpool_s16.c * Description: Pooling function implementations * * $Date: 27 November 2023 * $Revision: V.2.5.0 * * Target : Arm(R) M-Profile Architecture * * -------------------------------------------------------------------- */ #include "arm_nnfunctions.h" #include "arm_nnsupportfunctions.h" #if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI) static void scale_q31_to_q15_and_clamp(const int32_t *buffer, int16_t *target, int32_t length, const int32_t count, const int act_min, const int act_max) { const int half_count = count / 2; for (int i = 0; i < length; i++) { int32_t sum = buffer[i] > 0 ? (buffer[i] + half_count) : (buffer[i] - half_count); sum = sum / count; sum = MAX(sum, act_min); sum = MIN(sum, act_max); target[i] = (int16_t)sum; } } #endif /** * @ingroup Public */ /** * @addtogroup Pooling * @{ */ /* * s16 average pooling function * * Refer to header file for details. * */ arm_cmsis_nn_status arm_avgpool_s16(const cmsis_nn_context *ctx, const cmsis_nn_pool_params *pool_params, const cmsis_nn_dims *input_dims, const int16_t *src, const cmsis_nn_dims *filter_dims, const cmsis_nn_dims *output_dims, int16_t *dst) { const int32_t input_y = input_dims->h; const int32_t input_x = input_dims->w; const int32_t output_y = output_dims->h; const int32_t output_x = output_dims->w; const int32_t stride_y = pool_params->stride.h; const int32_t stride_x = pool_params->stride.w; const int32_t kernel_y = filter_dims->h; const int32_t kernel_x = filter_dims->w; const int32_t pad_y = pool_params->padding.h; const int32_t pad_x = pool_params->padding.w; const int32_t act_min = pool_params->activation.min; const int32_t act_max = pool_params->activation.max; const int32_t ch_src = input_dims->c; const int32_t batch_input = input_x * input_y * ch_src; int32_t batch_cnt = input_dims->n; if (batch_cnt < 1) { return ARM_CMSIS_NN_ARG_ERROR; } #if defined(ARM_MATH_MVEI) (void)ctx; const int32_t batch_output = output_x * output_y * ch_src; while (batch_cnt) { for (int i_y = 0; i_y < output_y; i_y++) { for (int i_x = 0; i_x < output_x; i_x++) { const int32_t k_y_start = MAX(0, i_y * stride_y - pad_y); const int32_t k_y_end = MIN(i_y * stride_y - pad_y + kernel_y, input_y); const int32_t k_x_start = MAX(0, i_x * stride_x - pad_x); const int32_t k_x_end = MIN(i_x * stride_x - pad_x + kernel_x, input_x); const int16_t *src_base = src; int16_t *out = &dst[ch_src * (i_x + i_y * output_x)]; int32_t ch_count = (ch_src + 7) / 8; int32_t channels = ch_src; while (ch_count > 0) { int32_t count = 0; int32x4_t sum_1 = vdupq_n_s32(0); int32x4_t sum_2 = vdupq_n_s32(0); // Load store tail predicate const mve_pred16_t ld_st_p = vctp16q(channels); channels -= 8; for (int k_y = k_y_start; k_y < k_y_end; k_y++) { for (int k_x = k_x_start; k_x < k_x_end; k_x++) { const int16_t *src_inner = src_base + (ch_src * (k_x + k_y * input_x)); const int16x8_t temp = vldrhq_z_s16(src_inner, ld_st_p); const int32x4_t temp_lo = vmovlbq_s16(temp); const int32x4_t temp_hi = vmovltq_s16(temp); sum_1 = vaddq_s32(sum_1, temp_lo); sum_2 = vaddq_s32(sum_2, temp_hi); count++; } } // Prevent static code issue DIVIDE_BY_ZERO. if (count == 0) { return ARM_CMSIS_NN_ARG_ERROR; } // Perform the following operation // sum = sum > 0 ? (sum + count / 2) / count : (sum - count / 2) / count; const int32_t half_count = count / 2; // Predicate for 'sum > 0' operation mve_pred16_t p = vcmpgtq_n_s32(sum_1, 0); sum_1 = vaddq_m_n_s32(sum_1, sum_1, half_count, p); sum_1 = vsubq_m_n_s32(sum_1, sum_1, half_count, ~p); p = vcmpgtq_n_s32(sum_2, 0); sum_2 = vaddq_m_n_s32(sum_2, sum_2, half_count, p); sum_2 = vsubq_m_n_s32(sum_2, sum_2, half_count, ~p); for (int i = 0; i < 4; i++) { sum_1[i] = sum_1[i] / count; sum_2[i] = sum_2[i] / count; } sum_1 = vmaxq_s32(sum_1, vdupq_n_s32(act_min)); sum_1 = vminq_s32(sum_1, vdupq_n_s32(act_max)); sum_2 = vmaxq_s32(sum_2, vdupq_n_s32(act_min)); sum_2 = vminq_s32(sum_2, vdupq_n_s32(act_max)); int16x8_t temp = vdupq_n_s16(0); temp = vmovnbq_s32(temp, sum_1); temp = vmovntq_s32(temp, sum_2); vstrhq_p_s16(out, temp, ld_st_p); out += 8; ch_count--; src_base += 8; } } } src += batch_input; dst += batch_output; batch_cnt--; } #elif defined(ARM_MATH_DSP) /* Run the following code for CPU's with DSP extension */ int32_t *buffer = (int32_t *)ctx->buf; if (buffer == NULL) { return ARM_CMSIS_NN_ARG_ERROR; } while (batch_cnt) { for (int i_y = 0, idx_y = -pad_y; i_y < output_y; idx_y += stride_y, i_y++) { for (int i_x = 0, idx_x = -pad_x; i_x < output_x; idx_x += stride_x, i_x++) { /* Condition for kernel start dimension: (base_idx_ + kernel__start) >= 0 */ const int32_t kernel_y_start = MAX(0, -idx_y); const int32_t kernel_x_start = MAX(0, -idx_x); /* Condition for kernel end dimension: (base_idx_ + kernel__end) < dim_src_ */ const int32_t kernel_y_end = MIN(kernel_y, input_y - idx_y); const int32_t kernel_x_end = MIN(kernel_x, input_x - idx_x); int count = 0; for (int k_y = kernel_y_start; k_y < kernel_y_end; k_y++) { for (int k_x = kernel_x_start; k_x < kernel_x_end; k_x++) { const int16_t *start = src + ch_src * (k_x + idx_x + (k_y + idx_y) * input_x); if (count == 0) { for (int i = 0; i < ch_src; i++) { buffer[i] = start[i]; } } else { for (int i = 0; i < ch_src; i++) { buffer[i] = QADD(start[i], buffer[i]); } } count++; } } // Prevent static code issue DIVIDE_BY_ZERO. if (count == 0) { return ARM_CMSIS_NN_ARG_ERROR; } scale_q31_to_q15_and_clamp(buffer, dst, ch_src, count, act_min, act_max); dst += ch_src; } } src += batch_input; batch_cnt--; } #else /* Reference C code adapted from CMSIS-NN arm_avgpool_s8.c. */ const int32_t batch_output = output_x * output_y * ch_src; (void)ctx; while (batch_cnt) { for (int i_y = 0, base_idx_y = -pad_y; i_y < output_y; base_idx_y += stride_y, i_y++) { for (int i_x = 0, base_idx_x = -pad_x; i_x < output_x; base_idx_x += stride_x, i_x++) { /* Condition for kernel start dimension: (base_idx_ + kernel__start) >= 0 */ const int32_t ker_y_start = MAX(0, -base_idx_y); const int32_t ker_x_start = MAX(0, -base_idx_x); /* Condition for kernel end dimension: (base_idx_ + kernel__end) < dim_src_ */ const int32_t kernel_y_end = MIN(kernel_y, input_y - base_idx_y); const int32_t kernel_x_end = MIN(kernel_x, input_x - base_idx_x); for (int i_ch_in = 0; i_ch_in < ch_src; i_ch_in++) { int sum = 0; int count = 0; for (int k_y = ker_y_start; k_y < kernel_y_end; k_y++) { for (int k_x = ker_x_start; k_x < kernel_x_end; k_x++) { sum += src[i_ch_in + ch_src * (k_x + base_idx_x + (k_y + base_idx_y) * input_x)]; count++; } } // Prevent static code issue DIVIDE_BY_ZERO. if (count == 0) { return ARM_CMSIS_NN_ARG_ERROR; } sum = sum > 0 ? (sum + count / 2) / count : (sum - count / 2) / count; sum = MAX(sum, act_min); sum = MIN(sum, act_max); dst[i_ch_in + ch_src * (i_x + i_y * output_x)] = sum; } } } src += batch_input; dst += batch_output; batch_cnt--; } #endif return ARM_CMSIS_NN_SUCCESS; } /** * @} end of Pooling group */