/* * SPDX-FileCopyrightText: Copyright 2022-2024 Arm Limited and/or its affiliates * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* ---------------------------------------------------------------------- * Project: CMSIS NN Library * Title: arm_depthwise_conv_fast_s16.c * Description: Optimized s16 depthwise separable convolution function for * channel multiplier of 1. * * $Date: 19 March 2024 * $Revision: V.1.4.0 * * Target : Arm(R) M-Profile Architecture * * -------------------------------------------------------------------- */ #include "arm_nnfunctions.h" #include "arm_nnsupportfunctions.h" /** * @ingroup Public */ /** * @addtogroup NNConv * @{ */ /* * Optimized s16 depthwise convolution function with constraint that in_channel equals out_channel * * Refer prototype header file for details. * */ arm_cmsis_nn_status arm_depthwise_conv_fast_s16(const cmsis_nn_context *ctx, const cmsis_nn_dw_conv_params *dw_conv_params, const cmsis_nn_per_channel_quant_params *quant_params, const cmsis_nn_dims *input_dims, const int16_t *input, const cmsis_nn_dims *filter_dims, const int8_t *kernel, const cmsis_nn_dims *bias_dims, const int64_t *bias, const cmsis_nn_dims *output_dims, int16_t *output) { const int32_t input_ch = input_dims->c; const int32_t output_ch = output_dims->c; /* Check input constraints input_ch == output_ch */ if (input_ch != output_ch) { return ARM_CMSIS_NN_ARG_ERROR; } if (filter_dims->w * filter_dims->h >= MAX_COL_COUNT) { return ARM_CMSIS_NN_ARG_ERROR; } if (ctx->buf == NULL && arm_depthwise_conv_fast_s16_get_buffer_size(input_dims, filter_dims) > 0) { return ARM_CMSIS_NN_ARG_ERROR; } #if defined(ARM_MATH_DSP) (void)bias_dims; const int32_t input_x = input_dims->w; const int32_t input_y = input_dims->h; const int32_t input_batches = input_dims->n; const int32_t kernel_x = filter_dims->w; const int32_t kernel_y = filter_dims->h; const int32_t pad_x = dw_conv_params->padding.w; const int32_t pad_y = dw_conv_params->padding.h; const int32_t stride_x = dw_conv_params->stride.w; const int32_t stride_y = dw_conv_params->stride.h; const int32_t *output_shift = quant_params->shift; const int32_t *output_mult = quant_params->multiplier; const int32_t output_x = output_dims->w; const int32_t output_y = output_dims->h; const int32_t output_activation_min = dw_conv_params->activation.min; const int32_t output_activation_max = dw_conv_params->activation.max; int16_t *buffer_a = (int16_t *)ctx->buf; #if defined(ARM_MATH_MVEI) int16_t *lhs_buffer = buffer_a; int16_t *out = output; int buffer_count = 0; const int32_t kernel_size = kernel_x * kernel_y; for (int i_batch = 0; i_batch < input_batches; i_batch++) { /* This part implements the im2col function */ for (int i_out_y = 0, base_idx_y = -pad_y; i_out_y < output_y; base_idx_y += stride_y, i_out_y++) { for (int i_out_x = 0, base_idx_x = -pad_x; i_out_x < output_x; base_idx_x += stride_x, i_out_x++) { for (int i_ker_y = base_idx_y; i_ker_y < base_idx_y + kernel_y; i_ker_y++) { for (int i_ker_x = base_idx_x; i_ker_x < base_idx_x + kernel_x; i_ker_x++) { if (i_ker_y < 0 || i_ker_y >= input_y || i_ker_x < 0 || i_ker_x >= input_x) { memset(lhs_buffer, (int16_t)0, (uint32_t)(input_ch * sizeof(int16_t))); } else { arm_memcpy_q15(lhs_buffer, (int16_t *)(input + (i_ker_y * input_x + i_ker_x) * input_ch), (uint32_t)(input_ch * sizeof(int16_t))); } lhs_buffer += input_ch; } } buffer_count++; if (buffer_count == 4) { lhs_buffer = buffer_a; out = arm_nn_depthwise_conv_nt_t_s16(lhs_buffer, kernel, input_ch, output_shift, output_mult, output_activation_min, output_activation_max, kernel_size, bias, out); buffer_count = 0; } } } input += input_x * input_y * input_ch; } /* Handle left over buffers */ lhs_buffer = buffer_a; for (int i_buf = 0; i_buf < buffer_count; i_buf++) { int32_t loop_count = (input_ch + 3) / 4; int32_t