/* * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* ---------------------------------------------------------------------- * Project: CMSIS NN Library * Title: arm_nnsupportfunctions.h * Description: Public header file of support functions for CMSIS NN Library * * $Date: 15. April 2021 * $Revision: V.5.5.0 * * Target Processor: Cortex-M CPUs * -------------------------------------------------------------------- */ #ifndef _ARM_NNSUPPORTFUNCTIONS_H_ #define _ARM_NNSUPPORTFUNCTIONS_H_ #include "arm_common_tables.h" #include "arm_math_types.h" #ifdef __cplusplus extern "C" { #endif #define LEFT_SHIFT(_shift) (_shift > 0 ? _shift : 0) #define RIGHT_SHIFT(_shift) (_shift > 0 ? 0 : -_shift) #define MASK_IF_ZERO(x) (x) == 0 ? ~0 : 0 #define MASK_IF_NON_ZERO(x) (x) != 0 ? ~0 : 0 #define SELECT_USING_MASK(mask, a, b) ((mask) & (a)) ^ (~(mask) & (b)) #define MAX(A, B) ((A) > (B) ? (A) : (B)) #define MIN(A, B) ((A) < (B) ? (A) : (B)) #define CLAMP(x, h, l) MAX(MIN((x), (h)), (l)) /** * @brief Union for SIMD access of q31/q15/q7 types */ union arm_nnword { q31_t word; /**< q31 type */ q15_t half_words[2]; /**< q15 type */ q7_t bytes[4]; /**< q7 type */ }; /** * @brief Union for data type long long */ struct arm_nn_double { uint32_t low; int32_t high; }; union arm_nn_long_long { int64_t long_long; struct arm_nn_double word; }; /** * @defgroup nndata_convert Neural Network Data Conversion Functions * * Perform data type conversion in-between neural network operations * */ /** * @brief Converts the elements of the q7 vector to q15 vector without left-shift * @param[in] *pSrc points to the q7 input vector * @param[out] *pDst points to the q15 output vector * @param[in] blockSize length of the input vector * */ void arm_q7_to_q15_no_shift(const q7_t *pSrc, q15_t *pDst, uint32_t blockSize); /** * @brief Non-saturating addition of elements of a q7 vector * @param[in] *input Pointer to the q7 input vector * @param[out] *output Pointer to the q31 output variable. * @param[in] block_size length of the input vector * \par Description: * * 2^24 samples can be added without saturating the result. * * The equation used for the conversion process is: * *
 *  sum = input[0] + input[1] + .. + input[block_size -1]
 * 
* * */ void arm_nn_add_q7(const q7_t *input, q31_t *output, uint32_t block_size); /** * @brief Converts the elements of the q7 vector to reordered q15 vector without left-shift * @param[in] *pSrc points to the q7 input vector * @param[out] *pDst points to the q15 output vector * @param[in] blockSize length of the input vector * @return none. * */ void arm_q7_to_q15_reordered_no_shift(const q7_t *pSrc, q15_t *pDst, uint32_t blockSize); /** * @brief Converts the elements from a q7 vector to a q15 vector with an added offset * @param[in] src pointer to the q7 input vector * @param[out] dst pointer to the q15 output vector * @param[in] block_size length of the input vector * @param[in] offset q7 offset to be added to each input vector element. * * \par Description: * * The equation used for the conversion process is: * *
 *  dst[n] = (q15_t) src[n] + offset;   0 <= n < block_size.
 * 
* */ void arm_q7_to_q15_with_offset(const q7_t *src, q15_t *dst, uint32_t block_size, q15_t offset); /** * @brief Converts the elements of the q7 vector to reordered q15 vector with an added offset * @param[in] src pointer to the q7 input vector * @param[out] dst pointer to the q15 output vector * @param[in] block_size length of the input vector * @param[in] offset offset to be added to each input vector element. * @return none. * * @details This function does the q7 to q15 expansion with re-ordering of bytes. Re-ordering is a consequence of * the sign extension intrinsic(DSP extension). The tail (i.e., last (N % 4) elements) retains its * original order. * */ void arm_q7_to_q15_reordered_with_offset(const q7_t *src, q15_t *dst, uint32_t block_size, q15_t offset); /** * @brief Converts the elements from a q7 vector and accumulate to a q15 vector * @param[in] *src points to the q7 input vector * @param[out] *dst points to the q15 output vector * @param[in] block_size length of the input vector * * \par Description: * * The equation used for the conversion process is: * *
 *  dst[n] += (q15_t) src[n] ;   0 <= n < block_size.
