/* * SPDX-FileCopyrightText: Copyright 2010-2024 Arm Limited and/or its affiliates * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* ---------------------------------------------------------------------- * Project: CMSIS NN Library * Title: arm_nnsupportfunctions.h * Description: Public header file of support functions for CMSIS NN Library * * $Date: 30 April 2024 * $Revision: V.22.0.0 * * Target : Arm(R) M-Profile Architecture * -------------------------------------------------------------------- */ #ifndef ARM_NNSUPPORTFUNCTIONS_H #define ARM_NNSUPPORTFUNCTIONS_H #include "Internal/arm_nn_compiler.h" #include "arm_nn_math_types.h" #include "arm_nn_types.h" #include #ifdef __cplusplus extern "C" { #endif #define USE_FAST_DW_CONV_S16_FUNCTION(dw_conv_params, filter_dims, input_dims) \ (dw_conv_params->ch_mult == 1 && dw_conv_params->dilation.w == 1 && dw_conv_params->dilation.h == 1 && \ filter_dims->w * filter_dims->h < 512) #define LEFT_SHIFT(_shift) (_shift > 0 ? _shift : 0) #define RIGHT_SHIFT(_shift) (_shift > 0 ? 0 : -_shift) #define MASK_IF_ZERO(x) (x) == 0 ? ~0 : 0 #define MASK_IF_NON_ZERO(x) (x) != 0 ? ~0 : 0 #define SELECT_USING_MASK(mask, a, b) ((mask) & (a)) ^ (~(mask) & (b)) #define MAX(A, B) ((A) > (B) ? (A) : (B)) #define MIN(A, B) ((A) < (B) ? (A) : (B)) #define CLAMP(x, h, l) MAX(MIN((x), (h)), (l)) #define REDUCE_MULTIPLIER(_mult) ((_mult < 0x7FFF0000) ? ((_mult + (1 << 15)) >> 16) : 0x7FFF) // Number of channels processed in a block for DW Conv with Int8 weights(MVE) // Requirement: Greater than 0 & less than 128 // This can be fine tuned to match number of input channels for best performance. // A layer with lower number of channels than CH_IN_BLOCK_MVE will result in higher // scratch buffer usage and a layer with higher number of channels than CH_IN_BLOCK_MVE // will result in lower scratch buffer usage. #define CH_IN_BLOCK_MVE (124) // Number of channels processed in a block for DW Conv with Int4 weights(MVE) // Requirement: See CH_IN_BLOCK_MVE. // An additional requirement for this signed 4 variant is that it must be an even number. #define S4_CH_IN_BLOCK_MVE (124) // For input of int16 when number of columns are above this limit int64 accumulation is needed // to not loose precision. #define MAX_COL_COUNT (512) /** * @brief definition to pack four 8 bit values. */ #define PACK_S8x4_32x1(v0, v1, v2, v3) \ ((((int32_t)(v0) << 0) & (int32_t)0x000000FF) | (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | (((int32_t)(v3) << 24) & (int32_t)0xFF000000)) /** * @brief definition to pack two 16 bit values. */ #define PACK_Q15x2_32x1(v0, v1) (((int32_t)v0 & (int32_t)0xFFFF) | ((int32_t)v1 << 16)) /** * @defgroup groupSupport Private * * Internal Support functions. Not intended to be called direclty by a CMSIS-NN user. * */ /** * @defgroup genPrivTypes Structure Types * @ingroup groupSupport * @brief Data structure types used by private functions. * @{ */ /** * @brief Union for SIMD access of q31/s16/s8 types */ union arm_nnword { int32_t word; /**< q31 type */ int16_t half_words[2]; /**< s16 type */ int8_t bytes[4]; /**< s8 type */ }; /** * @brief Union for data type long long */ struct arm_nn_double { uint32_t low; int32_t high; }; union arm_nn_long_long { int64_t long_long; struct arm_nn_double word; }; /** * @} // end group groupPrivTypes */ /** * @defgroup supportConversion Data Conversion * * Perform data type conversion in-between neural network operations * */ /** * @brief Converts the elements from a s8 vector to a s16 vector with an added offset * @param[in] src pointer to the s8 input vector * @param[out] dst pointer to the s16 output vector * @param[in] block_size length of the input vector * @param[in] offset s16 offset to be added to each input vector element. * * \par Description: * * Output elements are ordered. * The equation used for the conversion process is: * *
 *  dst[n] = (int16_t) src[n] + offset;   0 <= n < block_size.
 * 
* */ void arm_q7_to_q15_with_offset(const int8_t *src, int16_t *dst, int32_t block_size, int16_t offset); #if defined(ARM_MATH_DSP) /** * @brief Converts the elements from a s8 vector to a s16 vector with an added offset * @param[in] src pointer to the s8 input vector * @param[out] dst pointer to the s16 output vector * @param[in] block_size length of the input vector * @param[in] offset s16 offset to be added to each input vector element. * * \par Description: * * No additonal ordering is done with the result that output elements are not in order. * Instead of ABCD order will be ACBD. * Note this is for processors with DSP extension only. * The equation used for the conversion process is: * *
 *  dst[n - 0] = (int16_t) src[n - 0] + offset;   0 <= n < block_size.
 *  dst[n - 1] = (int16_t) src[n - 2] + offset;   0 <= n < block_size.
 *  dst[n - 2] = (int16_t) src[n - 1] + offset;   0 <= n < block_size.
 *  dst[n - 3] = (int16_t) src[n - 3] + offset;   0 <= n < block_size.
 * 
* */ void arm_s8_to_s16_unordered_with_offset(const int8_t *src, int16_t *dst, int32_t block_size, int16_t offset); #endif /** * @brief Get the required buffer size for optimized s8 depthwise convolution * function with constraint that in_channel equals out_channel. * This is for processors with MVE extension. * Refer to arm_depthwise_conv_s8_opt_get_buffer_size() for function argument details. * * @note Intended for compilation on Host. If compiling for an Arm target, use * arm_depthwise_conv_s8_opt_get_buffer_size(). Note also this is a support function, * so not recommended to call directly even on Host. * */ int32_t arm_depthwise_conv_s8_opt_get_buffer_size_mve(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims); /** * @brief Get the required buffer size for optimized s8 depthwise convolution * function with constraint that in_channel equals out_channel. * This is for processors with DSP extension. * Refer to arm_depthwise_conv_s8_opt_get_buffer_size() for function argument details. * * @note Intended for compilation on Host. If compiling for an Arm target, use * arm_depthwise_conv_s8_opt_get_buffer_size(). Note also this is a support function, * so not recommended to call directly even on Host. * */ int32_t arm_depthwise_conv_s8_opt_get_buffer_size_dsp(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims); /** * @brief Depthwise conv on an im2col buffer where the input channel equals output channel. * @param[in] row pointer to row * @param[in] col pointer to im2col buffer, always consists of 2 columns. * @param[in] num_ch number of channels * @param[in] out_shift pointer to per output channel requantization shift parameter. * @param[in] out_mult pointer to per output channel requantization multiplier parameter. * @param[in] out_offset output tensor offset. * @param[in] activation_min minimum value to clamp the output to. Range : int8 * @param[in] activation_max maximum value to clamp the output to. Range : int8 * @param[in] kernel_size number of elements in one column. * @param[in] output_bias per output channel bias. Range : int32 * @param[out] out pointer to output * @return The function returns one of the two * 1. The incremented output pointer for a successful operation or * 2. NULL if implementation is not available. * * @details Supported framework: TensorFlow Lite micro. */ int8_t *arm_nn_depthwise_conv_s8_core(const int8_t *row, const int16_t *col, const uint16_t num_ch, const int32_t *out_shift, const int32_t *out_mult, const int32_t out_offset, const int32_t activation_min, const int32_t activation_max, const uint16_t kernel_size, const int32_t *const output_bias, int8_t *out); /** * @brief General Matrix-multiplication function with per-channel requantization. * @param[in] input_row pointer to row operand * @param[in] input_col pointer to col operand * @param[in] output_ch number of rows of input_row * @param[in] col_batches number of column batches. Range: 1 to 4 * @param[in] output_shift pointer to per output channel requantization shift parameter. * @param[in] output_mult pointer to per output channel requantization multiplier parameter. * @param[in] out_offset output tensor offset. * @param[in] col_offset input tensor(col) offset. * @param[in] row_offset kernel offset(row). Not used. * @param[in] out_activation_min minimum value to clamp the output to. Range : int8 * @param[in] out_activation_max maximum value to clamp the output to. Range : int8 * @param[in] row_len number of elements in each row * @param[in] bias per output channel bias. Range : int32 * @param[in,out] out pointer to output * @return The function returns one of the two * 1. The incremented output pointer for a successful operation or * 2. NULL if implementation is not available. * * @details Supported framework: TensorFlow