/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_rfft_fast_f32.c * Description: RFFT & RIFFT Floating point process function * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/transform_functions.h" #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) static void stage_rfft_f32( const arm_rfft_fast_instance_f32 * S, const float32_t * p, float32_t * pOut) { int32_t k; /* Loop Counter */ float32_t twR, twI; /* RFFT Twiddle coefficients */ const float32_t * pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ const float32_t *pA = p; /* increasing pointer */ const float32_t *pB = p; /* decreasing pointer */ float32_t xAR, xAI, xBR, xBI; /* temporary variables */ float32_t t1a, t1b; /* temporary variables */ float32_t p0, p1, p2, p3; /* temporary variables */ float32x4x2_t tw,xA,xB; float32x4x2_t tmp1, tmp2, res; uint32x4_t vecStridesFwd, vecStridesBkwd; vecStridesFwd = vidupq_u32((uint32_t)0, 2); vecStridesBkwd = -vecStridesFwd; int blockCnt; k = (S->Sint).fftLen - 1; /* Pack first and last sample of the frequency domain together */ xBR = pB[0]; xBI = pB[1]; xAR = pA[0]; xAI = pA[1]; twR = *pCoeff++ ; twI = *pCoeff++ ; // U1 = XA(1) + XB(1); % It is real t1a = xBR + xAR ; // U2 = XB(1) - XA(1); % It is imaginary t1b = xBI + xAI ; // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); *pOut++ = 0.5f * ( t1a + t1b ); *pOut++ = 0.5f * ( t1a - t1b ); // XA(1) = 1/2*( U1 - imag(U2) + i*( U1 +imag(U2) )); pB = p + 2*k; pA += 2; blockCnt = k >> 2; while (blockCnt > 0) { /* function X = my_split_rfft(X, ifftFlag) % X is a series of real numbers L = length(X); XC = X(1:2:end) +i*X(2:2:end); XA = fft(XC); XB = conj(XA([1 end:-1:2])); TW = i*exp(-2*pi*i*[0:L/2-1]/L).'; for l = 2:L/2 XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l))); end XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1)))); X = XA; */ xA = vld2q_f32(pA); pA += 8; xB = vld2q_f32(pB); xB.val[0] = vldrwq_gather_shifted_offset_f32(pB, vecStridesBkwd); xB.val[1] = vldrwq_gather_shifted_offset_f32(&pB[1], vecStridesBkwd); xB.val[1] = vnegq_f32(xB.val[1]); pB -= 8; tw = vld2q_f32(pCoeff); pCoeff += 8; tmp1.val[0] = vaddq_f32(xA.val[0],xB.val[0]); tmp1.val[1] = vaddq_f32(xA.val[1],xB.val[1]); tmp2.val[0] = vsubq_f32(xB.val[0],xA.val[0]); tmp2.val[1] = vsubq_f32(xB.val[1],xA.val[1]); res.val[0] = vmulq(tw.val[0], tmp2.val[0]); res.val[0] = vfmsq(res.val[0],tw.val[1], tmp2.val[1]); res.val[1] = vmulq(tw.val[0], tmp2.val[1]); res.val[1] = vfmaq(res.val[1], tw.val[1], tmp2.val[0]); res.val[0] = vaddq_f32(res.val[0],tmp1.val[0] ); res.val[1] = vaddq_f32(res.val[1],tmp1.val[1] ); res.val[0] = vmulq_n_f32(res.val[0], 0.5f); res.val[1] = vmulq_n_f32(res.val[1], 0.5f); vst2q_f32(pOut, res); pOut += 8; blockCnt--; } blockCnt = k & 3; while (blockCnt > 0) { /* function X = my_split_rfft(X, ifftFlag) % X is a series of real numbers L = length(X); XC = X(1:2:end) +i*X(2:2:end); XA = fft(XC); XB = conj(XA([1 end:-1:2])); TW = i*exp(-2*pi*i*[0:L/2-1]/L).'; for l = 2:L/2 XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l))); end XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1)))); X = XA; */ xBI = pB[1]; xBR = pB[0]; xAR = pA[0]; xAI = pA[1]; twR = *pCoeff++; twI = *pCoeff++; t1a = xBR - xAR ; t1b = xBI + xAI ; // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); p0 = twR * t1a; p1 = twI * t1a; p2 = twR * t1b; p3 = twI * t1b; *pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR *pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI pA += 2; pB -= 2; blockCnt--; } } /* Prepares data for inverse cfft */ static void merge_rfft_f32( const arm_rfft_fast_instance_f32 * S, const float32_t * p, float32_t * pOut) { int32_t k; /* Loop Counter */ float32_t twR, twI; /* RFFT Twiddle coefficients */ const float32_t *pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ const float32_t *pA = p; /* increasing pointer */ const float32_t *pB = p; /* decreasing pointer */ float32_t xAR, xAI, xBR, xBI; /* temporary variables */ float32_t t1a, t1b, r, s, t, u; /* temporary variables */ float32x4x2_t tw,xA,xB; float32x4x2_t tmp1, tmp2, res; uint32x4_t vecStridesFwd, vecStridesBkwd; vecStridesFwd = vidupq_u32((uint32_t)0, 2); vecStridesBkwd = -vecStridesFwd; int blockCnt; k = (S->Sint).fftLen - 1; xAR = pA[0]; xAI = pA[1]; pCoeff += 2 ; *pOut++ = 0.5f * ( xAR + xAI ); *pOut++ = 0.5f * ( xAR - xAI ); pB = p + 2*k ; pA += 2 ; blockCnt = k >> 2; while (blockCnt > 0) { /* G is half of the frequency complex spectrum */ //for k = 2:N // Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2)))); xA = vld2q_f32(pA); pA += 8; xB = vld2q_f32(pB); xB.val[0] = vldrwq_gather_shifted_offset_f32(pB, vecStridesBkwd); xB.val[1] = vldrwq_gather_shifted_offset_f32(&pB[1], vecStridesBkwd); xB.val[1] = vnegq_f32(xB.val[1]); pB -= 8; tw = vld2q_f32(pCoeff); tw.val[1] = vnegq_f32(tw.val[1]); pCoeff += 8; tmp1.val[0] = vaddq_f32(xA.val[0],xB.val[0]); tmp1.val[1] = vaddq_f32(xA.val[1],xB.val[1]); tmp2.val[0] = vsubq_f32(xB.val[0],xA.val[0]); tmp2.val[1] = vsubq_f32(xB.val[1],xA.val[1]); res.val[0] = vmulq(tw.val[0], tmp2.val[0]); res.val[0] = vfmsq(res.val[0],tw.val[1], tmp2.val[1]); res.val[1] = vmulq(tw.val[0], tmp2.val[1]); res.val[1] = vfmaq(res.val[1], tw.val[1], tmp2.val[0]); res.val[0] = vaddq_f32(res.val[0],tmp1.val[0] ); res.val[1] = vaddq_f32(res.val[1],tmp1.val[1] ); res.val[0] = vmulq_n_f32(res.val[0], 0.5f); res.val[1] = vmulq_n_f32(res.val[1], 0.5f); vst2q_f32(pOut, res); pOut += 8; blockCnt--; } blockCnt = k & 3; while (blockCnt > 0) { /* G is half of the frequency complex spectrum */ //for k = 2:N // Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2)))); xBI = pB[1] ; xBR = pB[0] ; xAR = pA[0]; xAI = pA[1]; twR = *pCoeff++; twI = *pCoeff++; t1a = xAR - xBR ; t1b = xAI + xBI ; r = twR * t1a; s = twI * t1b; t = twI * t1a; u = twR * t1b; // real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI); // imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI); *pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR *pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI pA += 2; pB -= 2; blockCnt--; } } #else static void stage_rfft_f32( const arm_rfft_fast_instance_f32 * S, const float32_t * p, float32_t * pOut) { int32_t k; /* Loop Counter */ float32_t twR, twI; /* RFFT Twiddle coefficients */ const float32_t * pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ const float32_t *pA = p; /* increasing pointer */ const float32_t *pB = p; /* decreasing pointer */ float32_t xAR, xAI, xBR, xBI; /* temporary variables */ float32_t t1a, t1b; /* temporary variables */ float32_t p0, p1, p2, p3; /* temporary variables */ k = (S->Sint).fftLen - 1; /* Pack first and last sample of the frequency domain together */ xBR = pB[0]; xBI = pB[1]; xAR = pA[0]; xAI = pA[1]; twR = *pCoeff++ ; twI = *pCoeff++ ; // U1 = XA(1) + XB(1); % It is real t1a = xBR + xAR ; // U2 = XB(1) - XA(1); % It is imaginary t1b = xBI + xAI ; // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); *pOut++ = 0.5f * ( t1a + t1b ); *pOut++ = 0.5f * ( t1a - t1b ); // XA(1) = 1/2*( U1 - imag(U2) + i*( U1 +imag(U2) )); pB = p + 2*k; pA += 2; do { /* function X = my_split_rfft(X, ifftFlag) % X is a series of real numbers L = length(X); XC = X(1:2:end) +i*X(2:2:end); XA = fft(XC); XB = conj(XA([1 end:-1:2])); TW = i*exp(-2*pi*i*[0:L/2-1]/L).'; for l = 2:L/2 XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l))); end XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1)))); X = XA; */ xBI = pB[1]; xBR = pB[0]; xAR = pA[0]; xAI = pA[1]; twR = *pCoeff++; twI = *pCoeff++; t1a = xBR - xAR ; t1b = xBI + xAI ; // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); p0 = twR * t1a; p1 = twI * t1a; p2 = twR * t1b; p3 = twI * t1b; *pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR *pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI pA += 2; pB -= 2; k--; } while (k > 0); } /* Prepares data for inverse cfft */ static void merge_rfft_f32( const arm_rfft_fast_instance_f32 * S, const float32_t * p, float32_t * pOut) { int32_t k; /* Loop Counter */ float32_t twR, twI; /* RFFT Twiddle coefficients */ const float32_t *pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ const float32_t *pA = p; /* increasing pointer */ const float32_t *pB = p; /* decreasing pointer */ float32_t xAR, xAI, xBR, xBI; /* temporary variables */ float32_t t1a, t1b, r, s, t, u; /* temporary variables */ k = (S->Sint).fftLen - 1; xAR = pA[0]; xAI = pA[1]; pCoeff += 2 ; *pOut++ = 0.5f * ( xAR + xAI ); *pOut++ = 0.5f * ( xAR - xAI ); pB = p + 2*k ; pA += 2 ; while (k > 0) { /* G is half of the frequency complex spectrum */ //for k = 2:N // Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2)))); xBI = pB[1] ; xBR = pB[0] ; xAR = pA[0]; xAI = pA[1]; twR = *pCoeff++; twI = *pCoeff++; t1a = xAR - xBR ; t1b = xAI + xBI ; r = twR * t1a; s = twI * t1b; t = twI * t1a; u = twR * t1b; // real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI); // imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI); *pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR *pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI pA += 2; pB -= 2; k--; } } #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ /** @ingroup groupTransforms */ /** @defgroup RealFFT Real FFT Functions @par The CMSIS DSP library includes specialized algorithms for computing the FFT of real data sequences. The FFT is defined over complex data but in many applications the input is real. Real FFT algorithms take advantage of the symmetry properties of the FFT and have a speed advantage over complex algorithms of the same length. @par The Fast RFFT algorithm relays on the mixed radix CFFT that save processor usage. @par The real length N forward FFT of a sequence is computed using the steps shown below. @par \image html RFFT.gif "Real Fast Fourier Transform" @par The real sequence is initially treated as if it were complex to perform a CFFT. Later, a processing stage reshapes the data to obtain half of the frequency spectrum in complex format. @par The input for the inverse RFFT should keep the same format as the output of the forward RFFT. A first processing stage pre-process the data to later perform an inverse CFFT. @par \image html RIFFT.gif "Real Inverse Fast Fourier Transform" @par The algorithms for floating-point, Q15, and Q31 data are slightly different and we describe each algorithm in turn. @par Floating-point The main functions are \ref arm_rfft_fast_f32() and \ref arm_rfft_fast_init_f32(). The older functions \ref arm_rfft_f32() and \ref arm_rfft_init_f32() have been deprecated but are still documented. For f16, the functions are \ref arm_rfft_fast_f16() and \ref arm_rfft_fast_init_f16(). For f64, the functions are \ref arm_rfft_fast_f64() and \ref arm_rfft_fast_init_f64(). @par The FFT of a real N-point sequence has even symmetry in the frequency domain. The second half of the data equals the conjugate of the first half flipped in frequency. This conjugate part is not computed by the float RFFT. As consequence, the output of a N point real FFT should be a N//2 + 1 complex numbers so N + 2 floats. @par It happens that the first complex of number of the RFFT output is actually all real. Its real part represents the DC offset. The value at Nyquist frequency is also real. @par Those two complex numbers can be encoded with 2 floats rather than using two numbers with an imaginary part set to zero. @par The implementation is using a trick so that the output buffer