 * 
* */ void arm_nn_accumulate_q7_to_q15(q15_t *dst, const q7_t *src, uint32_t block_size); /** * @brief Depthwise conv on an im2col buffer where the input channel equals output channel. * @param[in] row pointer to row * @param[in] col pointer to im2col buffer, always consists of 2 columns. * @param[in] num_ch number of channels * @param[in] out_shift pointer to per output channel requantization shift parameter. * @param[in] out_mult pointer to per output channel requantization multiplier parameter. * @param[in] out_offset output tensor offset. * @param[in] activation_min minimum value to clamp the output to. Range : int8 * @param[in] activation_max maximum value to clamp the output to. Range : int8 * @param[in] kernel_size number of elements in one column. * @param[in] output_bias per output channel bias. Range : int32 * @param[out] out pointer to output * @return The function returns one of the two * 1. The incremented output pointer for a successful operation or * 2. NULL if implementation is not available. * * @details Supported framework: TensorFlow Lite micro. */ q7_t *arm_nn_depthwise_conv_s8_core(const q7_t *row, const q15_t *col, const uint16_t num_ch, const int32_t *out_shift, const int32_t *out_mult, const int32_t out_offset, const int32_t activation_min, const int32_t activation_max, const uint16_t kernel_size, const int32_t *const output_bias, q7_t *out); /** * @brief General Matrix-multiplication function with per-channel requantization. * @param[in] input_row pointer to row operand * @param[in] input_col pointer to col operand * @param[in] output_ch number of rows of input_row * @param[in] col_batches number of column batches. Range: 1 to 4 * @param[in] output_shift pointer to per output channel requantization shift parameter. * @param[in] output_mult pointer to per output channel requantization multiplier parameter. * @param[in] out_offset output tensor offset. * @param[in] col_offset input tensor(col) offset. * @param[in] row_offset kernel offset(row). Not used. * @param[in] out_activation_min minimum value to clamp the output to. Range : int8 * @param[in] out_activation_max maximum value to clamp the output to. Range : int8 * @param[in] row_len number of elements in each row * @param[in] bias per output channel bias. Range : int32 * @param[in,out] out pointer to output * @return The function returns one of the two * 1. The incremented output pointer for a successful operation or * 2. NULL if implementation is not available. * * @details Supported framework: TensorFlow Lite */ q7_t *arm_nn_mat_mult_s8(const q7_t *input_row, const q7_t *input_col, const uint16_t output_ch, const uint16_t col_batches, const int32_t *output_shift, const int32_t *output_mult, const int32_t out_offset, const int32_t col_offset, const int32_t row_offset, const int16_t out_activation_min, const int16_t out_activation_max, const uint16_t row_len, const int32_t *const bias, q7_t *out); /** * @brief General Matrix-multiplication without requantization for one row & one column * @param[in] row_elements number of row elements * @param[in] row_base pointer to row operand * @param[in] col_base pointer to col operand * @param[out] sum_col pointer to store sum of column elements * @param[out] output pointer to store result of multiply-accumulate * @return The function returns the multiply-accumulated result of the row by column. * * @details Pseudo-code * *output = 0 * sum_col = 0 * for (i = 0; i < row_elements; i++) * *output += row_base[i] * col_base[i] * sum_col += col_base[i] * */ arm_status arm_nn_mat_mul_core_1x_s8(int32_t row_elements, const int8_t *row_base, const int8_t *col_base, int32_t *const sum_col, int32_t *const output); /** * @brief General Matrix-multiplication without requantization for four rows and one column * @param[in] row_elements number of row elements * @param[in] offset offset between rows. Can be the same as row_elements. * For e.g, in a 1x1 conv scenario with stride as 1. * @param[in] row_base pointer to row operand * @param[in] col_base pointer to col operand * @param[out] sum_col pointer to store sum of column elements * @param[out] output pointer to store result(4 int32's) of multiply-accumulate * @return The function returns the multiply-accumulated result of the row by column * * @details Pseudo-code * output[0] = 0 * .. * output[3] = 0 * sum_col = 0 * for (i = 0; i < row_elements; i++) * output[0] += row_base[i] * col_base[i] * .. * output[3] += row_base[i + (row_elements * 3)] * col_base[i] * sum_col += col_base[i] */ arm_status arm_nn_mat_mul_core_4x_s8(const int32_t row_elements, const int32_t offset, const int8_t *row_base, const int8_t *col_base, int32_t *const sum_col, int32_t *const output); /** * @brief General Matrix-multiplication function with per-channel requantization. * This function assumes: * - LHS input matrix NOT transposed (nt) * - RHS input matrix transposed (t) * * @note This operation also performs the broadcast bias addition before the requantization * * @param[in] lhs Pointer to the LHS input matrix * @param[in] rhs Pointer to the RHS input matrix * @param[in] bias Pointer to the bias vector. The length of this vector is equal to the number of * output columns (or RHS input rows) * @param[out] dst Pointer to the output matrix with "m" rows and "n" columns * @param[in] dst_multipliers Pointer to the multipliers vector needed for the per-channel requantization. * The length of this vector is equal to the number of output columns (or RHS input * rows) * @param[in] dst_shifts Pointer to the shifts vector needed for the per-channel requantization. The length * of this vector is equal to the number of output columns (or RHS input rows) * @param[in] lhs_rows Number of LHS input rows * @param[in] rhs_rows Number of RHS input rows * @param[in] rhs_cols Number of LHS/RHS input columns * @param[in] lhs_offset Offset to be applied to the LHS input value * @param[in] dst_offset Offset to be applied the output result * @param[in] activation_min Minimum value to clamp down the output. Range : int8 * @param[in] activation_max Maximum value to clamp up the output. Range : int8 * * @return The function returns ARM_MATH_SUCCESS * */ arm_status arm_nn_mat_mult_nt_t_s8(const q7_t *lhs, const q7_t *rhs, const q31_t *bias, q7_t *dst, const int32_t *dst_multipliers, const int32_t *dst_shifts, const int32_t lhs_rows, const int32_t rhs_rows, const int32_t rhs_cols, const int32_t lhs_offset, const int32_t dst_offset, const int32_t activation_min, const int32_t activation_max); /** * @brief s8 Vector by Matrix (transposed) multiplication * * @param[in] lhs Input left-hand side vector * @param[in] rhs Input right-hand side matrix (transposed) * @param[in] bias Input bias * @param[out] dst Output vector * @param[in] lhs_offset Offset to be added to the input values of the left-hand side vector. * Range: -127 to 128 * @param[in] rhs_offset Not used * @param[in] dst_offset Offset to be added to the output values. Range: -127 to 128 * @param[in] dst_multiplier Output multiplier * @param[in] dst_shift Output shift * @param[in] rhs_cols Number of columns in the right-hand side input matrix * @param[in] rhs_rows Number of rows in the right-hand side input matrix * @param[in] activation_min Minimum value to clamp the output to. Range: int8 * @param[in] activation_max Maximum value to clamp