import cmsisdsp as dsp import numpy as np from scipy import signal import matplotlib.pyplot as plt from scipy.fftpack import dct r = dsp.arm_add_f32(np.array([1.,2,3]),np.array([4.,5,7])) print(r) r = dsp.arm_add_q31([1,2,3],[4,5,7]) print(r) r = dsp.arm_add_q15([1,2,3],[4,5,7]) print(r) r = dsp.arm_add_q7([-1,2,3],[4,127,7]) print(r) r = dsp.arm_scale_f32([1.,2,3],2) print(r) r = dsp.arm_scale_q31([0x7FFF,0x3FFF,0x1FFF],1 << 20,2) print(r) r = dsp.arm_scale_q15([0x7FFF,0x3FFF,0x1FFF],1 << 10,2) print(r) r = dsp.arm_scale_q7([0x7F,0x3F,0x1F],1 << 5,2) print(r) r = dsp.arm_negate_f32([1.,2,3]) print(r) r = dsp.arm_negate_q31([1,2,3]) print(r) r = dsp.arm_negate_q15([1,2,3]) print(r) r = dsp.arm_negate_q7(np.array([0x80,0x81,0x82])) print(r) r = dsp.arm_cmplx_conj_f32([1.,2,3,4]) print(r) r = dsp.arm_cmplx_conj_q31([1,2,3,4]) print(r) r = dsp.arm_cmplx_conj_q15([1,2,3,4]) print(r) r = dsp.arm_cmplx_dot_prod_f32([1.,2,3,4],[1.,2,3,4]) print(r) r = dsp.arm_cmplx_dot_prod_q31([0x1FFF,0x3FFF,0x1FFF,0x3FFF],[0x1FFF,0x3FFF,0x1FFF,0x3FFF]) print(r) r = dsp.arm_cmplx_mult_real_f32([1.0,2,3,4],[5.,5.,5.,5.]) print(r) pidf32 = dsp.arm_pid_instance_f32(Kp=1.0,Ki=1.2,Kd=0.4) print(pidf32.Kp()) print(pidf32.Ki()) print(pidf32.Kd()) print(pidf32.A0()) dsp.arm_pid_init_f32(pidf32,0) print(pidf32.A0()) print(dsp.arm_cos_f32(3.14/4.)) print(dsp.arm_sqrt_q31(0x7FFF)) firf32 = dsp.arm_fir_instance_f32() dsp.arm_fir_init_f32(firf32,3,[1.,2,3],[0,0,0,0,0,0,0]) print(firf32.numTaps()) filtered_x = signal.lfilter([3,2,1.], 1.0, [1,2,3,4,5,1,2,3,4,5]) print(filtered_x) print(dsp.arm_fir_f32(firf32,[1,2,3,4,5])) print(dsp.arm_fir_f32(firf32,[1,2,3,4,5])) def q31sat(x): if x > 0x7FFFFFFF: return(np.int32(0x7FFFFFFF)) elif x < -0x80000000: return(np.int32(0x80000000)) else: return(np.int32(x)) q31satV=np.vectorize(q31sat) def toQ31(x): return(q31satV(np.round(x * (1<<31)))) def q15sat(x): if x > 0x7FFF: return(np.int16(0x7FFF)) elif x < -0x8000: return(np.int16(0x8000)) else: return(np.int16(x)) q15satV=np.vectorize(q15sat) def toQ15(x): return(q15satV(np.round(x * (1<<15)))) def q7sat(x): if x > 0x7F: return(np.int8(0x7F)) elif x < -0x80: return(np.int8(0x80)) else: return(np.int8(x)) q7satV=np.vectorize(q7sat) def toQ7(x): return(q7satV(np.round(x * (1<<7)))) def Q31toF32(x): return(1.0*x / 2**31) def Q15toF32(x): return(1.0*x / 2**15) def Q7toF32(x): return(1.0*x / 2**7) firq31 = dsp.arm_fir_instance_q31() x=np.array([1,2,3,4,5])/10.0 taps=np.array([1,2,3])/10.0 