Lite */ int8_t *arm_nn_mat_mult_s8(const int8_t *input_row, const int8_t *input_col, const uint16_t output_ch, const uint16_t col_batches, const int32_t *output_shift, const int32_t *output_mult, const int32_t out_offset, const int32_t col_offset, const int32_t row_offset, const int16_t out_activation_min, const int16_t out_activation_max, const uint16_t row_len, const int32_t *const bias, int8_t *out); /** * @brief Matrix-multiplication function for convolution with per-channel requantization for 16 bits convolution. * @param[in] input_a pointer to operand A * @param[in] input_b pointer to operand B, always consists of 2 vectors. * @param[in] output_ch number of rows of A * @param[in] out_shift pointer to per output channel requantization shift parameter. * @param[in] out_mult pointer to per output channel requantization multiplier parameter. * @param[in] activation_min minimum value to clamp the output to. Range : int16 * @param[in] activation_max maximum value to clamp the output to. Range : int16 * @param[in] num_col_a number of columns of A * @param[in] bias_data pointer to struct with bias vector. The length of this vector is equal to the number * of output columns (or RHS input rows). The vector can be int32 or int64 indicated by a * flag in the struct. * @param[in,out] out_0 pointer to output * @return The function returns one of the two * 1. The incremented output pointer for a successful operation or * 2. NULL if implementation is not available. * * @details This function does the matrix multiplication of weight matrix for all output channels * with 2 columns from im2col and produces two elements/output_channel. The outputs are * clamped in the range provided by activation min and max. * Supported framework: TensorFlow Lite micro. */ int16_t *arm_nn_mat_mult_kernel_s16(const int8_t *input_a, const int16_t *input_b, const int32_t output_ch, const int32_t *out_shift, const int32_t *out_mult, const int32_t activation_min, const int32_t activation_max, const int32_t num_col_a, const cmsis_nn_bias_data *const bias_data, int16_t *out_0); /** * @brief General Vector by Matrix multiplication with requantization and storage of result. * @param[in] row_elements number of row elements * @param[in] skipped_row_elements number of row elements skipped due to padding. * row_elements + skipped_row_elements = (kernel_x * kernel_y) * input_ch * @param[in] row_base_ref pointer to row operand * @param[in] col_base_ref pointer to col operand * @param[out] out_ch Number of output channels * @param[in] conv_params Pointer to convolution parameters like offsets and activation values * @param[in] quant_params Pointer to per-channel quantization parameters * @param[in] bias Pointer to optional per-channel bias * @param[out] output Pointer to output where int8 results are stored. * @return The function performs matrix(row_base_ref) multiplication with vector(col_base_ref) and * scaled result is stored in memory. * * @details Pseudo-code * *output = 0 * sum_col = 0 * for (j = 0; j < out_ch; j++) * for (i = 0; i < row_elements; i++) * *output += row_base_ref[i] * col_base_ref[i] * sum_col += col_base_ref[i] * scale sum_col using quant_params and bias * store result in 'output' * * */ arm_cmsis_nn_status arm_nn_mat_mul_core_1x_s8(int32_t row_elements, const int32_t skipped_row_elements, const int8_t *row_base_ref, const int8_t *col_base_ref, const int32_t out_ch, const cmsis_nn_conv_params *conv_params, const cmsis_nn_per_channel_quant_params *quant_params, const int32_t *bias, int8_t *output); /** * @brief General Vector by Matrix multiplication with requantization, storage of result and int4 weights packed into an * int8 buffer. * @param[in] row_elements number of row elements * @param[in] skipped_row_elements number of row elements skipped due to padding. * row_elements + skipped_row_elements = (kernel_x * kernel_y) * input_ch * @param[in] row_base_ref pointer to row operand * @param[in] col_base_ref pointer to col operand as packed int4 * @param[out] out_ch Number of output channels * @param[in] conv_params Pointer to convolution parameters like offsets and activation values * @param[in] quant_params Pointer to per-channel quantization parameters * @param[in] bias Pointer to optional per-channel bias * @param[out] output Pointer to output where int8 results are stored. * @return The function performs matrix(row_base_ref) multiplication with vector(col_base_ref) and * scaled result is stored in memory. * * @details Pseudo-code as int8 example. Int4 filter data will be unpacked. * *output = 0 * sum_col = 0 * for (j = 0; j < out_ch; j++) * for (i = 0; i < row_elements; i++) * *output += row_base_ref[i] * col_base_ref[i] * sum_col += col_base_ref[i] * scale sum_col using quant_params and bias * store result in 'output' * * */ arm_cmsis_nn_status arm_nn_mat_mul_core_1x_s4(int32_t row_elements, const int32_t skipped_row_elements, const int8_t *row_base_ref, const int8_t *col_base_ref, const int32_t out_ch, const cmsis_nn_conv_params *conv_params, const cmsis_nn_per_channel_quant_params *quant_params, const int32_t *bias, int8_t *output); /** * @brief Matrix-multiplication with requantization & activation function for four rows and one column * @param[in] row_elements number of row elements * @param[in] offset offset between rows. Can be the same as row_elements. * For e.g, in a 1x1 conv scenario with stride as 1. * @param[in] row_base pointer to row operand * @param[in] col_base pointer to col operand * @param[in] out_ch Number of output channels * @param[in] conv_params Pointer to convolution parameters like offsets and activation values * @param[in] quant_params Pointer to per-channel quantization parameters * @param[in] bias Pointer to per-channel bias * @param[out] output Pointer to output where int8 results are stored. * * @return The function returns the updated output pointer or NULL if implementation is not available. * * @details Compliant to TFLM int8 specification. MVE implementation only */ int8_t *arm_nn_mat_mul_core_4x_s8(const int32_t row_elements, const int32_t offset, const int8_t *row_base, const int8_t *col_base, const int32_t out_ch, const cmsis_nn_conv_params *conv_params, const cmsis_nn_per_channel_quant_params *quant_params, const int32_t *bias, int8_t *output); /** * @brief General Matrix-multiplication function with per-channel requantization. * This function assumes: * - LHS input matrix NOT transposed (nt) * - RHS input matrix transposed (t) * - RHS is int8 packed with 2x int4 * - LHS is int8 * * @note This operation also performs the broadcast bias addition before the requantization * * @param[in] lhs Pointer to the LHS input matrix * @param[in] rhs Pointer to the RHS input matrix * @param[in] bias Pointer to the bias vector. The length of this vector is equal to the number of * output columns (or RHS input rows) * @param[out] dst Pointer to the output matrix with "m" rows and "n" columns * @param[in] dst_multipliers Pointer to the multipliers vector needed for the per-channel requantization. * The length of this vector is equal to the number of output columns (or RHS input * rows) * @param[in] dst_shifts Pointer to the shifts vector needed for the per-channel requantization. The length * of this vector is equal to the number of output columns (or RHS input rows) * @param[in] lhs_rows Number of LHS input rows * @param[in] rhs_rows Number of RHS input rows * @param[in] rhs_cols Number of LHS/RHS input columns * @param[in] lhs_offset Offset to be applied to the LHS input value * @param[in] dst_offset Offset to be applied the output result * @param[in] activation_min Minimum value to clamp down the output. Range : int8 * @param[in] activation_max Maximum value to clamp up the output. Range : int8 * @param[in] lhs_cols_offset Column offset between subsequent lhs_rows * * @return The function returns ARM_CMSIS_NN_SUCCESS * */ arm_cmsis_nn_status arm_nn_mat_mult_nt_t_s4(const int8_t *lhs, const int8_t *rhs, const int32_t *bias, int8_t *dst, const int32_t *dst_multipliers, const int32_t *dst_shifts, const int32_t lhs_rows, const int32_t rhs_rows, const int32_t rhs_cols, const int32_t lhs_offset, const int32_t dst_offset, const int32_t activation_min, const int32_t activation_max, const int32_t lhs_cols_offset); /** * @brief General Matrix-multiplication function with per-channel requantization. * This function assumes: * - LHS input matrix NOT transposed (nt) * - RHS input matrix transposed (t) * * @note This operation also performs the broadcast bias addition before the requantization * * @param[in] lhs Pointer to the LHS input matrix * @param[in] rhs Pointer to the RHS input matrix * @param[in] bias Pointer to the bias vector. The length of this vector