/* * SPDX-FileCopyrightText: Copyright 2024, Arm Limited and/or its affiliates * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* ---------------------------------------------------------------------- * Project: CMSIS NN Library * Title: arm_lstm_unidirectional_s16.c * Description: S16 LSTM function with S16 gate output * * $Date: 26 March 2024 * $Revision: V.1.0.0 * * Target Processor: Cortex-M processors * * -------------------------------------------------------------------- */ #include "arm_nnfunctions.h" #include "arm_nnsupportfunctions.h" /** * @ingroup Public */ /** * @addtogroup LSTM * @{ */ /* * S16 LSTM function for TensorFlow Lite with S16 gate output * * Refer to header file for details. * */ arm_cmsis_nn_status arm_lstm_unidirectional_s16(const int16_t *input, int16_t *output, const cmsis_nn_lstm_params *params, cmsis_nn_lstm_context *buffers) { int16_t *hidden_in = NULL; memset(buffers->cell_state, 0, params->batch_size * params->hidden_size * sizeof(int16_t)); if (params->time_major) { // First dimension is time, input/output for each time step is stored continously in memory for (int t = 0; t < params->time_steps; t++) { const int16_t *data_in = input + (t * params->batch_size * params->input_size); int16_t *hidden_out = output + (t * params->batch_size * params->hidden_size); arm_cmsis_nn_status status = arm_nn_lstm_step_s16(data_in, hidden_in, hidden_out, params, buffers, 1); if (status != ARM_CMSIS_NN_SUCCESS) { return status; } // Output is used as recurrent input/hidden state for the next timestep. hidden_in = &hidden_out[0]; } } else { // First dimension is time, add batch_offset to jump in memory for each batch for (int t = 0; t < params->time_steps; t++) { const int16_t *data_in = input + (t * params->input_size); int16_t *hidden_out = output + (t * params->hidden_size); arm_cmsis_nn_status status = arm_nn_lstm_step_s16(data_in, hidden_in, hidden_out, params, buffers, params->time_steps); if (status != ARM_CMSIS_NN_SUCCESS) { return status; } // Output is used as recurrent input/hidden state for the next timestep. hidden_in = &hidden_out[0]; } } return ARM_CMSIS_NN_SUCCESS; } /** * @} end of LSTM group */