can be N float : the last real is packaged in the imaginary part of the first complex (since this imaginary part is not used and is zero). @par The real FFT functions pack the frequency domain data in this fashion. The forward transform outputs the data in this form and the inverse transform expects input data in this form. The function always performs the needed bitreversal so that the input and output data is always in normal order. The functions support lengths of [32, 64, 128, ..., 4096] samples. @par Q15 and Q31 The real algorithms are defined in a similar manner and utilize N/2 complex transforms behind the scenes. @par But warning, contrary to the float version, the fixed point implementation RFFT is also computing the conjugate part (except for MVE version) so the output buffer must be bigger. Also the fixed point RFFTs are not using any trick to pack the DC and Nyquist frequency in the same complex number. The RIFFT is not using the conjugate part but it is still using the Nyquist frequency value. The details are given in the documentation for the functions. @par The complex transforms used internally include scaling to prevent fixed-point overflows. The overall scaling equals 1/(fftLen/2). Due to the use of complex transform internally, the source buffer is modified by the rfft. @par A separate instance structure must be defined for each transform used but twiddle factor and bit reversal tables can be reused. @par There is also an associated initialization function for each data type. The initialization function performs the following operations: - Sets the values of the internal structure fields. - Initializes twiddle factor table and bit reversal table pointers. - Initializes the internal complex FFT data structure. @par Use of the initialization function is optional **except for MVE versions where it is mandatory**. If you don't use the initialization functions, then the structures should be initialized with code similar to the one below:
      arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
      arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
  
where fftLenReal is the length of the real transform; fftLenBy2 length of the internal complex transform (fftLenReal/2). ifftFlagR Selects forward (=0) or inverse (=1) transform. bitReverseFlagR Selects bit reversed output (=0) or normal order output (=1). twidCoefRModifier stride modifier for the twiddle factor table. The value is based on the FFT length; pTwiddleARealpoints to the A array of twiddle coefficients; pTwiddleBRealpoints to the B array of twiddle coefficients; pCfft points to the CFFT Instance structure. The CFFT structure must also be initialized. @par Note that with MVE versions you can't initialize instance structures directly and **must use the initialization function**. */ /** @defgroup DeprecatedRealFFT Deprecated Real FFT Functions */ /** @defgroup RealFFTF32 Real FFT F32 Functions */ /** @addtogroup RealFFTF32 @{ */ /** @brief Processing function for the floating-point real FFT. @param[in] S points to an arm_rfft_fast_instance_f32 structure @param[in] p points to input buffer (Source buffer is modified by this function.) @param[in] pOut points to output buffer @param[in] ifftFlag - value = 0: RFFT - value = 1: RIFFT */ ARM_DSP_ATTRIBUTE void arm_rfft_fast_f32( const arm_rfft_fast_instance_f32 * S, float32_t * p, float32_t * pOut, uint8_t ifftFlag) { const arm_cfft_instance_f32 * Sint = &(S->Sint); /* Calculation of Real FFT */ if (ifftFlag) { /* Real FFT compression */ merge_rfft_f32(S, p, pOut); /* Complex radix-4 IFFT process */ arm_cfft_f32( Sint, pOut, ifftFlag, 1); } else { /* Calculation of RFFT of input */ arm_cfft_f32( Sint, p, ifftFlag, 1); /* Real FFT extraction */ stage_rfft_f32(S, p, pOut); } } /** * @} end of RRealFFTF16ealFFT group */