is equal to the number of * output columns (or RHS input rows) * @param[out] dst Pointer to the output matrix with "m" rows and "n" columns * @param[in] dst_multipliers Pointer to the multipliers vector needed for the per-channel requantization. * The length of this vector is equal to the number of output columns (or RHS input * rows) * @param[in] dst_shifts Pointer to the shifts vector needed for the per-channel requantization. The length * of this vector is equal to the number of output columns (or RHS input rows) * @param[in] lhs_rows Number of LHS input rows * @param[in] rhs_rows Number of RHS input rows * @param[in] rhs_cols Number of LHS/RHS input columns * @param[in] lhs_offset Offset to be applied to the LHS input value * @param[in] dst_offset Offset to be applied the output result * @param[in] activation_min Minimum value to clamp down the output. Range : int8 * @param[in] activation_max Maximum value to clamp up the output. Range : int8 * @param[in] row_address_offset Address offset between rows in output. NOTE: Only used for MVEI extension. * @param[in] lhs_cols_offset Column offset between subsequent lhs_rows * * @return The function returns ARM_CMSIS_NN_SUCCESS * */ arm_cmsis_nn_status arm_nn_mat_mult_nt_t_s8(const int8_t *lhs, const int8_t *rhs, const int32_t *bias, int8_t *dst, const int32_t *dst_multipliers, const int32_t *dst_shifts, const int32_t lhs_rows, const int32_t rhs_rows, const int32_t rhs_cols, const int32_t lhs_offset, const int32_t dst_offset, const int32_t activation_min, const int32_t activation_max, const int32_t row_address_offset, const int32_t lhs_cols_offset); /** * @brief General Matrix-multiplication function with per-channel requantization and int16 input (LHS) and output. * This function assumes: * - LHS input matrix NOT transposed (nt) * - RHS input matrix transposed (t) * * @note This operation also performs the broadcast bias addition before the requantization * * @param[in] lhs Pointer to the LHS input matrix * @param[in] rhs Pointer to the RHS input matrix * @param[in] bias_data Pointer to struct with bias vector. The length of this vector is equal to the number * of output columns (or RHS input rows). The vector can be int32 or int64 indicated by a * flag in the struct. * @param[out] dst Pointer to the output matrix with "m" rows and "n" columns * @param[in] dst_multipliers Pointer to the multipliers vector needed for the per-channel requantization. * The length of this vector is equal to the number of output columns (or RHS input * rows) * @param[in] dst_shifts Pointer to the shifts vector needed for the per-channel requantization. The length * of this vector is equal to the number of output columns (or RHS input rows) * @param[in] lhs_rows Number of LHS input rows * @param[in] rhs_rows Number of RHS input rows * @param[in] rhs_cols Number of LHS/RHS input columns * @param[in] activation_min Minimum value to clamp down the output. Range : int16 * @param[in] activation_max Maximum value to clamp up the output. Range : int16 * * @details MVE implementation only. * * @return The function returns ARM_CMSIS_NN_SUCCESS or * ARM_CMSIS_NN_NO_IMPL_ERROR if not for MVE * */ arm_cmsis_nn_status arm_nn_mat_mult_nt_t_s16(const int16_t *lhs, const int8_t *rhs, const cmsis_nn_bias_data *bias_data, int16_t *dst, const int32_t *dst_multipliers, const int32_t *dst_shifts, const int32_t lhs_rows, const int32_t rhs_rows, const int32_t rhs_cols, const int32_t activation_min, const int32_t activation_max); /** * @brief General Matrix-multiplication function with int8 input and int32 output. * This function assumes: * - LHS input matrix NOT transposed (nt) * - RHS input matrix transposed (t) * * @note Dst/output buffer must be zeroed out before calling this function. * * @param[in] lhs Pointer to the LHS input matrix * @param[in] rhs Pointer to the RHS input matrix * @param[out] dst Pointer to the output matrix with "m" rows and "n" columns * @param[in] lhs_rows Number of LHS input rows * @param[in] rhs_rows Number of LHS input columns/RHS input rows * @param[in] rhs_cols Number of RHS input columns * @param[in] lhs_offset Offset to be applied to the LHS input value * @param[in] dst_idx_offset Offset between subsequent output results * * @return The function returns ARM_CMSIS_NN_SUCCESS * */ arm_cmsis_nn_status arm_nn_mat_mult_nt_t_s8_s32(const int8_t *lhs, const int8_t *rhs, int32_t *dst, const int32_t lhs_rows, const int32_t rhs_rows, const int32_t rhs_cols, const int32_t lhs_offset, const int32_t dst_idx_offset); /** * @brief s4 Vector by Matrix (transposed) multiplication * * @param[in] lhs Input left-hand side vector * @param[in] packed_rhs Input right-hand side matrix (transposed) * @param[in] bias Input bias * @param[out] dst Output vector * @param[in] lhs_offset Offset to be added to the input values of the left-hand side vector. * Range: -127 to 128 * @param[in] dst_offset Offset to be added to the output values. Range: -127 to 128 * @param[in] dst_multiplier Output multiplier * @param[in] dst_shift Output shift * @param[in] rhs_cols Number of columns in the right-hand side input matrix * @param[in] rhs_rows Number of rows in the right-hand side input matrix * @param[in] activation_min Minimum value to clamp the output to. Range: int8 * @param[in] activation_max Maximum value to clamp the output to. Range: int8 * * @return The function returns ARM_CMSIS_NN_SUCCESS * */ arm_cmsis_nn_status arm_nn_vec_mat_mult_t_s4(const int8_t *lhs, const int8_t *packed_rhs, const int32_t *bias, int8_t *dst, const int32_t lhs_offset, const int32_t dst_offset, const int32_t dst_multiplier, const int32_t dst_shift, const int32_t rhs_cols, const int32_t rhs_rows, const int32_t activation_min, const int32_t activation_max); /** * @brief s8 Vector by Matrix (transposed) multiplication * * @param[in] lhs Input left-hand side vector * @param[in] rhs Input right-hand side matrix (transposed) * @param[in] kernel_sum Kernel sums of the kernels (rhs). See arm_vector_sum_s8 for more info. * @param[in] bias Input bias * @param[out] dst Output vector * @param[in] lhs_offset Offset to be added to the input values of the left-hand side vector. * Range: -127 to 128 * @param[in] dst_offset Offset to be added to the output values. Range: -127 to 128 * @param[in] dst_multiplier Output multiplier * @param[in] dst_shift Output shift * @param[in] rhs_cols Number of columns in the right-hand side input matrix * @param[in] rhs_rows Number of rows in the right-hand side input matrix * @param[in] activation_min Minimum value to clamp the output to. Range: int8 * @param[in] activation_max Maximum value to clamp the output to. Range: int8 * @param[in] address_offset Memory position offset for dst. First output is stored at 'dst', the * second at 'dst + address_offset' and so on. Default value is typically 1. * @param[in] rhs_offset Offset to be added to the input values of the right-hand side vector. * Range: -127 to 128 * * @return The function returns ARM_CMSIS_NN_SUCCESS * */ arm_cmsis_nn_status arm_nn_vec_mat_mult_t_s8(const int8_t *lhs, const int8_t *rhs, const int32_t *kernel_sum, const int32_t *bias, int8_t *dst, const int32_t lhs_offset, const int32_t dst_offset, const int32_t dst_multiplier, const int32_t dst_shift, const int32_t rhs_cols, const int32_t rhs_rows, const int32_t activation_min, const int32_t activation_max, const int32_t address_offset, const int32_t rhs_offset); /** * @brief s16 Vector by Matrix (transposed) multiplication * * @param[in] lhs Input left-hand side vector * @param[in] rhs Input right-hand side matrix (transposed) * @param[in] bias Input bias * @param[out] dst Output vector * @param[in] dst_multiplier Output multiplier * @param[in] dst_shift Output shift * @param[in] rhs_cols Number of columns in the right-hand side input matrix * @param[in] rhs_rows Number of rows in the right-hand side input matrix * @param[in] activation_min Minimum value to clamp the output to. Range: int16 * @param[in] activation_max Maximum value to clamp the output to. Range: int16 * * @return The function returns ARM_CMSIS_NN_SUCCESS * */ arm_cmsis_nn_status arm_nn_vec_mat_mult_t_s16(const int16_t *lhs, const int8_t *rhs, const int64_t *bias, int16_t *dst, const int32_t dst_multiplier, const int32_t dst_shift, const int32_t rhs_cols, const int32_t rhs_rows, const int32_t activation_min, const int32_t activation_max); /** * @brief s8 Vector by Matrix (transposed) multiplication with s16 output * * @param[in] lhs Input left-hand side vector * @param[in] rhs Input right-hand side matrix (transposed) * @param[out] dst Output vector * @param[in] lhs_offset Offset to be added to the input values of the left-hand side * vector. Range: -127 to 128 * @param[in] scatter_offset