num_ch_to_process = input_ch; for (int i_loop_cnt = 0, offset = 0; i_loop_cnt < loop_count; num_ch_to_process -= 4, offset += 4, i_loop_cnt++) { const int8_t *row_0 = kernel + offset; const int16_t *col_0 = lhs_buffer + (kernel_size * input_ch * i_buf) + offset; int32x4_t out_0 = vdupq_n_s32(0); for (int i_ker = 0; i_ker < kernel_size; i_ker++) { const int32x4_t ker_0 = vldrbq_s32(row_0); int32x4_t ip_0 = vldrhq_s32(col_0); out_0 += vmulq_s32(ip_0, ker_0); col_0 += input_ch; row_0 += input_ch; } int64_t in_requantize_0 = (int64_t)out_0[0]; int64_t in_requantize_1 = (int64_t)out_0[1]; int64_t in_requantize_2 = (int64_t)out_0[2]; int64_t in_requantize_3 = (int64_t)out_0[3]; if (bias) { in_requantize_0 += bias[offset]; in_requantize_1 += bias[offset + 1]; in_requantize_2 += bias[offset + 2]; in_requantize_3 += bias[offset + 3]; } int32_t reduced_multiplier_0 = REDUCE_MULTIPLIER(output_mult[offset]); int32_t reduced_multiplier_1 = REDUCE_MULTIPLIER(output_mult[offset + 1]); int32_t reduced_multiplier_2 = REDUCE_MULTIPLIER(output_mult[offset + 2]); int32_t reduced_multiplier_3 = REDUCE_MULTIPLIER(output_mult[offset + 3]); out_0[0] = arm_nn_requantize_s64(in_requantize_0, reduced_multiplier_0, output_shift[offset]); out_0[1] = arm_nn_requantize_s64(in_requantize_1, reduced_multiplier_1, output_shift[offset + 1]); out_0[2] = arm_nn_requantize_s64(in_requantize_2, reduced_multiplier_2, output_shift[offset + 2]); out_0[3] = arm_nn_requantize_s64(in_requantize_3, reduced_multiplier_3, output_shift[offset + 3]); out_0 = vmaxq_s32(out_0, vdupq_n_s32(output_activation_min)); out_0 = vminq_s32(out_0, vdupq_n_s32(output_activation_max)); mve_pred16_t p = vctp32q((uint32_t)num_ch_to_process); vstrhq_p_s32(out, out_0, p); out += 4; } const int tail_ch = input_ch & 0x3; if (tail_ch != 0) { out -= (4 - tail_ch); } } #else // ARM_MATH_DSP /* Run the following code in cores using DSP extension */ int16_t *const col_buffer_start = buffer_a; int16_t *col_buffer = col_buffer_start; const int64_t *const bias_start_pos = bias; const int32_t *const out_mult_start_pos = output_mult; const int32_t *const out_shift_start_pos = output_shift; uint16_t row_count; uint16_t row_shift; int32_t result; for (int i_batch = 0; i_batch < input_batches; i_batch++) { for (int i_out_y = 0; i_out_y < output_y; i_out_y++) { const int16_t base_idx_y = (i_out_y * stride_y) - pad_y; for (int i_out_x = 0; i_out_x < output_x; i_out_x++) { const int16_t base_idx_x = (i_out_x * stride_x) - pad_x; /* Out of bounds is only considered for the y axis as it provides a contiguous zero'ing opportunity than along the x axis */ const int ker_y_start = MAX(0, -base_idx_y); /* Condition for kernel end dimension: (base_idx_y + ker_y_end) < input_y */ const int ker_y_end = MIN(kernel_y, input_y - base_idx_y); int32_t index = 0; if (ker_y_start != 0) { memset(&col_buffer[index], 0, (kernel_x * input_ch) * ker_y_start * sizeof(int16_t)); index += (kernel_x * input_ch) * ker_y_start; } for (int i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++) { const int32_t idx_y = base_idx_y + i_ker_y; for (int i_ker_x = 0; i_ker_x < kernel_x; i_ker_x++) { const int32_t idx_x = base_idx_x + i_ker_x; if (idx_x < 0 || idx_x >= input_x) { memset(&col_buffer[index], 0, input_ch * sizeof(int16_t)); } else { arm_memcpy_q15(&col_buffer[index], input + (idx_y * input_x + idx_x) * input_ch, input_ch * sizeof(int16_t)); } index += input_ch; } } const int diff = kernel_y - ker_y_end; if (diff != 0) { memset(&col_buffer[index], 0, (kernel_x * input_ch) * diff * sizeof(int16_t)); } row_count = output_ch / 4; row_shift = 0; bias = bias_start_pos; output_mult = out_mult_start_pos; output_shift = out_shift_start_pos; while (row_count) { int32_t sum_1 = 0; int32_t sum_2 = 0; int32_t sum_3 = 0; int32_t sum_4 = 0; int32_t output_mult_1 = REDUCE_MULTIPLIER(output_mult[0]); int32_t output_mult_2 = REDUCE_MULTIPLIER(output_mult[1]); int32_t output_mult_3 = REDUCE_MULTIPLIER(output_mult[2]); int32_t output_mult_4 = REDUCE_MULTIPLIER(output_mult[3]); output_mult += 4; uint16_t col_count = (kernel_x * kernel_y) / 2; int16_t *col_pos = col_buffer_start + row_shift; const int8_t *row_pos = kernel + row_shift; row_shift += 4; while (col_count) { /* General idea is to read 4 + 4 (input, kernel) pair and re-arrange them in the right order to use in a SMLAD instruction . One run of this loop produces 4 partial outputs with 8 MACs. */ int32_t row_a1, row_a2, row_b1, row_b2, col_a, row_c, col_b, col_c; /* Read 4 weights */ row_b1 = arm_nn_read_s8x4(row_pos); row_a1 = arm_nn_read_s8x4(row_pos + input_ch); col_a = arm_nn_read_s16x2(col_pos); col_b = arm_nn_read_s16x2(col_pos + input_ch); row_a2 = SXTB16(row_b1); row_b1 = SXTB16(ROR(row_b1, 8)); row_b2 = SXTB16(row_a1); row_a1 = SXTB16(ROR(row_a1, 8)); col_c = PKHBT(col_b, col_a, 16); col_a = PKHTB(col_b, col_a, 16); row_c = PKHBT(row_b2, row_a2, 16); sum_1 = SMLAD(col_c, row_c, sum_1); row_c = PKHBT(row_b1, row_a1, 16); sum_2 = SMLAD(col_a, row_c, sum_2); col_a = arm_nn_read_s16x2(col_pos + 2); col_b = arm_nn_read_s16x2(col_pos + input_ch + 2); col_c = PKHBT(col_b, col_a, 16); col_a = PKHTB(col_b, col_a, 16); row_c = PKHTB(row_a2, row_b2, 16); sum_3 = SMLAD(col_c, row_c, sum_3); row_c = PKHTB(row_a1, row_b1, 16); sum_4 = SMLAD(col_a, row_c, sum_4); row_pos += input_ch << 1; col_pos += input_ch << 1; col_count--; } col_count = (kernel_x * kernel_y) & 0x1; while (col_count) { sum_1 += row_pos[0] * col_pos[0]; sum_2 += row_pos[1] * col_pos[1]; sum_3 += row_pos[2] * col_pos[2]; sum_4 += row_pos[3] * col_pos[3]; row_pos += input_ch; col_pos += input_ch; col_count--; } int64_t acc_1 = sum_1; int64_t acc_2 = sum_2; int64_t acc_3 = sum_3; int64_t acc_4 = sum_4; if (bias) { acc_1 += *bias++; acc_2 += *bias++; acc_3 += *bias++; acc_4 += *bias++; } result = arm_nn_requantize_s64(acc_1, output_mult_1, *output_shift++); result = MAX(result, output_activation_min); result = MIN(result, output_activation_max); *output++ = (int16_t)result; result = arm_nn_requantize_s64(acc_2, output_mult_2, *output_shift++); result = MAX(result, output_activation_min); result = MIN(result, output_activation_max); *output++ = (int16_t)result; result = arm_nn_requantize_s64(acc_3, output_mult_3, *output_shift++); result = MAX(result, output_activation_min); result = MIN(result, output_activation_max); *output++ = (int16_t)result; result = arm_nn_requantize_s64(acc_4, output_mult_4, *output_shift++); result = MAX(result, output_activation_min); result = MIN(result, output_activation_max); *output++ = (int16_t)result; row_count--; } row_count = output_ch & 0x3; while (row_count) { int16_t *col_pos = col_buffer_start + row_shift; const int8_t *row_pos = kernel + row_shift; int32_t sum = 0; const uint16_t col_count = (kernel_x * kernel_y); row_shift += 1; for (int i = 0; i < col_count; i++) { sum += row_pos[i * input_ch] * col_pos[i * input_ch]; } int64_t acc = sum; if (bias) { acc += *bias++; } result = arm_nn_requantize_s64(acc, REDUCE_MULTIPLIER(*output_mult), *output_shift++); output_mult++; result = MAX(result, output_activation_min); result = MIN(result, output_activation_max); *output++ = (int16_t)result; row_count--; } // clear counter and pointers col_buffer = col_buffer_start; } } /* Advance to the next batch */ input += (input_x * input_y * input_ch); } #endif #else /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ return arm_depthwise_conv_s16(ctx, dw_conv_params, quant_params, input_dims, input, filter_dims, kernel, bias_dims, bias, output_dims, output); #endif /* ARM_MATH_MVEI | ARM_MATH_DSP */ /* Return to application */ return ARM_CMSIS_NN_SUCCESS; } /** * @} end of NNConv group */