the output to. Range: int8 * * @return The function returns ARM_MATH_SUCCESS * */ arm_status arm_nn_vec_mat_mult_t_s8(const q7_t *lhs, const q7_t *rhs, const q31_t *bias, q7_t *dst, const int32_t lhs_offset, const int32_t rhs_offset, const int32_t dst_offset, const int32_t dst_multiplier, const int32_t dst_shift, const int32_t rhs_cols, const int32_t rhs_rows, const int32_t activation_min, const int32_t activation_max); /** * @brief s8 Vector by Matrix (transposed) multiplication with s16 output * * @param[in] lhs Input left-hand side vector * @param[in] rhs Input right-hand side matrix (transposed) * @param[out] dst Output vector * @param[in] lhs_offset Offset to be added to the input values of the left-hand side * vector. Range: -127 to 128 * @param[in] rhs_offset Not used * @param[in] scatter_offset Address offset for dst. First output is stored at 'dst', the * second at 'dst + scatter_offset' and so on. * @param[in] dst_multiplier Output multiplier * @param[in] dst_shift Output shift * @param[in] rhs_cols Number of columns in the right-hand side input matrix * @param[in] rhs_rows Number of rows in the right-hand side input matrix * @param[in] activation_min Minimum value to clamp the output to. Range: int16 * @param[in] activation_max Maximum value to clamp the output to. Range: int16 * * @return The function returns ARM_MATH_SUCCESS * */ arm_status arm_nn_vec_mat_mult_t_svdf_s8(const q7_t *lhs, const q7_t *rhs, q15_t *dst, const int32_t lhs_offset, const int32_t rhs_offset, const int32_t scatter_offset, const int32_t dst_multiplier, const int32_t dst_shift, const int32_t rhs_cols, const int32_t rhs_rows, const int32_t activation_min, const int32_t activation_max); /** * @brief Depthwise convolution of transposed rhs matrix with 4 lhs matrices. To be used in padded cases where * the padding is -lhs_offset(Range: int8). Dimensions are the same for lhs and rhs. * * @param[in] lhs Input left-hand side matrix * @param[in] rhs Input right-hand side matrix (transposed) * @param[in] lhs_offset LHS matrix offset(input offset). Range: -127 to 128 * @param[in] num_ch Number of channels in LHS/RHS * @param[in] out_shift Per channel output shift. Length of vector is equal to number of channels * @param[in] out_mult Per channel output multiplier. Length of vector is equal to number of channels * @param[in] out_offset Offset to be added to the output values. Range: -127 to 128 * @param[in] activation_min Minimum value to clamp the output to. Range: int8 * @param[in] activation_max Maximum value to clamp the output to. Range: int8 * @param[in] row_x_col (row_dimension * col_dimension) of LHS/RHS matrix * @param[in] output_bias Per channel output bias. Length of vector is equal to number of channels * @param[in] out Output pointer * * @return The function returns one of the two * - Updated output pointer if an implementation is available * - NULL if no implementation is available. * * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read * out for the following. * - Output shift * - Output multiplier * - Output bias * - rhs */ q7_t *arm_nn_depthwise_conv_nt_t_padded_s8(const q7_t *lhs, const q7_t *rhs, const int32_t lhs_offset, const uint16_t num_ch, const int32_t *out_shift, const int32_t *out_mult, const int32_t out_offset, const int32_t activation_min, const int32_t activation_max, const uint16_t row_x_col, const int32_t *const output_bias, q7_t *out); /** * @brief Depthwise convolution of transposed rhs matrix with 4 lhs matrices. To be used in non-padded cases. * Dimensions are the same for lhs and rhs. * * @param[in] lhs Input left-hand side matrix * @param[in] rhs Input right-hand side matrix (transposed) * @param[in] lhs_offset LHS matrix offset(input offset). Range: -127 to 128 * @param[in] num_ch Number of channels in LHS/RHS * @param[in] out_shift Per channel output shift. Length of vector is equal to number of channels. * @param[in] out_mult Per channel output multiplier. Length of vector is equal to number of channels. * @param[in] out_offset Offset to be added to the output values. Range: -127 to 128 * @param[in] activation_min Minimum value to clamp the output to. Range: int8 * @param[in] activation_max Maximum value to clamp the output to. Range: int8 * @param[in] row_x_col (row_dimension * col_dimension) of LHS/RHS matrix * @param[in] output_bias Per channel output bias. Length of vector is equal to number of channels. * @param[in] out Output pointer * * @return The function returns one of the two * - Updated output pointer if an implementation is available * - NULL if no implementation is available. * * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read * out for the following. * - Output shift * - Output multiplier * - Output bias * - rhs */ q7_t *arm_nn_depthwise_conv_nt_t_s8(const q7_t *lhs, const q7_t *rhs, const int32_t lhs_offset, const uint16_t num_ch, const int32_t *out_shift, const int32_t *out_mult, const int32_t out_offset, const int32_t activation_min, const int32_t activation_max, const uint16_t row_x_col, const int32_t *const output_bias, q7_t *out); /** @brief Read 2 q15 elements and post increment pointer. @param[in] in_q15 Pointer to pointer that holds address of input. @return q31 value */ __STATIC_FORCEINLINE q31_t arm_nn_read_q15x2_ia(const q15_t **in_q15) { q31_t val; memcpy(&val, *in_q15, 4); *in_q15 += 2; return (val); } /** @brief Read 4 q7 from q7 pointer and post increment pointer. @param[in] in_q7 Pointer to pointer that holds address of input. @return q31 value */ __STATIC_FORCEINLINE q31_t arm_nn_read_q7x4_ia(const q7_t **in_q7) { q31_t val; memcpy(&val, *in_q7, 4); *in_q7 += 4; return (val); } /** @brief Read 2 q15 from q15 pointer. @param[in] in_q15 pointer to address of input. @return q31 value */ __STATIC_FORCEINLINE q31_t arm_nn_read_q15x2(const q15_t *in_q15) { q31_t val; memcpy(&val, in_q15, 4); return (val); } /** @brief Read 4 q7 values. @param[in] in_q7 pointer to address of input. @return q31 value */ __STATIC_FORCEINLINE q31_t arm_nn_read_q7x4(const q7_t *in_q7) { q31_t val; memcpy(&val, in_q7, 4); return (val); } /** * @brief memset optimized for MVE * @param[in, out] dst Destination pointer * @param[in] val Value to set * @param[in] block_size Number of bytes to copy. * */ __STATIC_FORCEINLINE void arm_memset_q7(q7_t *dst, const q7_t val, uint32_t block_size) { #if defined(ARM_MATH_MVEI) __asm volatile(" vdup.8 q0, %[set_val] \n" " wlstp.8 lr, %[cnt], 1f \n" "2: \n" " vstrb.8 q0, [%[in]], 16 \n" " letp lr, 2b \n" "1: \n" : [ in ] "+r"(dst) : [ cnt ] "r"(block_size), [ set_val ] "r"(val) : "q0", "memory", "r14"); #else memset(dst, val, block_size); #endif } #if defined(ARM_MATH_DSP) /** * @brief read and expand one q7 word into two q15 words */ __STATIC_FORCEINLINE const q7_t *read_and_pad(const q7_t *source, q31_t *out1, q31_t *out2) { q31_t inA = arm_nn_read_q7x4_ia(&source); q31_t inAbuf1 = __SXTB16(__ROR((uint32_t)inA, 8)); q31_t inAbuf2 = __SXTB16(inA); #ifndef ARM_MATH_BIG_ENDIAN *out2 = (int32_t)(__PKHTB(inAbuf1, inAbuf2, 16)); *out1 = (int32_t)(__PKHBT(inAbuf2, inAbuf1, 16)); #else *out1 = (int32_t)(__PKHTB(inAbuf1, inAbuf2, 16)); *out2 = (int32_t)(__PKHBT(inAbuf2, inAbuf1, 16)); #endif return source; } /** * @brief read and expand one q7 word into two q15 words with reordering */ __STATIC_FORCEINLINE const q7_t *read_and_pad_reordered(const