Address offset for dst. First output is stored at 'dst', the * second at 'dst + scatter_offset' and so on. * @param[in] dst_multiplier Output multiplier * @param[in] dst_shift Output shift * @param[in] rhs_cols Number of columns in the right-hand side input matrix * @param[in] rhs_rows Number of rows in the right-hand side input matrix * @param[in] activation_min Minimum value to clamp the output to. Range: int16 * @param[in] activation_max Maximum value to clamp the output to. Range: int16 * * @return The function returns ARM_CMSIS_NN_SUCCESS * */ arm_cmsis_nn_status arm_nn_vec_mat_mult_t_svdf_s8(const int8_t *lhs, const int8_t *rhs, int16_t *dst, const int32_t lhs_offset, const int32_t scatter_offset, const int32_t dst_multiplier, const int32_t dst_shift, const int32_t rhs_cols, const int32_t rhs_rows, const int32_t activation_min, const int32_t activation_max); /** * @brief Depthwise convolution of transposed rhs matrix with 4 lhs matrices. To be used in padded cases where * the padding is -lhs_offset(Range: int8). Dimensions are the same for lhs and rhs. * * @param[in] lhs Input left-hand side matrix * @param[in] rhs Input right-hand side matrix (transposed) * @param[in] lhs_offset LHS matrix offset(input offset). Range: -127 to 128 * @param[in] active_ch Subset of total_ch processed * @param[in] total_ch Number of channels in LHS/RHS * @param[in] out_shift Per channel output shift. Length of vector is equal to number of channels * @param[in] out_mult Per channel output multiplier. Length of vector is equal to number of channels * @param[in] out_offset Offset to be added to the output values. Range: -127 to 128 * @param[in] activation_min Minimum value to clamp the output to. Range: int8 * @param[in] activation_max Maximum value to clamp the output to. Range: int8 * @param[in] row_x_col (row_dimension * col_dimension) of LHS/RHS matrix * @param[in] output_bias Per channel output bias. Length of vector is equal to number of channels * @param[in] out Output pointer * * @return The function returns one of the two * - Updated output pointer if an implementation is available * - NULL if no implementation is available. * * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read * out for the following. * - Output shift * - Output multiplier * - Output bias * - rhs */ arm_cmsis_nn_status arm_nn_depthwise_conv_nt_t_padded_s8(const int8_t *lhs, const int8_t *rhs, const int32_t lhs_offset, const int32_t active_ch, const int32_t total_ch, const int32_t *out_shift, const int32_t *out_mult, const int32_t out_offset, const int32_t activation_min, const int32_t activation_max, const uint16_t row_x_col, const int32_t *const output_bias, int8_t *out); /** * @brief Depthwise convolution of transposed rhs matrix with 4 lhs matrices. To be used in non-padded cases. * Dimensions are the same for lhs and rhs. * * @param[in] lhs Input left-hand side matrix * @param[in] rhs Input right-hand side matrix (transposed) * @param[in] lhs_offset LHS matrix offset(input offset). Range: -127 to 128 * @param[in] active_ch Subset of total_ch processed * @param[in] total_ch Number of channels in LHS/RHS * @param[in] out_shift Per channel output shift. Length of vector is equal to number of channels. * @param[in] out_mult Per channel output multiplier. Length of vector is equal to number of channels. * @param[in] out_offset Offset to be added to the output values. Range: -127 to 128 * @param[in] activation_min Minimum value to clamp the output to. Range: int8 * @param[in] activation_max Maximum value to clamp the output to. Range: int8 * @param[in] row_x_col (row_dimension * col_dimension) of LHS/RHS matrix * @param[in] output_bias Per channel output bias. Length of vector is equal to number of channels. * @param[in] out Output pointer * * @return The function returns one of the two * - Updated output pointer if an implementation is available * - NULL if no implementation is available. * * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read * out for the following. * - Output shift * - Output multiplier * - Output bias * - rhs */ arm_cmsis_nn_status arm_nn_depthwise_conv_nt_t_s8(const int8_t *lhs, const int8_t *rhs, const int32_t lhs_offset, const int32_t active_ch, const int32_t total_ch, const int32_t *out_shift, const int32_t *out_mult, const int32_t out_offset, const int32_t activation_min, const int32_t activation_max, const uint16_t row_x_col, const int32_t *const output_bias, int8_t *out); /** * @brief Depthwise convolution of transposed rhs matrix with 4 lhs matrices. To be used in non-padded cases. rhs * consists of packed int4 data. Dimensions are the same for lhs and rhs. * * @param[in] lhs Input left-hand side matrix * @param[in] rhs Input right-hand side matrix (transposed). Consists of int4 data packed in an int8 * buffer. * @param[in] lhs_offset LHS matrix offset(input offset). Range: -127 to 128 * @param[in] active_ch Subset of total_ch processed * @param[in] total_ch Number of channels in LHS/RHS * @param[in] out_shift Per channel output shift. Length of vector is equal to number of channels. * @param[in] out_mult Per channel output multiplier. Length of vector is equal to number of channels. * @param[in] out_offset Offset to be added to the output values. Range: -127 to 128 * @param[in] activation_min Minimum value to clamp the output to. Range: int8 * @param[in] activation_max Maximum value to clamp the output to. Range: int8 * @param[in] row_x_col (row_dimension * col_dimension) of LHS/RHS matrix * @param[in] output_bias Per channel output bias. Length of vector is equal to number of channels. * @param[in] out Output pointer * * @return The function returns one of the two * - Updated output pointer if an implementation is available * - NULL if no implementation is available. * * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read * out for the following. * - Output shift * - Output multiplier * - Output bias * - rhs */ arm_cmsis_nn_status arm_nn_depthwise_conv_nt_t_s4(const int8_t *lhs, const int8_t *rhs, const int32_t lhs_offset, const int32_t active_ch, const int32_t total_ch, const int32_t *out_shift, const int32_t *out_mult, const int32_t out_offset, const int32_t activation_min, const int32_t activation_max, const uint16_t row_x_col, const int32_t *const output_bias, int8_t *out); /** * @brief Depthwise convolution of transposed rhs matrix with 4 lhs matrices. To be used in non-padded cases. * Dimensions are the same for lhs and rhs. * * @param[in] lhs Input left-hand side matrix * @param[in] rhs Input right-hand side matrix (transposed) * @param[in] num_ch Number of channels in LHS/RHS * @param[in] out_shift Per channel output shift. Length of vector is equal to number of channels. * @param[in] out_mult Per channel output multiplier. Length of vector is equal to number of channels. * @param[in] activation_min Minimum value to clamp the output to. Range: int8 * @param[in] activation_max Maximum value to clamp the output to. Range: int8 * @param[in] row_x_col (row_dimension * col_dimension) of LHS/RHS matrix * @param[in] output_bias Per channel output bias. Length of vector is equal to number of channels. * @param[in] out Output pointer * * @return The function returns one of the two * - Updated output pointer if an implementation is available * - NULL if no implementation is available. * * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read * out for the following. * - Output shift * - Output multiplier * - Output bias * - rhs */ int16_t *arm_nn_depthwise_conv_nt_t_s16(const int16_t *lhs, const int8_t *rhs, const uint16_t num_ch, const int32_t *out_shift, const int32_t *out_mult, const int32_t activation_min, const int32_t activation_max, const uint16_t row_x_col, const int64_t *const output_bias, int16_t *out); /** @brief Read 2 s16 elements and post increment pointer. @param[in] in_q15 Pointer to pointer that holds address of input. @return q31 value */ __STATIC_FORCEINLINE int32_t arm_nn_read_q15x2_ia(const int16_t **in_q15) { int32_t val; memcpy(&val, *in_q15, 4); *in_q15 += 2; return (val); } /** @brief Read 4 s8 from s8 pointer and post increment pointer. @param[in] in_s8 Pointer to pointer that holds address of input. @return q31 value */ __STATIC_FORCEINLINE int32_t arm_nn_read_s8x4_ia(const int8_t **in_s8) { int32_t val; memcpy(&val, *in_s8, 4); *in_s8 += 4; return (val); } /** @brief Read 2 s8 from s8 pointer and post increment pointer. @param[in] in_s8 Pointer to pointer that holds address of input. @return q31 value */ __STATIC_FORCEINLINE int32_t arm_nn_read_s8x2_ia(const int8_t **in_s8) { int32_t val; memcpy(&val, *in_s8, 2); *in_s8 += 2; return (val); } /** @brief Read 2 int16 values from int16 pointer. @param[in] in pointer