/****************************************************************************** * @file fast_math_functions.h * @brief Public header file for CMSIS DSP Library * @version V1.10.0 * @date 08 July 2021 * Target Processor: Cortex-M and Cortex-A cores ******************************************************************************/ /* * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef _FAST_MATH_FUNCTIONS_H_ #define _FAST_MATH_FUNCTIONS_H_ #include "arm_math_types.h" #include "arm_math_memory.h" #include "dsp/none.h" #include "dsp/utils.h" #include "dsp/basic_math_functions.h" #include #ifdef __cplusplus extern "C" { #endif /** * @brief Macros required for SINE and COSINE Fast math approximations */ #define FAST_MATH_TABLE_SIZE 512 #define FAST_MATH_Q31_SHIFT (32 - 10) #define FAST_MATH_Q15_SHIFT (16 - 10) #ifndef PI #define PI 3.14159265358979f #endif #ifndef PI_F64 #define PI_F64 3.14159265358979323846 #endif /** * @defgroup groupFastMath Fast Math Functions * This set of functions provides a fast approximation to sine, cosine, and square root. * As compared to most of the other functions in the CMSIS math library, the fast math functions * operate on individual values and not arrays. * There are separate functions for Q15, Q31, and floating-point data. * */ /** * @brief Fast approximation to the trigonometric sine function for floating-point data. * @param[in] x input value in radians. * @return sin(x). */ float32_t arm_sin_f32( float32_t x); /** * @brief Fast approximation to the trigonometric sine function for Q31 data. * @param[in] x Scaled input value in radians. * @return sin(x). */ q31_t arm_sin_q31( q31_t x); /** * @brief Fast approximation to the trigonometric sine function for Q15 data. * @param[in] x Scaled input value in radians. * @return sin(x). */ q15_t arm_sin_q15( q15_t x); /** * @brief Fast approximation to the trigonometric cosine function for floating-point data. * @param[in] x input value in radians. * @return cos(x). */ float32_t arm_cos_f32( float32_t x); /** * @brief Fast approximation to the trigonometric cosine function for Q31 data. * @param[in] x Scaled input value in radians. * @return cos(x). */ q31_t arm_cos_q31( q31_t x); /** * @brief Fast approximation to the trigonometric cosine function for Q15 data. * @param[in] x Scaled input value in radians. * @return cos(x). */ q15_t arm_cos_q15( q15_t x); /** @brief Floating-point vector of log values. @param[in] pSrc points to the input vector @param[out] pDst points to the output vector @param[in] blockSize number of samples in each vector */ void arm_vlog_f32( const float32_t * pSrc, float32_t * pDst, uint32_t blockSize); /** @brief Floating-point vector of log values. @param[in] pSrc points to the input vector @param[out] pDst points to the output vector @param[in] blockSize number of samples in each vector */ void arm_vlog_f64( const float64_t * pSrc, float64_t * pDst, uint32_t blockSize); /** * @brief q31 vector of log values. * @param[in] pSrc points to the input vector in q31 * @param[out] pDst points to the output vector in q5.26 * @param[in] blockSize number of samples in each vector */ void arm_vlog_q31(const q31_t * pSrc, q31_t * pDst, uint32_t blockSize); /** * @brief q15 vector of log values. * @param[in] pSrc points to the input vector in q15 * @param[out] pDst points to the output vector in q4.11 * @param[in] blockSize number of samples in each vector */ void arm_vlog_q15(const q15_t * pSrc, q15_t * pDst, uint32_t blockSize); /** @brief Floating-point vector of exp values. @param[in] pSrc points to the input vector @param[out] pDst points to the output vector @param[in] blockSize number of samples in each vector */ void arm_vexp_f32( const float32_t * pSrc, float32_t * pDst, uint32_t blockSize); /** @brief Floating-point vector of exp values. @param[in] pSrc points to the input vector @param[out] pDst points to the output vector @param[in] blockSize number of samples in each vector */ void arm_vexp_f64( const float64_t * pSrc, float64_t * pDst, uint32_t blockSize); /** * @defgroup SQRT Square Root * * Computes the square root of a number. * There are separate functions for Q15, Q31, and floating-point data types. * The square root function is computed using the Newton-Raphson algorithm. * This is an iterative algorithm of the form: *