q7_t *source, q31_t *out1, q31_t *out2) { q31_t inA = arm_nn_read_q7x4_ia(&source); #ifndef ARM_MATH_BIG_ENDIAN *out2 = __SXTB16(__ROR((uint32_t)inA, 8)); *out1 = __SXTB16(inA); #else *out1 = __SXTB16(__ROR((uint32_t)inA, 8)); *out2 = __SXTB16(inA); #endif return source; } /** * @brief read and expand one q7 word into two q15 words with reordering and add an offset */ __STATIC_FORCEINLINE const q7_t * read_and_pad_reordered_with_offset(const q7_t *source, q31_t *out1, q31_t *out2, q31_t offset) { q31_t inA = arm_nn_read_q7x4_ia(&source); #ifndef ARM_MATH_BIG_ENDIAN *out2 = __SXTB16(__ROR((uint32_t)inA, 8)); *out1 = __SXTB16(inA); #else *out1 = __SXTB16(__ROR((uint32_t)inA, 8)); *out2 = __SXTB16(inA); #endif *out1 = __QADD16(*out1, offset); *out2 = __QADD16(*out2, offset); return source; } #endif /** * @defgroup NNBasicMath Basic Math Functions for Neural Network Computation * * Basic Math Functions for Neural Network Computation * */ /** * @brief q7 vector multiplication with variable output shifts * @param[in] *pSrcA pointer to the first input vector * @param[in] *pSrcB pointer to the second input vector * @param[out] *pDst pointer to the output vector * @param[in] out_shift amount of right-shift for output * @param[in] blockSize number of samples in each vector * @return none. * * Scaling and Overflow Behavior: * \par * The function uses saturating arithmetic. * Results outside of the allowable q15 range [0x8000 0x7FFF] will be saturated. */ void arm_nn_mult_q15(q15_t *pSrcA, q15_t *pSrcB, q15_t *pDst, const uint16_t out_shift, uint32_t blockSize); /** * @brief q7 vector multiplication with variable output shifts * @param[in] *pSrcA pointer to the first input vector * @param[in] *pSrcB pointer to the second input vector * @param[out] *pDst pointer to the output vector * @param[in] out_shift amount of right-shift for output * @param[in] blockSize number of samples in each vector * @return none. * * Scaling and Overflow Behavior: * \par * The function uses saturating arithmetic. * Results outside of the allowable q7 range [0x80 0x7F] will be saturated. */ void arm_nn_mult_q7(q7_t *pSrcA, q7_t *pSrcB, q7_t *pDst, const uint16_t out_shift, uint32_t blockSize); /** * @brief macro for adding rounding offset */ #ifndef ARM_NN_TRUNCATE #define NN_ROUND(out_shift) ((0x1u << out_shift) >> 1) #else #define NN_ROUND(out_shift) 0 #endif // Macros for shortening quantization functions' names and avoid long lines #define MUL_SAT(a, b) arm_nn_doubling_high_mult((a), (b)) #define MUL_SAT_MVE(a, b) arm_doubling_high_mult_mve_32x4((a), (b)) #define MUL_POW2(a, b) arm_nn_mult_by_power_of_two((a), (b)) #define DIV_POW2(a, b) arm_nn_divide_by_power_of_two((a), (b)) #define DIV_POW2_MVE(a, b) arm_divide_by_power_of_two_mve((a), (b)) #define EXP_ON_NEG(x) arm_nn_exp_on_negative_values((x)) #define ONE_OVER1(x) arm_nn_one_over_one_plus_x_for_x_in_0_1((x)) /** * @brief Saturating doubling high multiply. Result matches * NEON instruction VQRDMULH. * @param[in] m1 Multiplicand. Range: {Q31_MIN, Q31_MAX} * @param[in] m2 Multiplier. Range: {Q31_MIN, Q31_MAX} * @return Result of multiplication. * */ __STATIC_FORCEINLINE q31_t arm_nn_doubling_high_mult(const q31_t m1, const q31_t m2) { q31_t result = 0; // Rounding offset to add for a right shift of 31 q63_t mult = 1 << 30; if ((m1 < 0) ^ (m2 < 0)) { mult = 1 - mult; } // Gets resolved as a SMLAL instruction mult = mult + (q63_t)m1 * m2; // Utilize all of the upper 32 bits. This is the doubling step // as well. result = (int32_t)(mult / (1ll << 31)); if ((m1 == m2) && (m1 == (int32_t)Q31_MIN)) { result = Q31_MAX; } return result; } /** * @brief Doubling high multiply without