to address of input. @return s32 value */ __STATIC_FORCEINLINE int32_t arm_nn_read_s16x2(const int16_t *in) { int32_t val; memcpy(&val, in, 4); return (val); } /** @brief Read 4 s8 values. @param[in] in_s8 pointer to address of input. @return s32 value */ __STATIC_FORCEINLINE int32_t arm_nn_read_s8x4(const int8_t *in_s8) { int32_t val; memcpy(&val, in_s8, 4); return (val); } /** @brief Read 2 s8 values. @param[in] in_s8 pointer to address of input. @return s32 value */ __STATIC_FORCEINLINE int32_t arm_nn_read_s8x2(const int8_t *in_s8) { int32_t val; memcpy(&val, in_s8, 2); return (val); } /** @brief Write four s8 to s8 pointer and increment pointer afterwards. @param[in] in Double pointer to input value @param[in] value Four bytes to copy */ __STATIC_FORCEINLINE void arm_nn_write_s8x4_ia(int8_t **in, int32_t value) { memcpy(*in, &value, 4); *in += 4; } /** * @brief memset optimized for MVE * @param[in, out] dst Destination pointer * @param[in] val Value to set * @param[in] block_size Number of bytes to copy. * */ __STATIC_FORCEINLINE void arm_memset_s8(int8_t *dst, const int8_t val, uint32_t block_size) { #if defined(ARM_MATH_MVEI) __asm volatile(" vdup.8 q0, %[set_val] \n" " wlstp.8 lr, %[cnt], 1f \n" "2: \n" " vstrb.8 q0, [%[in]], #16 \n" " letp lr, 2b \n" "1: \n" : [in] "+r"(dst) : [cnt] "r"(block_size), [set_val] "r"(val) : "q0", "memory", "r14"); #else memset(dst, val, block_size); #endif } #if defined(ARM_MATH_DSP) /** * @brief read and expand one s4 word into two s8 words. */ __STATIC_FORCEINLINE void read_and_pad_s4(const int8_t *source, int32_t *out1, int32_t *out2) { int16_t in = arm_nn_read_s8x2(source); int32_t inA = (in & 0x00FF) | ((in & 0xFF00) << 8); *out1 = SXTB16_RORn(__sxtb16(inA << 4), 4); *out2 = SXTB16_RORn(__sxtb16(inA), 4); } /** * @brief read and expand one s4 word into two s8 words. * @details The s4 elements are not evenly aligned on the byte boundary, so 3 bytes need to be read instead of 2. * In other words first nibble to read start at the middle of a byte. * byte index, s4 element * 0, s4_x * 0, s4_0 * 1, s4_1 * 1, s4_2 * 2, s4_3 * 2, s4_x */ __STATIC_FORCEINLINE void read_and_pad_s4_uneven(const int8_t *source, int32_t *out1, int32_t *out2) { int32_t inA1 = (source[0] & 0xFF) | ((source[1] & 0xFF) << 16); int32_t inA2 = (source[1] & 0xFF) | ((source[2] & 0xFF) << 16); *out1 = SXTB16_RORn(__sxtb16(inA2 << 4), 4); *out2 = SXTB16_RORn(__sxtb16(inA1), 4); } /** * @brief read and expand one s4 word into two s16 words with ordering. */ __STATIC_FORCEINLINE void read_and_pad_s4_ordered(const int8_t *source, int32_t *out1, int32_t *out2) { int16_t in = arm_nn_read_s8x2(source); int32_t inA = (in & 0x00FF) | ((in & 0xFF00) << 8); int32_t inAbuf1 = SXTB16_RORn(__sxtb16(inA), 4); int32_t inAbuf2 = SXTB16_RORn(__sxtb16(inA << 4), 4); #ifndef ARM_MATH_BIG_ENDIAN *out2 = (int32_t)(PKHTB(inAbuf1, inAbuf2, 16)); *out1 = (int32_t)(PKHBT(inAbuf2, inAbuf1, 16)); #else *out1 = (int32_t)(PKHTB(inAbuf1, inAbuf2, 16)); *out2 = (int32_t)(PKHBT(inAbuf2, inAbuf1, 16)); #endif } /** * @brief read and expand one s8 word into two s16 words with ordering. */ __STATIC_FORCEINLINE const int8_t *read_and_pad(const int8_t *source, int32_t *out1, int32_t *out2) { int32_t inA = arm_nn_read_s8x4_ia(&source); int32_t inAbuf1 = SXTB16_RORn((uint32_t)inA, 8); int32_t inAbuf2 = SXTB16(inA); #ifndef ARM_MATH_BIG_ENDIAN *out2 = (int32_t)(PKHTB(inAbuf1, inAbuf2, 16)); *out1 = (int32_t)(PKHBT(inAbuf2, inAbuf1, 16)); #else *out1 = (int32_t)(PKHTB(inAbuf1, inAbuf2, 16)); *out2 = (int32_t)(PKHBT(inAbuf2, inAbuf1, 16)); #endif return source; } /** * @brief read and expand one s8 word into two s16 words with ordering and addition. */ __STATIC_FORCEINLINE void read_pad_and_add_s8(const int8_t *source, int32_t *out1, int32_t *out2, const uint32_t add) { int32_t inA = arm_nn_read_s8x4(source); int32_t inAbuf1 = SXTAB16_RORn(add, (uint32_t)inA, 8); int32_t inAbuf2 = SXTAB16(add, inA); #ifndef ARM_MATH_BIG_ENDIAN *out2 = (int32_t)(PKHTB(inAbuf1, inAbuf2, 16)); *out1 = (int32_t)(PKHBT(inAbuf2, inAbuf1, 16)); #else *out1 = (int32_t)(PKHTB(inAbuf1, inAbuf2, 16)); *out2 = (int32_t)(PKHBT(inAbuf2, inAbuf1, 16)); #endif } /** * @brief read and expand two bytes into one word with ordering. */ __STATIC_FORCEINLINE void read_and_pad_s8x2(const int8_t *source, int32_t *out) { int16_t in = arm_nn_read_s8x2(source); int32_t inA = (in & 0x00FF) | ((in & 0xFF00) << 8); *out = SXTB16(inA); } /** * @brief read and expand two bytes into one word with ordering and addition. */ __STATIC_FORCEINLINE void read_pad_and_add_s8x2(const int8_t *source, int32_t *out, const uint32_t add) { int16_t in = arm_nn_read_s8x2(source); int32_t inA = (in & 0x00FF) | ((in & 0xFF00) << 8); *out = SXTAB16(add, inA); } /** * @brief read and expand one s8 word into two s16 words with no additional ordering. */ __STATIC_FORCEINLINE const int8_t *read_and_pad_reordered(const int8_t *source, int32_t *out1, int32_t *out2) { int32_t inA = arm_nn_read_s8x4_ia(&source); #ifndef ARM_MATH_BIG_ENDIAN *out2 = SXTB16(ROR((uint32_t)inA, 8)); *out1 = SXTB16(inA); #else *out1 = SXTB16(ROR((uint32_t)inA, 8)); *out2 = SXTB16(inA); #endif return source; } #endif /** * @brief Matrix-multiplication function for convolution with per-channel requantization and 4 bit weights. * @param[in] input_a pointer to operand A, int8 packed with 2x int4. * @param[in] input_b pointer to operand B, always consists of 2 vectors. * @param[in] output_ch number of rows of A * @param[in] out_shift pointer to per output channel requantization shift parameter. * @param[in] out_mult pointer to per output channel requantization multiplier parameter. * @param[in] out_offset output tensor offset. * @param[in] activation_min minimum value to clamp the output to. Range : int8 * @param[in] activation_max maximum value to clamp the output to. Range : int8 * @param[in] num_col_a number of columns of A * @param[in] output_bias per output channel bias. Range : int32 * @param[in,out] out_0 pointer to output * @return The function returns one of the two * 1. The incremented output pointer for a successful operation or * 2. NULL if implementation is not available. * * @details This function does the matrix multiplication of weight matrix for all output channels * with 2 columns from im2col and produces two elements/output_channel. The outputs are * clamped in the range provided by activation min and max. * Supported framework: TensorFlow Lite micro. */ int8_t *arm_nn_mat_mult_kernel_s4_s16(const int8_t *input_a, const int16_t *input_b, const uint16_t output_ch, const int32_t *out_shift, const int32_t *out_mult, const int32_t out_offset, const int32_t activation_min, const int32_t activation_max, const int32_t num_col_a, const int32_t *const output_bias, int8_t *out_0); /** * @brief Matrix-multiplication function for convolution with per-channel requantization. * @param[in] input_a pointer to operand A * @param[in] input_b pointer to operand B, always consists of 2 vectors. * @param[in] output_ch number of rows of A * @param[in] out_shift pointer to per output channel requantization shift parameter. * @param[in] out_mult pointer to per output channel requantization multiplier parameter. * @param[in] out_offset output tensor offset. * @param[in] activation_min minimum value to clamp the output to. Range : int8 * @param[in] activation_max maximum value to clamp the output to. Range : int8 * @param[in] num_col_a number of columns of A * @param[in] aligned_num_col_a number of columns of A aligned by 4 * @param[in] output_bias per output channel bias. Range : int32 * @param[in,out] out_0 pointer to output * @return The function returns one of the two * 1. The incremented output pointer for a successful operation or * 2. NULL if implementation is not available. * * @details This function does the matrix multiplication of weight matrix for all output channels * with 2 columns from im2col and produces two elements/output_channel. The outputs are * clamped in the range provided by activation min and max. * Supported framework: TensorFlow Lite micro. */ int8_t *arm_nn_mat_mult_kernel_s8_s16(const int8_t *input_a, const int16_t *input_b, const uint16_t output_ch, const int32_t *out_shift, const int32_t *out_mult, const int32_t out_offset, const int16_t activation_min, const int16_t activation_max, const int32_t num_col_a, const int32_t aligned_num_col_a, const int32_t *const output_bias, int8_t *out_0); /** * @brief Matrix-multiplication function for convolution with per-channel requantization, supporting an address offset * between rows. * @param[in] input_a pointer to operand A * @param[in] input_b pointer to operand B, always consists of 2 vectors. * @param[in] output_ch number of