/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_cmplx_dot_prod_f16.c * Description: Floating-point complex dot product * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/complex_math_functions_f16.h" #if defined(ARM_FLOAT16_SUPPORTED) /** @ingroup groupCmplxMath */ /** @addtogroup cmplx_dot_prod @{ */ /** @brief Floating-point complex dot product. @param[in] pSrcA points to the first input vector @param[in] pSrcB points to the second input vector @param[in] numSamples number of samples in each vector @param[out] realResult real part of the result returned here @param[out] imagResult imaginary part of the result returned here */ #if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE) #include "arm_helium_utils.h" ARM_DSP_ATTRIBUTE void arm_cmplx_dot_prod_f16( const float16_t * pSrcA, const float16_t * pSrcB, uint32_t numSamples, float16_t * realResult, float16_t * imagResult) { int32_t blkCnt; float16_t real_sum, imag_sum; f16x8_t vecSrcA, vecSrcB; f16x8_t vec_acc = vdupq_n_f16(0.0f16); f16x8_t vecSrcC, vecSrcD; blkCnt = (numSamples >> 3); blkCnt -= 1; if (blkCnt > 0) { /* should give more freedom to generate stall free code */ vecSrcA = vld1q( pSrcA); vecSrcB = vld1q( pSrcB); pSrcA += 8; pSrcB += 8; while (blkCnt > 0) { vec_acc = vcmlaq(vec_acc, vecSrcA, vecSrcB); vecSrcC = vld1q(pSrcA); pSrcA += 8; vec_acc = vcmlaq_rot90(vec_acc, vecSrcA, vecSrcB); vecSrcD = vld1q(pSrcB); pSrcB += 8; vec_acc = vcmlaq(vec_acc, vecSrcC, vecSrcD); vecSrcA = vld1q(pSrcA); pSrcA += 8; vec_acc = vcmlaq_rot90(vec_acc, vecSrcC, vecSrcD); vecSrcB = vld1q(pSrcB); pSrcB += 8; /* * Decrement the blockSize loop counter */ blkCnt--; } /* process last elements out of the loop avoid the armclang breaking the SW pipeline */ vec_acc = vcmlaq(vec_acc, vecSrcA, vecSrcB); vecSrcC = vld1q(pSrcA); vec_acc = vcmlaq_rot90(vec_acc, vecSrcA, vecSrcB); vecSrcD = vld1q(pSrcB); vec_acc = vcmlaq(vec_acc, vecSrcC, vecSrcD); vec_acc = vcmlaq_rot90(vec_acc, vecSrcC, vecSrcD); /* * tail */ blkCnt = CMPLX_DIM * (numSamples & 7); while (blkCnt > 0) { mve_pred16_t p = vctp16q(blkCnt); pSrcA += 8; pSrcB += 8; vecSrcA = vldrhq_z_f16(pSrcA, p); vecSrcB = vldrhq_z_f16(pSrcB, p); vec_acc = vcmlaq_m(vec_acc, vecSrcA, vecSrcB, p); vec_acc = vcmlaq_rot90_m(vec_acc, vecSrcA, vecSrcB, p); blkCnt -= 8; } } else { /* small vector */ blkCnt = numSamples * CMPLX_DIM; vec_acc = vdupq_n_f16(0.0f16); do { mve_pred16_t p = vctp16q(blkCnt); vecSrcA = vldrhq_z_f16(pSrcA, p); vecSrcB = vldrhq_z_f16(pSrcB, p); vec_acc = vcmlaq_m(vec_acc, vecSrcA, vecSrcB, p); vec_acc = vcmlaq_rot90_m(vec_acc, vecSrcA, vecSrcB, p); /* * Decrement the blkCnt loop counter * Advance vector source and destination pointers */ pSrcA += 8; pSrcB += 8; blkCnt -= 8; } while (blkCnt > 0); } /* Sum the partial parts */ mve_cmplx_sum_intra_r_i_f16(vec_acc, real_sum, imag_sum); /* * Store the real and imaginary results in the destination buffers */ *realResult = real_sum; *imagResult = imag_sum; } #else ARM_DSP_ATTRIBUTE void arm_cmplx_dot_prod_f16( const float16_t * pSrcA, const float16_t * pSrcB, uint32_t numSamples, float16_t * realResult, float16_t * imagResult) { uint32_t blkCnt; /* Loop counter */ _Float16 real_sum = 0.0f, imag_sum = 0.0f; /* Temporary result variables */ _Float16 a0,b0,c0,d0; #if defined (ARM_MATH_LOOPUNROLL) && !defined(ARM_MATH_AUTOVECTORIZE) /* Loop unrolling: Compute 4 outputs at a time */ blkCnt = numSamples >> 2U; while (blkCnt > 0U) { a0 = *pSrcA++; b0 = *pSrcA++; c0 = *pSrcB++; d0 = *pSrcB++; real_sum += a0 * c0; imag_sum += a0 * d0; real_sum -= b0 * d0; imag_sum += b0 * c0; a0 = *pSrcA++; b0 = *pSrcA++; c0 = *pSrcB++; d0 = *pSrcB++; real_sum += a0 * c0; imag_sum += a0 * d0; real_sum -= b0 * d0; imag_sum += b0 * c0; a0 = *pSrcA++; b0 = *pSrcA++; c0 = *pSrcB++; d0 = *pSrcB++; real_sum += a0 * c0; imag_sum += a0 * d0; real_sum -= b0 * d0; imag_sum += b0 * c0; a0 = *pSrcA++; b0 = *pSrcA++; c0 = *pSrcB++; d0 = *pSrcB++; real_sum += a0 * c0; imag_sum += a0 * d0; real_sum -= b0 * d0; imag_sum += b0 * c0; /* Decrement loop counter */ blkCnt--; } /* Loop unrolling: Compute remaining outputs */ blkCnt = numSamples % 0x4U; #else /* Initialize blkCnt with number of samples */ blkCnt = numSamples; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (blkCnt > 0U) { a0 = *pSrcA++; b0 = *pSrcA++; c0 = *pSrcB++; d0 = *pSrcB++; real_sum += a0 * c0; imag_sum += a0 * d0; real_sum -= b0 * d0; imag_sum += b0 * c0; /* Decrement loop counter */ blkCnt--; } /* Store real and imaginary result in destination buffer. */ *realResult = real_sum; *imagResult = imag_sum; } #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ /** @} end of cmplx_dot_prod group */ #endif /* #if defined(ARM_FLOAT16_SUPPORTED) */