saturation. This is intended * for requantization where the scale is a positive integer * * @param[in] m1 Multiplicand. Range: {Q31_MIN, Q31_MAX} * @param[in] m2 Multiplier Range: {Q31_MIN, Q31_MAX} * @return Result of multiplication. * @note The result of this matches that of neon instruction * VQRDMULH for m1 in range {Q31_MIN, Q31_MAX} and m2 in * range {Q31_MIN + 1, Q31_MAX}. Saturation occurs when * m1 equals m2 equals Q31_MIN and that is not handled by * this function. * */ __STATIC_FORCEINLINE q31_t arm_nn_doubling_high_mult_no_sat(const q31_t m1, const q31_t m2) { q31_t result = 0; union arm_nn_long_long mult; // Rounding offset to add for a right shift of 31 mult.word.low = 1 << 30; mult.word.high = 0; // Gets resolved as a SMLAL instruction mult.long_long = mult.long_long + (q63_t)m1 * m2; // Utilize all of the upper 32 bits. This is the doubling step // as well. result = (int32_t)(mult.long_long >> 31); return result; } /** * @brief Rounding divide by power of two. * @param[in] dividend - Dividend * @param[in] exponent - Divisor = power(2, exponent) * Range: [0, 31] * @return Rounded result of division. Midpoint is rounded away from zero. * */ __STATIC_FORCEINLINE q31_t arm_nn_divide_by_power_of_two(const q31_t dividend, const q31_t exponent) { q31_t result = 0; const q31_t remainder_mask = (1 << exponent) - 1; int32_t remainder = remainder_mask & dividend; // Basic division result = dividend >> exponent; // Adjust 'result' for rounding (mid point away from zero) q31_t threshold = remainder_mask >> 1; if (result < 0) { threshold++; } if (remainder > threshold) { result++; } return result; } /** * @brief Requantize a given value. * @param[in] val Value to be requantized * @param[in] multiplier multiplier. Range {Q31_MIN + 1, Q32_MAX} * @param[in] shift left or right shift for 'val * multiplier' * * @return Returns (val * multiplier)/(2 ^ shift) * */ __STATIC_FORCEINLINE q31_t arm_nn_requantize(const q31_t val, const q31_t multiplier, const q31_t shift) { return arm_nn_divide_by_power_of_two(arm_nn_doubling_high_mult_no_sat(val * (1 << LEFT_SHIFT(shift)), multiplier), RIGHT_SHIFT(shift)); } /** * @brief memcpy optimized for MVE * @param[in, out] dst Destination pointer * @param[in] src Source pointer. * @param[in] block_size Number of bytes to copy. * */ __STATIC_FORCEINLINE void arm_memcpy_q7(q7_t *__RESTRICT dst, const q7_t *__RESTRICT src, uint32_t block_size) { #if defined(ARM_MATH_MVEI) __asm volatile(" wlstp.8 lr, %[cnt], 1f \n" "2: \n" " vldrb.8 q0, [%[in]], 16 \n" " vstrb.8 q0, [%[out]], 16 \n" " letp lr, 2b \n" "1: \n" : [ in ] "+r"(src), [ out ] "+r"(dst) : [ cnt ] "r"(block_size) : "q0", "memory", "r14"); #else memcpy(dst, src, block_size); #endif } #if defined(ARM_MATH_MVEI) /** * @brief Vector saturating doubling high multiply returning high half. * @param[in] m1 Multiplicand * @param[in] m2 Multiplier * @return Result of multiplication. * */ __STATIC_FORCEINLINE int32x4_t arm_doubling_high_mult_mve(const int32x4_t m1, const q31_t m2) { return vqrdmulhq_n_s32(m1, m2); } /** * @brief Vector rounding divide by power of two. * @param[in] dividend - Dividend vector * @param[in] exponent - Divisor = power(2, exponent) * Range: [0, 31] * @return Rounded result of division. Midpoint is rounded away from zero. * */ __STATIC_FORCEINLINE int32x4_t arm_divide_by_power_of_two_mve(const int32x4_t dividend, const q31_t exponent) { const int32x4_t shift = vdupq_n_s32(-exponent); const int32x4_t fixup = vshrq_n_s32(vandq_s32(dividend, shift), 31); const int32x4_t fixed_up_dividend = vqaddq_s32(dividend, fixup); return vrshlq_s32(fixed_up_dividend, shift); } /** * @brief Requantize a given