rows of A * @param[in] out_shift pointer to per output channel requantization shift parameter. * @param[in] out_mult pointer to per output channel requantization multiplier parameter. * @param[in] out_offset output tensor offset. * @param[in] activation_min minimum value to clamp the output to. Range : int8 * @param[in] activation_max maximum value to clamp the output to. Range : int8 * @param[in] num_col_a number of columns of A * @param[in] aligned_num_col_a number of columns of A aligned by 4 * @param[in] output_bias per output channel bias. Range : int32 * @param[in] row_address_offset address offset between rows in the output * @param[in,out] out_0 pointer to output * @return The function returns one of the two * 1. The incremented output pointer for a successful operation or * 2. NULL if implementation is not available. * * @details This function does the matrix multiplication of weight matrix for all output channels * with 2 columns from im2col and produces two elements/output_channel. The outputs are * clamped in the range provided by activation min and max. * * This function is slighly less performant than arm_nn_mat_mult_kernel_s8_s16, but allows support for * grouped convolution. Supported framework: TensorFlow Lite micro. */ int8_t *arm_nn_mat_mult_kernel_row_offset_s8_s16(const int8_t *input_a, const int16_t *input_b, const uint16_t output_ch, const int32_t *out_shift, const int32_t *out_mult, const int32_t out_offset, const int16_t activation_min, const int16_t activation_max, const int32_t num_col_a, const int32_t aligned_num_col_a, const int32_t *const output_bias, const int32_t row_address_offset, int8_t *out_0); /** * @brief Common softmax function for s8 input and s8 or s16 output * @param[in] input Pointer to the input tensor * @param[in] num_rows Number of rows in the input tensor * @param[in] row_size Number of elements in each input row * @param[in] mult Input quantization multiplier * @param[in] shift Input quantization shift within the range [0, 31] * @param[in] diff_min Minimum difference with max in row. Used to check if * the quantized exponential operation can be performed * @param[in] int16_output Indicating s8 output if 0 else s16 output * @param[out] output Pointer to the output tensor * * @note Supported framework: TensorFlow Lite micro (bit-accurate) * */ void arm_nn_softmax_common_s8(const int8_t *input, const int32_t num_rows, const int32_t row_size, const int32_t mult, const int32_t shift, const int32_t diff_min, const bool int16_output, void *output); /** * @brief macro for adding rounding offset */ #ifndef ARM_NN_TRUNCATE #define NN_ROUND(out_shift) ((0x1 << out_shift) >> 1) #else #define NN_ROUND(out_shift) 0 #endif // Macros for shortening quantization functions' names and avoid long lines #define MUL_SAT(a, b) arm_nn_doubling_high_mult((a), (b)) #define MUL_SAT_MVE(a, b) arm_doubling_high_mult_mve_32x4((a), (b)) #define MUL_POW2(a, b) arm_nn_mult_by_power_of_two((a), (b)) #define DIV_POW2(a, b) arm_nn_divide_by_power_of_two((a), (b)) #define DIV_POW2_MVE(a, b) arm_divide_by_power_of_two_mve((a), (b)) #define EXP_ON_NEG(x) arm_nn_exp_on_negative_values((x)) #define ONE_OVER1(x) arm_nn_one_over_one_plus_x_for_x_in_0_1((x)) /** * @brief Saturating doubling high multiply. Result matches * NEON instruction VQRDMULH. * @param[in] m1 Multiplicand. Range: {NN_Q31_MIN, NN_Q31_MAX} * @param[in] m2 Multiplier. Range: {NN_Q31_MIN, NN_Q31_MAX} * @return Result of multiplication. * */ __STATIC_FORCEINLINE int32_t arm_nn_doubling_high_mult(const int32_t m1, const int32_t m2) { int32_t result = 0; // Rounding offset to add for a right shift of 31 int64_t mult = 1 << 30; if ((m1 < 0) ^ (m2 < 0)) { mult = 1 - mult; } // Gets resolved as a SMLAL instruction mult = mult + (int64_t)m1 * m2; // Utilize all of the upper 32 bits. This is the doubling step // as well. result = (int32_t)(mult / (1ll << 31)); if ((m1 == m2) && (m1 == (int32_t)NN_Q31_MIN)) { result = NN_Q31_MAX; } return result; } /** * @brief Doubling high multiply without saturation. This is intended * for requantization where the scale is a positive integer * * @param[in] m1 Multiplicand. Range: {NN_Q31_MIN, NN_Q31_MAX} * @param[in] m2 Multiplier Range: {NN_Q31_MIN, NN_Q31_MAX} * @return Result of multiplication. * @note The result of this matches that of neon instruction * VQRDMULH for m1 in range {NN_Q31_MIN, NN_Q31_MAX} and m2 in * range {NN_Q31_MIN + 1, NN_Q31_MAX}. Saturation occurs when * m1 equals m2 equals NN_Q31_MIN and that is not handled by * this function. * */ __STATIC_FORCEINLINE int32_t arm_nn_doubling_high_mult_no_sat(const int32_t m1, const int32_t m2) { int32_t result = 0; union arm_nn_long_long mult; // Rounding offset to add for a right shift of 31 mult.word.low = 1 << 30; mult.word.high = 0; // Gets resolved as a SMLAL instruction mult.long_long = mult.long_long + (int64_t)m1 * m2; // Utilize all of the upper 32 bits. This is the doubling step // as well. result = (int32_t)(mult.long_long >> 31); return result; } /** * @brief Rounding divide by power of two. * @param[in] dividend - Dividend * @param[in] exponent - Divisor = power(2, exponent) * Range: [0, 31] * @return Rounded result of division. Midpoint is rounded away from zero. * */ __STATIC_FORCEINLINE int32_t arm_nn_divide_by_power_of_two(const int32_t dividend, const int32_t exponent) { int32_t result = 0; const int32_t remainder_mask = (1 << exponent) - 1; int32_t remainder = remainder_mask & dividend; // Basic division result = dividend >> exponent; // Adjust 'result' for rounding (mid point away from zero) int32_t threshold = remainder_mask >> 1; if (result < 0) { threshold++; } if (remainder > threshold) { result++; } return result; } /** * @brief Requantize a given value. * @details Essentially returns (val * multiplier)/(2 ^ shift) with different rounding depending if * CMSIS_NN_USE_SINGLE_ROUNDING is defined or not. * @param[in] val Value to be requantized * @param[in] multiplier Multiplier. Range {NN_Q31_MIN + 1, Q32_MAX} * @param[in] shift Shift. Range: {-31, 30} * Default branch: * If shift is positive left shift 'val * multiplier' with shift * If shift is negative right shift 'val * multiplier' with abs(shift) * Single round branch: * Input for total_shift in divide by '2 ^ total_shift' * * @return Default branch: * Returns (val * multiplier) with rounding divided by (2 ^ shift) with rounding * Single round branch: * Returns (val * multiplier)/(2 ^ (31 - shift)) with rounding * */ __STATIC_FORCEINLINE int32_t arm_nn_requantize(const int32_t val, const int32_t multiplier, const int32_t shift) { #ifdef CMSIS_NN_USE_SINGLE_ROUNDING const int64_t total_shift = 31 - shift; const int64_t new_val = val * (int64_t)multiplier; int32_t result = new_val >> (total_shift - 1); result = (result + 1) >> 1; return result; #else return arm_nn_divide_by_power_of_two(arm_nn_doubling_high_mult_no_sat(val * (1 << LEFT_SHIFT(shift)), multiplier), RIGHT_SHIFT(shift)); #endif } /** * @brief Requantize a given 64 bit value. * @param[in] val Value to be requantized in the range {-(1<<47)} to {(1<<47) - 1} * @param[in] reduced_multiplier Reduced multiplier in the range {NN_Q31_MIN + 1, Q32_MAX} to {Q16_MIN + 1, * Q16_MAX} * @param[in] shift Left or right shift for 'val * multiplier' in the range {-31} to {7} * * @return Returns (val * multiplier)/(2 ^ shift) * */ __STATIC_FORCEINLINE int32_t arm_nn_requantize_s64(const int64_t val, const int32_t reduced_multiplier, const int32_t shift) { const int64_t new_val = val * reduced_multiplier; int32_t result = new_val >> (14 - shift); // 64->32 bit reduction result = (result + 1) >> 1; // Last shift position and insert round return result; } /** * @brief memcpy optimized for MVE * @param[in, out] dst Destination pointer * @param[in] src Source pointer. * @param[in] block_size Number of bytes to copy. * */ __STATIC_FORCEINLINE void arm_memcpy_s8(int8_t *__RESTRICT dst, const int8_t *__RESTRICT src, uint32_t block_size) { #if defined(ARM_MATH_MVEI) __asm volatile(" wlstp.8 lr, %[cnt], 1f \n" "2: \n" " vldrb.8 q0, [%[in]], #16 \n" " vstrb.8 q0, [%[out]], #16 \n" " letp lr, 2b \n" "1: \n" : [in] "+r"(src), [out] "+r"(dst) : [cnt] "r"(block_size) : "q0", "memory", "r14"); #else memcpy(dst, src, block_size); #endif } /** * @brief memcpy wrapper for int16 * @param[in, out] dst Destination pointer * @param[in] src Source pointer. * @param[in] block_size Number of bytes to copy. * */ __STATIC_FORCEINLINE void arm_memcpy_q15(int16_t *__RESTRICT dst, const int16_t *__RESTRICT src, uint32_t block_size) { memcpy(dst, src, block_size); } #if defined(ARM_MATH_MVEI) /** * @brief Vector saturating doubling high multiply returning high half. * @param[in] m1 Multiplicand * @param[in] m2 