xQ31=toQ31(x) tapsQ31=toQ31(taps) dsp.arm_fir_init_q31(firq31,3,tapsQ31,[0,0,0,0,0,0,0]) print(firq31.numTaps()) resultQ31=dsp.arm_fir_q31(firq31,xQ31) result=Q31toF32(resultQ31) print(result) a=np.array([[1.,2,3,4],[5,6,7,8],[9,10,11,12]]) b=np.array([[1.,2,3,4],[5.1,6,7,8],[9.1,10,11,12]]) print(a+b) print("OK") v=dsp.arm_mat_add_f32(a,b) print(v) a=np.array([[1.,2,3,4],[5,6,7,8],[9,10,11,12]]) b=np.array([[1.,2,3],[5.1,6,7],[9.1,10,11],[5,8,4]]) print(np.dot(a , b)) v=dsp.arm_mat_mult_f32(a,b) print(v) def imToReal2D(a): ar=np.zeros(np.array(a.shape) * [1,2]) ar[::,0::2]=a.real ar[::,1::2]=a.imag return(ar) def realToIm2D(ar): return(ar[::,0::2] + 1j * ar[::,1::2]) a=np.array([[1. + 2j,3 + 4j],[5 + 6j,7 + 8j],[9 + 10j,11 + 12j]]) b=np.array([[1. + 2j, 3 + 5.1j ,6 + 7j],[9.1 + 10j,11 + 5j,8 +4j]]) print(np.dot(a , b)) # Convert complex array to real array for use in CMSIS DSP ar = imToReal2D(a) br = imToReal2D(b) v=dsp.arm_mat_cmplx_mult_f32(ar,br) print(v) a=np.array([[1.,2,3,4],[5,6,7,8],[9,10,11,12]]) / 30.0 b=np.array([[1.,2,3,4],[5.1,6,7,8],[9.1,10,11,12]]) / 30.0 print(a+b) aQ31=toQ31(a) bQ31=toQ31(b) v=dsp.arm_mat_add_q31(aQ31,bQ31) rQ31=v[1] r=Q31toF32(rQ31) print(r) a=np.array([[1.,2,3,4],[5,6,7,8],[9,10,11,12]]) print(np.transpose(a)) print(dsp.arm_mat_trans_f32(a)) a = np.array([[1., 2.], [3., 4.]]) print(np.linalg.inv(a)) print(dsp.arm_mat_inverse_f32(a)) a = np.array([[1., 2.], [3., 4.]]) print(np.linalg.inv(a)) print(dsp.arm_mat_inverse_f64(a)) a=np.array([[1.,2,3,4],[5,6,7,8],[9,10,11,12]]) print(2.5*a) print(dsp.arm_mat_scale_f32(a,2.5)) a=np.array([1.,2,3,4,5,6,7,8,9,10,11,12]) print(np.max(a)) print(np.argmax(a)) print(dsp.arm_max_f32(a)) print(np.mean(a)) print(dsp.arm_mean_f32(a)) print(np.dot(a,a)) print(dsp.arm_power_f32(a)) def imToReal1D(a): ar=np.zeros(np.array(a.shape) * 2) ar[0::2]=a.real ar[1::2]=a.imag return(ar) def realToIm1D(ar): return(ar[0::2] + 1j * ar[1::2]) nb = 16 signal = np.cos(2 * np.pi * np.arange(nb) / nb) result=np.fft.fft(signal) print(result) signalR = imToReal1D(signal) cfftf32=dsp.arm_cfft_instance_f32() status=dsp.arm_cfft_init_f32(cfftf32,nb) print(status) resultR = dsp.arm_cfft_f32(cfftf32,signalR,0,1) resultI = realToIm1D(resultR) print(resultI) signal = signal / 10.0 result=np.fft.fft(signal) print(result) signalR = imToReal1D(signal) signalRQ31=toQ31(signalR) cfftq31=dsp.arm_cfft_instance_q31() status=dsp.arm_cfft_init_q31(cfftq31,nb) print(status) resultR = dsp.arm_cfft_q31(cfftq31,signalRQ31,0,1) resultI = realToIm1D(Q31toF32(resultR))*16 print(resultI) signal = signal / 10.0 result=np.fft.fft(signal) print(result) signalR = imToReal1D(signal) signalRQ15=toQ15(signalR) cfftq15=dsp.arm_cfft_instance_q15() status=dsp.arm_cfft_init_q15(cfftq15,nb) print(status) resultR = dsp.arm_cfft_q15(cfftq15,signalRQ15,0,1) resultR=Q15toF32(resultR) resultI = realToIm1D(resultR)*16 print(resultI) nb = 128 signal = np.cos(2 * np.pi * np.arange(nb) / nb) signalRQ31=toQ31(signal) result=np.fft.fft(signal) print(result) rfftq31=dsp.arm_rfft_instance_q31() status=dsp.arm_rfft_init_q31(rfftq31,nb,0,1) print(status) resultI = dsp.arm_rfft_q31(rfftq31,signalRQ31) resultI=Q31toF32(resultI)*(1 << 7) print(result) nb = 128 signal = np.cos(2 * np.pi * np.arange(nb) / nb) signalRQ15=toQ15(signal) result=np.fft.fft(signal) print(result) rfftq15=dsp.arm_rfft_instance_q15() status=dsp.arm_rfft_init_q15(rfftq15,nb,0,1) print(status) resultI = dsp.arm_rfft_q15(rfftq15,signalRQ15) resultI=Q15toF32(resultI)*(1 << 7) print(result) nb = 128 nb2=64 signal = np.cos(2 * np.pi * np.arange(nb) / nb) result=dct(signal,4,norm='ortho') print(result) signal = signal / 10.0 result=dct(signal,4,norm='ortho') signalQ31=toQ31(signal) cfftradix4q31=dsp.arm_cfft_radix4_instance_q31() rfftq31=dsp.arm_rfft_instance_q31() dct4q31=dsp.arm_dct4_instance_q31() status=dsp.arm_dct4_init_q31(dct4q31,rfftq31,cfftradix4q31,nb,nb2,0x10000000) print(status) state=np.zeros(2*nb) resultI = dsp.arm_dct4_q31(dct4q31,state,signalQ31) resultI=Q31toF32(resultI)*(1 << 7) nb = 128 nb2=64 signal = np.cos(2 * np.pi * np.arange(nb) / nb) signal = signal / 10.0 result=dct(signal,4,norm='ortho') signalQ15=toQ15(signal) cfftradix4q15=dsp.arm_cfft_radix4_instance_q15() rfftq15=dsp.arm_rfft_instance_q15() dct4q15=dsp.arm_dct4_instance_q15() status=dsp.arm_dct4_init_q15(dct4q15,rfftq15,cfftradix4q15,nb,nb2,0x1000) print(status) state=np.zeros(2*nb) resultI = dsp.arm_dct4_q15(dct4q15,state,signalQ15) resultI=Q15toF32(resultI)*(1 << 7) from pylab import figure, clf, plot, xlabel, ylabel, xlim, ylim, title, grid, axes, show figure(1) plot(np.absolute(signal)) t = np.arange(nb) freq = np.fft.fftfreq(t.shape[-1]) resultmag=np.absolute(result) figure(2) plot(resultmag) figure(3) cmsigmag=np.absolute(resultI) plot(cmsigmag) show() biquadf32 = dsp.arm_biquad_casd_df1_inst_f32() numStages=1 state=np.zeros(numStages*4) coefs=[1.,2,3,4,5] dsp.arm_biquad_cascade_df1_init_f32(biquadf32,1,coefs,state) print(dsp.arm_biquad_cascade_df1_f32(biquadf32,[1,2,3,4,5]))