vector. * @param[in] val Vector to be requantized * @param[in] multiplier multiplier * @param[in] shift shift * * @return Returns (val * multiplier)/(2 ^ shift) * */ __STATIC_FORCEINLINE int32x4_t arm_requantize_mve(const int32x4_t val, const q31_t multiplier, const q31_t shift) { return arm_divide_by_power_of_two_mve( arm_doubling_high_mult_mve(vshlq_s32(val, vdupq_n_s32(LEFT_SHIFT(shift))), multiplier), RIGHT_SHIFT(shift)); } __STATIC_FORCEINLINE int32x4_t arm_doubling_high_mult_mve_32x4(const int32x4_t m1, const int32x4_t m2) { return vqrdmulhq_s32(m1, m2); } __STATIC_FORCEINLINE int32x4_t arm_divide_by_power_of_two_mve_32x4(const int32x4_t dividend, const int32x4_t exponent) { const int32x4_t shift = -exponent; const int32x4_t fixup = vshrq_n_s32(vandq_s32(dividend, shift), 31); const int32x4_t fixed_up_dividend = vqaddq_s32(dividend, fixup); return vrshlq_s32(fixed_up_dividend, shift); } __STATIC_FORCEINLINE int32x4_t arm_requantize_mve_32x4(const int32x4_t val, const int32x4_t multiplier, const int32x4_t shift) { const int32x4_t zz = vdupq_n_s32(0); const mve_pred16_t p = vcmpgtq_n_s32(shift, 0); const int32x4_t left_shift = vpselq_s32(shift, zz, p); const int32x4_t right_shift = -vpselq_s32(zz, shift, p); return arm_divide_by_power_of_two_mve_32x4(arm_doubling_high_mult_mve_32x4(vshlq_s32(val, left_shift), multiplier), right_shift); } #endif // @note The following functions are used only for softmax layer, scaled bits = 5 assumed __STATIC_FORCEINLINE int32_t arm_nn_exp_on_negative_values(int32_t val) { int32_t mask = 0; int32_t shift = 24; const int32_t val_mod_minus_quarter = (val & ((1 << shift) - 1)) - (1 << shift); const int32_t remainder = val_mod_minus_quarter - val; const int32_t x = (val_mod_minus_quarter << 5) + (1 << 28); const int32_t x2 = MUL_SAT(x, x); int32_t result = 1895147668 + MUL_SAT(1895147668, x + DIV_POW2(MUL_SAT(DIV_POW2(MUL_SAT(x2, x2), 2) + MUL_SAT(x2, x), 715827883) + x2, 1)); #define SELECT_IF_NON_ZERO(x) \ { \ mask = MASK_IF_NON_ZERO(remainder & (1 << shift++)); \ result = SELECT_USING_MASK(mask, MUL_SAT(result, x), result); \ } SELECT_IF_NON_ZERO(1672461947) SELECT_IF_NON_ZERO(1302514674) SELECT_IF_NON_ZERO(790015084) SELECT_IF_NON_ZERO(290630308) SELECT_IF_NON_ZERO(39332535) SELECT_IF_NON_ZERO(720401) SELECT_IF_NON_ZERO(242) #undef SELECT_IF_NON_ZERO mask = MASK_IF_ZERO(val); return SELECT_USING_MASK(mask, Q31_MAX, result); } __STATIC_FORCEINLINE q31_t arm_nn_mult_by_power_of_two(const int32_t val, const int32_t exp) { const int32_t thresh = ((1 << (31 - exp)) - 1); int32_t result = val << exp; result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val > thresh), Q31_MAX, result); result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val < -thresh), Q31_MIN, result); return result; } __STATIC_FORCEINLINE int32_t arm_nn_one_over_one_plus_x_for_x_in_0_1(int32_t val) { const int64_t sum = (int64_t)val + (int64_t)Q31_MAX; const int32_t half_denominator = (int32_t)((sum + (sum >= 0 ? 1 : -1)) / 2L); int32_t x = 1515870810 + MUL_SAT(half_denominator, -1010580540); const int32_t shift = (1 << 29); x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2); x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2); x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2); return MUL_POW2(x, 1); } /** @brief Write 2 q15 elements and post increment pointer. @param[in] dest_q15 Pointer to pointer that holds address of destination. @param[in] src_q31 Input value to be written. @return none */ __STATIC_FORCEINLINE void arm_nn_write_q15x2_ia(q15_t **dest_q15, q31_t src_q31) { q31_t val = src_q31; memcpy(*dest_q15, &val, 4); *dest_q15 += 2; } #ifdef __cplusplus } #endif #endif