   *      x1 = x0 - f(x0)/f'(x0)
   * 
* where x1 is the current estimate, * x0 is the previous estimate, and * f'(x0) is the derivative of f() evaluated at x0. * For the square root function, the algorithm reduces to: *
   *     x0 = in/2                         [initial guess]
   *     x1 = 1/2 * ( x0 + in / x0)        [each iteration]
   * 
*/ /** * @addtogroup SQRT * @{ */ /** @brief Floating-point square root function. @param[in] in input value @param[out] pOut square root of input value @return execution status - \ref ARM_MATH_SUCCESS : input value is positive - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 */ __STATIC_FORCEINLINE arm_status arm_sqrt_f32( const float32_t in, float32_t * pOut) { if (in >= 0.0f) { #if defined ( __CC_ARM ) #if defined __TARGET_FPU_VFP *pOut = __sqrtf(in); #else *pOut = sqrtf(in); #endif #elif defined ( __ICCARM__ ) #if defined __ARMVFP__ __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in)); #else *pOut = sqrtf(in); #endif #elif defined ( __ARMCC_VERSION ) && ( __ARMCC_VERSION >= 6010050 ) *pOut = _sqrtf(in); #elif defined(__GNUC_PYTHON__) *pOut = sqrtf(in); #elif defined ( __GNUC__ ) #if defined (__VFP_FP__) && !defined(__SOFTFP__) __ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in)); #else *pOut = sqrtf(in); #endif #else *pOut = sqrtf(in); #endif return (ARM_MATH_SUCCESS); } else { *pOut = 0.0f; return (ARM_MATH_ARGUMENT_ERROR); } } /** @brief Q31 square root function. @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF @param[out] pOut points to square root of input value @return execution status - \ref ARM_MATH_SUCCESS : input value is positive - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 */ arm_status arm_sqrt_q31( q31_t in, q31_t * pOut); /** @brief Q15 square root function. @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF @param[out] pOut points to square root of input value @return execution status - \ref ARM_MATH_SUCCESS : input value is positive - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 */ arm_status arm_sqrt_q15( q15_t in, q15_t * pOut); /** * @} end of SQRT group */ /** @brief Fixed point division @param[in] numerator Numerator @param[in] denominator Denominator @param[out] quotient Quotient value normalized between -1.0 and 1.0 @param[out] shift Shift left value to get the unnormalized quotient @return error status When dividing by 0, an error ARM_MATH_NANINF is returned. And the quotient is forced to the saturated negative or positive value. */ arm_status arm_divide_q15(q15_t numerator, q15_t denominator, q15_t *quotient, int16_t *shift); /** @brief Fixed point division @param[in] numerator Numerator @param[in] denominator Denominator @param[out] quotient Quotient value normalized between -1.0 and 1.0 @param[out] shift Shift left value to get the unnormalized quotient @return error status When dividing by 0, an error ARM_MATH_NANINF is returned. And the quotient is forced to the saturated negative or positive value. */ arm_status arm_divide_q31(q31_t numerator, q31_t denominator, q31_t *quotient, int16_t *shift); /** @brief Arc tangent in radian of y/x using sign of x and y to determine right quadrant. @param[in] y y coordinate @param[in] x x coordinate @param[out] result Result @return error status. */ arm_status arm_atan2_f32(float32_t y,float32_t x,float32_t *result); /** @brief Arc tangent in radian of y/x using sign of x and y to determine right quadrant. @param[in] y y coordinate @param[in] x x coordinate @param[out] result Result in Q2.29 @return error status. */ arm_status arm_atan2_q31(q31_t y,q31_t x,q31_t *result); /** @brief Arc tangent in radian of y/x using sign of x and y to determine right quadrant. @param[in] y y coordinate @param[in] x x coordinate @param[out] result Result in Q2.13 @return error status. */ arm_status arm_atan2_q15(q15_t y,q15_t x,q15_t *result); #ifdef __cplusplus } #endif #endif /* ifndef _FAST_MATH_FUNCTIONS_H_ */