Multiplier * @return Result of multiplication. * */ __STATIC_FORCEINLINE int32x4_t arm_doubling_high_mult_mve(const int32x4_t m1, const int32_t m2) { return vqrdmulhq_n_s32(m1, m2); } /** * @brief Vector rounding divide by power of two. * @param[in] dividend - Dividend vector * @param[in] exponent - Divisor = power(2, exponent) * Range: [0, 31] * @return Rounded result of division. Midpoint is rounded away from zero. * */ __STATIC_FORCEINLINE int32x4_t arm_divide_by_power_of_two_mve(const int32x4_t dividend, const int32_t exponent) { const int32x4_t shift = vdupq_n_s32(-exponent); const int32x4_t fixup = vshrq_n_s32(vandq_s32(dividend, shift), 31); const int32x4_t fixed_up_dividend = vqaddq_s32(dividend, fixup); return vrshlq_s32(fixed_up_dividend, shift); } /** * @brief Requantize a given vector. * @param[in] val Vector to be requantized * @param[in] multiplier multiplier * @param[in] shift shift * * @return Returns (val * multiplier)/(2 ^ shift) with different rounding. See arm_nn_requantize for detatails. * */ __STATIC_FORCEINLINE int32x4_t arm_requantize_mve(const int32x4_t val, const int32_t multiplier, const int32_t shift) { #ifdef CMSIS_NN_USE_SINGLE_ROUNDING const int right_shift = MIN(-1, shift); const int left_shift = shift - right_shift; const int32x4_t left_shift_dup = vdupq_n_s32(left_shift); const int32x4_t right_shift_dup = vdupq_n_s32(right_shift); int32x4_t result = vqdmulhq_n_s32(vshlq_s32(val, left_shift_dup), multiplier); result = vrshlq_s32(result, right_shift_dup); return result; #else return arm_divide_by_power_of_two_mve( arm_doubling_high_mult_mve(vshlq_s32(val, vdupq_n_s32(LEFT_SHIFT(shift))), multiplier), RIGHT_SHIFT(shift)); #endif } /** * @brief Vector saturating doubling high multiply with predication returning high half. * @param[in] m1 Multiplicand * @param[in] m2 Multiplier * @param[in] p Vector predication mask * @param[in] v_zero Vector of zeroes for merging predication intrinsic * @return Result of multiplication. * */ __STATIC_FORCEINLINE int32x4_t arm_doubling_high_mult_mve_pred(const int32x4_t m1, const int32_t m2, const mve_pred16_t p, const int32x4_t v_zero) { return vqrdmulhq_m_n_s32(v_zero, m1, m2, p); } /** * @brief Vector rounding divide by power of two with predication. * @param[in] dividend - Dividend vector * @param[in] exponent - Divisor = power(2, exponent) * Range: [0, 31] * @param[in] p - Vector predication mask * @param[in] v_zero - Vector of zeroes for merging predication intrinsic * @return Rounded result of division. Midpoint is rounded away from zero. * */ __STATIC_FORCEINLINE int32x4_t arm_divide_by_power_of_two_mve_pred(const int32x4_t dividend, const int32_t exponent, const mve_pred16_t p, const int32x4_t v_zero) { const int32x4_t shift = vdupq_x_n_s32(-exponent, p); const int32x4_t fixup = vshrq_x_n_s32(vandq_x_s32(dividend, shift, p), 31, p); const int32x4_t fixed_up_dividend = vqaddq_m_s32(v_zero, dividend, fixup, p); return vrshlq_m_s32(v_zero, fixed_up_dividend, shift, p); } /** * @brief Requantize a given vector with predication. * @param[in] val Vector to be requantized * @param[in] multiplier multiplier * @param[in] shift shift * @param[in] p Vector predication mask * * @return Returns (val * multiplier)/(2 ^ shift) * */ __STATIC_FORCEINLINE int32x4_t arm_requantize_mve_pred(const int32x4_t val, const int32_t multiplier, const int32_t shift, const mve_pred16_t p) { #ifdef CMSIS_NN_USE_SINGLE_ROUNDING const int right_shift = MIN(-1, shift); const int left_shift = shift - right_shift; const int32x4_t v_zero = vcreateq_s32(0, 0); const int32x4_t left_shift_dup = vdupq_x_n_s32(left_shift, p); const int32x4_t right_shift_dup = vdupq_x_n_s32(right_shift, p); int32x4_t result = vqrdmulhq_m_n_s32(v_zero, vshlq_m_s32(v_zero, val, left_shift_dup, p), multiplier, p); result = vrshlq_m_s32(v_zero, result, right_shift_dup, p); return result; #else const int32x4_t v_zero = vcreateq_s32(0, 0); return arm_divide_by_power_of_two_mve_pred( arm_doubling_high_mult_mve_pred( vshlq_m_s32(v_zero, val, vdupq_x_n_s32(LEFT_SHIFT(shift), p), p), multiplier, p, v_zero), RIGHT_SHIFT(shift), p, v_zero); #endif } __STATIC_FORCEINLINE int32x4_t arm_doubling_high_mult_mve_32x4(const int32x4_t m1, const int32x4_t m2) { return vqrdmulhq_s32(m1, m2); } __STATIC_FORCEINLINE int32x4_t arm_divide_by_power_of_two_mve_32x4(const int32x4_t dividend, const int32x4_t exponent) { const int32x4_t shift = -exponent; const int32x4_t fixup = vshrq_n_s32(vandq_s32(dividend, shift), 31); const int32x4_t fixed_up_dividend = vqaddq_s32(dividend, fixup); return vrshlq_s32(fixed_up_dividend, shift); } __STATIC_FORCEINLINE int32x4_t arm_requantize_mve_32x4(const int32x4_t val, const int32x4_t multiplier, const int32x4_t shift) { #ifdef CMSIS_NN_USE_SINGLE_ROUNDING const int32x4_t right_shift = vminq_s32(vdupq_n_s32(-1), shift); const int32x4_t left_shift = vqsubq_s32(shift, right_shift); int32x4_t result = vqdmulhq_s32(vshlq_s32(val, left_shift), multiplier); result = vrshlq_s32(result, right_shift); return result; #else const int32x4_t zz = vdupq_n_s32(0); const mve_pred16_t p = vcmpgtq_n_s32(shift, 0); const int32x4_t left_shift = vpselq_s32(shift, zz, p); const int32x4_t right_shift = -vpselq_s32(zz, shift, p); return arm_divide_by_power_of_two_mve_32x4(arm_doubling_high_mult_mve_32x4(vshlq_s32(val, left_shift), multiplier), right_shift); #endif } #endif // @note The following functions are used only for softmax layer, scaled bits = 5 assumed __STATIC_FORCEINLINE int32_t arm_nn_exp_on_negative_values(int32_t val) { int32_t mask = 0; int32_t shift = 24; const int32_t val_mod_minus_quarter = (val & ((1 << shift) - 1)) - (1 << shift); const int32_t remainder = val_mod_minus_quarter - val; const int32_t x = (val_mod_minus_quarter << 5) + (1 << 28); const int32_t x2 = MUL_SAT(x, x); int32_t result = 1895147668 + MUL_SAT(1895147668, x + DIV_POW2(MUL_SAT(DIV_POW2(MUL_SAT(x2, x2), 2) + MUL_SAT(x2, x), 715827883) + x2, 1)); #define SELECT_IF_NON_ZERO(x) \ { \ mask = MASK_IF_NON_ZERO(remainder & (1 << shift++)); \ result = SELECT_USING_MASK(mask, MUL_SAT(result, x), result); \ } SELECT_IF_NON_ZERO(1672461947) SELECT_IF_NON_ZERO(1302514674) SELECT_IF_NON_ZERO(790015084) SELECT_IF_NON_ZERO(290630308) SELECT_IF_NON_ZERO(39332535) SELECT_IF_NON_ZERO(720401) SELECT_IF_NON_ZERO(242) #undef SELECT_IF_NON_ZERO mask = MASK_IF_ZERO(val); return SELECT_USING_MASK(mask, NN_Q31_MAX, result); } __STATIC_FORCEINLINE int32_t arm_nn_mult_by_power_of_two(const int32_t val, const int32_t exp) { const int32_t thresh = ((1 << (31 - exp)) - 1); int32_t result = val << exp; result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val > thresh), NN_Q31_MAX, result); result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val < -thresh), NN_Q31_MIN, result); return result; } __STATIC_FORCEINLINE int32_t arm_nn_one_over_one_plus_x_for_x_in_0_1(int32_t val) { const int64_t sum = (int64_t)val + (int64_t)NN_Q31_MAX; const int32_t half_denominator = (int32_t)((sum + (sum >= 0 ? 1 : -1)) / 2L); int32_t x = 1515870810 + MUL_SAT(half_denominator, -1010580540); const int32_t shift = (1 << 29); x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2); x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2); x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2); return MUL_POW2(x, 1); } /** @brief Write 2 s16 elements and post increment pointer. @param[in] dest_q15 Pointer to pointer that holds address of destination. @param[in] src_q31 Input value to be written. */ __STATIC_FORCEINLINE void arm_nn_write_q15x2_ia(int16_t **dest_q15, int32_t src_q31) { int32_t val = src_q31; memcpy(*dest_q15, &val, 4); *dest_q15 += 2; } /** @brief Write 2 s8 elements and post increment pointer. @param[in] dst Pointer to pointer that holds address of destination. @param[in] src Input value to be written. */ __STATIC_FORCEINLINE void arm_nn_write_s8x2_ia(int8_t **dst, int16_t src) { memcpy(*dst, &src, 2); *dst += 2; } // Support functions for LSTM /** * @brief Update LSTM function for an iteration step using s8 input and output, and s16 internally. * * @param[in] data_in Data input pointer * @param[in] hidden_in Hidden state/ recurrent input pointer * @param[out] hidden_out Hidden state/ recurrent output pointer * @param[in] params Struct containg all information about the lstm operator, see * arm_nn_types. * @param[in] buffers Struct containg pointers to all temporary scratch buffers needed for the * lstm operator, see arm_nn_types. * @param[in] batch_offset Number of timesteps between consecutive batches. * E.g for params->timing_major = true, all batches for t=0 are stored sequentially, so batch offset = 1. * For params->time major = false, all time steps are stored continously before the next batch, so * batch offset = params->time_steps. * @return The function returns ARM_CMSIS_NN_SUCCESS */ arm_cmsis_nn_status arm_nn_lstm_step_s8(const int8_t *data_in, const int8_t *hidden_in, int8_t *hidden_out, const cmsis_nn_lstm_params *params, cmsis_nn_lstm_context *buffers, const int32_t batch_offset); /** * @brief Update LSTM function for an iteration step using s16 input and output, and s16 internally. * * @param[in] data_in Data input pointer * @param[in] hidden_in Hidden state/ recurrent input pointer * @param[out] hidden_out Hidden state/ recurrent output pointer * @param[in] params Struct containg all information about the lstm operator, see * arm_nn_types. * @param[in] buffers Struct containg pointers to all temporary scratch buffers needed for the * lstm operator, see arm_nn_types. * @param[in] batch_offset Number of timesteps between consecutive batches. * E.g for params->timing_major = true, all batches for t=0 are stored sequentially, so batch offset = 1. * For params->time major = false, all time steps are stored continously before the next batch, so * batch offset = params->time_steps. * @return The function returns ARM_CMSIS_NN_SUCCESS */ arm_cmsis_nn_status arm_nn_lstm_step_s16(const int16_t *data_in, const int16_t *hidden_in, int16_t *hidden_out, const cmsis_nn_lstm_params *params, cmsis_nn_lstm_context *buffers, const int32_t batch_offset); /** * @brief Updates a LSTM gate for an iteration step of LSTM function, int8x8_16 version. * * @param[in] data_in Data input pointer * @param[in] hidden_in Hidden state/ recurrent input pointer * @param[in] gate_data Struct containing all information about the gate caluclation, see * arm_nn_types. * @param[in] params Struct containing all information about the lstm_operation, see * arm_nn_types * @param[out] output Hidden state/ recurrent output pointer * @param[in] batch_offset Number of timesteps between consecutive batches, see * arm_nn_lstm_step_s8. * @return The function returns ARM_CMSIS_NN_SUCCESS */ arm_cmsis_nn_status arm_nn_lstm_calculate_gate_s8_s16(const int8_t *data_in, const int8_t *hidden_in, const cmsis_nn_lstm_gate *gate_data, const cmsis_nn_lstm_params *params, int16_t *output, const int32_t batch_offset); /** * @brief Updates a LSTM gate for an iteration step of LSTM function, int16x8_16 version. * * @param[in] data_in Data input pointer * @param[in] hidden_in Hidden state/ recurrent input pointer * @param[in] gate_data Struct containing all information about the gate caluclation, see * arm_nn_types. * @param[in] params Struct containing all information about the lstm_operation, see * arm_nn_types * @param[out] output Hidden state/ recurrent output pointer * @param[in] batch_offset Number of timesteps between consecutive batches, see * arm_nn_lstm_step_s16. * @return The function returns ARM_CMSIS_NN_SUCCESS */ arm_cmsis_nn_status arm_nn_lstm_calculate_gate_s16(const int16_t *data_in, const int16_t *hidden_in, const cmsis_nn_lstm_gate *gate_data, const cmsis_nn_lstm_params *params, int16_t *output, const int32_t batch_offset); /** * @brief The result of the multiplication is accumulated to the passed result buffer. * Multiplies a matrix by a "batched" vector (i.e. a matrix with a batch dimension composed by input vectors independent * from each other). * * @param[in] lhs Batched vector * @param[in] rhs Weights - input matrix (H(Rows)xW(Columns)) * @param[in] effective_bias Bias + lhs_offset * kernel_sum term precalculated into a constant vector. * @param[out] dst Output * @param[in] dst_multiplier Multiplier for quantization * @param[in] dst_shift Shift for quantization * @param[in] rhs_cols Vector/matarix column length * @param[in] rhs_rows Row count of matrix * @param[in] batches Batch size * @param[in] batch_offset Number of timesteps between consecutive batches in input, see arm_nn_lstm_step_s8. Note that the output is always stored with sequential batches. * @return The function returns ARM_CMSIS_NN_SUCCESS */ arm_cmsis_nn_status arm_nn_vec_mat_mul_result_acc_s8_s16(const int8_t *lhs, const int8_t *rhs, const int32_t *effective_bias, int16_t *dst, const int32_t dst_multiplier, const int32_t dst_shift, const int32_t rhs_cols, const int32_t rhs_rows, const int32_t batches, const int32_t batch_offset); /** * @brief The result of the multiplication is accumulated to the passed result buffer. * Multiplies a matrix by a "batched" vector (i.e. a matrix with a batch dimension composed by input vectors independent * from each other). * * @param[in] lhs Batched vector * @param[in] rhs Weights - input matrix (H(Rows)xW(Columns)) * @param[in] effective_bias Bias + lhs_offset * kernel_sum term precalculated into a constant vector. * @param[out] dst Output * @param[in] dst_multiplier Multiplier for quantization * @param[in] dst_shift Shift for quantization * @param[in] rhs_cols Vector/matarix column length * @param[in] rhs_rows Row count of matrix * @param[in] batches Batch size * @param[in] batch_offset Number of timesteps between consecutive batches in input, see arm_nn_lstm_step_s16. Note that the output is always stored with sequential batches. * @return The function returns ARM_CMSIS_NN_SUCCESS */ arm_cmsis_nn_status arm_nn_vec_mat_mul_result_acc_s16(const int16_t *lhs, const int8_t *rhs, const int64_t *effective_bias, int16_t *dst, const int32_t dst_multiplier, const int32_t dst_shift, const int32_t rhs_cols, const int32_t rhs_rows, const int32_t batches, const int32_t batch_offset); /** * @brief s16 elementwise multiplication with s8 output * @param[in] input_1_vect pointer to input vector 1 * @param[in] input_2_vect pointer to input vector 2 * @param[in,out] output pointer to output vector * @param[in] out_offset output offset * @param[in] out_mult output multiplier * @param[in] out_shift output shift * @param[in] block_size number of samples per batch * @param[in] batch_size number of samples per batch * @param[in] batch_offset Number of timesteps between consecutive batches in output, see * arm_nn_lstm_step_s8. Note that it is assumed that the input is stored with sequential batches. * @return The function returns ARM_CMSIS_NN_SUCCESS * * @details Supported framework: TensorFlow Lite micro */ arm_cmsis_nn_status arm_elementwise_mul_s16_s8(const int16_t *input_1_vect, const int16_t *input_2_vect, int8_t *output, const int32_t out_offset, const int32_t out_mult, const int32_t out_shift, const int32_t block_size, const int32_t batch_size, const int32_t batch_offset); /** * @brief s16 elementwise multiplication with s16 output * @param[in] input_1_vect pointer to input vector 1 * @param[in] input_2_vect pointer to input vector 2 * @param[in,out] output pointer to output vector * @param[in] out_offset output offset * @param[in] out_mult output multiplier * @param[in] out_shift output shift * @param[in] block_size number of samples per batch * @param[in] batch_size number of samples per batch * @param[in] batch_offset Number of timesteps between consecutive batches in output, see * arm_nn_lstm_step_s16. Note that it is assumed that the input is stored with sequential batches. * @return The function returns ARM_CMSIS_NN_SUCCESS * * @details Supported framework: TensorFlow Lite micro */ arm_cmsis_nn_status arm_elementwise_mul_s16_batch_offset(const int16_t *input_1_vect, const int16_t *input_2_vect, int16_t *output, const int32_t out_offset, const int32_t out_mult, const int32_t out_shift, const int32_t block_size, const int32_t batch_size, const int32_t batch_offset); /** * @brief s16 elementwise multiplication. The result of the multiplication is accumulated to the passed result buffer. * @param[in] input_1_vect pointer to input vector 1 * @param[in] input_2_vect pointer to input vector 2 * @param[in] input_1_offset offset for input 1. Not used. * @param[in] input_2_offset offset for input 2. Not used. * @param[in,out] output pointer to output vector * @param[in] out_offset output offset. Not used. * @param[in] out_mult output multiplier * @param[in] out_shift output shift * @param[in] out_activation_min minimum value to clamp output to. Min: -32768 * @param[in] out_activation_max maximum value to clamp output to. Max: 32767 * @param[in] block_size number of samples * @return The function returns ARM_CMSIS_NN_SUCCESS * * @details Supported framework: TensorFlow Lite micro */ arm_cmsis_nn_status arm_elementwise_mul_acc_s16(const int16_t *input_1_vect, const int16_t *input_2_vect, const int32_t input_1_offset, const int32_t input_2_offset, int16_t *output, const int32_t out_offset, const int32_t out_mult, const int32_t out_shift, const int32_t out_activation_min, const int32_t out_activation_max, const int32_t block_size); #ifdef __cplusplus } #endif #endif /* ARM_NNSUPPORTFUNCTIONS_H */