/****************************************************************************** * @file arm_vec_math.h * @brief Public header file for CMSIS DSP Library * @version V1.9.0 * @date 23 April 2021 * Target Processor: Cortex-M and Cortex-A cores ******************************************************************************/ /* * Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef _ARM_VEC_MATH_H #define _ARM_VEC_MATH_H #include "arm_math_types.h" #include "arm_common_tables.h" #include "arm_helium_utils.h" #ifdef __cplusplus extern "C" { #endif #if (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE) #define INV_NEWTON_INIT_F32 0x7EF127EA static const float32_t __logf_rng_f32=0.693147180f; /* fast inverse approximation (3x newton) */ __STATIC_INLINE f32x4_t vrecip_medprec_f32( f32x4_t x) { q31x4_t m; f32x4_t b; any32x4_t xinv; f32x4_t ax = vabsq(x); xinv.f = ax; m = 0x3F800000 - (xinv.i & 0x7F800000); xinv.i = xinv.i + m; xinv.f = 1.41176471f - 0.47058824f * xinv.f; xinv.i = xinv.i + m; b = 2.0f - xinv.f * ax; xinv.f = xinv.f * b; b = 2.0f - xinv.f * ax; xinv.f = xinv.f * b; b = 2.0f - xinv.f * ax; xinv.f = xinv.f * b; xinv.f = vdupq_m(xinv.f, INFINITY, vcmpeqq(x, 0.0f)); /* * restore sign */ xinv.f = vnegq_m(xinv.f, xinv.f, vcmpltq(x, 0.0f)); return xinv.f; } /* fast inverse approximation (4x newton) */ __STATIC_INLINE f32x4_t vrecip_hiprec_f32( f32x4_t x) { q31x4_t m; f32x4_t b; any32x4_t xinv; f32x4_t ax = vabsq(x); xinv.f = ax; m = 0x3F800000 - (xinv.i & 0x7F800000); xinv.i = xinv.i + m; xinv.f = 1.41176471f - 0.47058824f * xinv.f; xinv.i = xinv.i + m; b = 2.0f - xinv.f * ax; xinv.f = xinv.f * b; b = 2.0f - xinv.f * ax; xinv.f = xinv.f * b; b = 2.0f - xinv.f * ax; xinv.f = xinv.f * b; b = 2.0f - xinv.f * ax; xinv.f = xinv.f * b; xinv.f = vdupq_m(xinv.f, INFINITY, vcmpeqq(x, 0.0f)); /* * restore sign */ xinv.f = vnegq_m(xinv.f, xinv.f, vcmpltq(x, 0.0f)); return xinv.f; } __STATIC_INLINE f32x4_t vdiv_f32( f32x4_t num, f32x4_t den) { return vmulq(num, vrecip_hiprec_f32(den)); } /** @brief Single-precision taylor dev. @param[in] x f32 quad vector input @param[in] coeffs f32 quad vector coeffs @return destination f32 quad vector */ __STATIC_INLINE f32x4_t vtaylor_polyq_f32( f32x4_t x, const float32_t * coeffs) { f32x4_t A = vfmasq(vdupq_n_f32(coeffs[4]), x, coeffs[0]); f32x4_t B = vfmasq(vdupq_n_f32(coeffs[6]), x, coeffs[2]); f32x4_t C = vfmasq(vdupq_n_f32(coeffs[5]), x, coeffs[1]); f32x4_t D = vfmasq(vdupq_n_f32(coeffs[7]), x, coeffs[3]); f32x4_t x2 = vmulq(x, x); f32x4_t x4 = vmulq(x2, x2); f32x4_t res = vfmaq(vfmaq_f32(A, B, x2), vfmaq_f32(C, D, x2), x4); return res; } __STATIC_INLINE f32x4_t vmant_exp_f32( f32x4_t x, int32x4_t * e) { any32x4_t r; int32x4_t n; r.f = x; n = r.i >> 23; n = n - 127; r.i = r.i - (n << 23); *e = n; return r.f; } __STATIC_INLINE f32x4_t vlogq_f32(f32x4_t vecIn) { q31x4_t vecExpUnBiased; f32x4_t vecTmpFlt0, vecTmpFlt1; f32x4_t vecAcc0, vecAcc1, vecAcc2, vecAcc3; f32x4_t vecExpUnBiasedFlt; /* * extract exponent */ vecTmpFlt1 = vmant_exp_f32(vecIn, &vecExpUnBiased); vecTmpFlt0 = vecTmpFlt1 * vecTmpFlt1; /* * a = (__logf_lut_f32[4] * r.f) + (__logf_lut_f32[0]); */ vecAcc0 = vdupq_n_f32(__logf_lut_f32[0]); vecAcc0 = vfmaq(vecAcc0, vecTmpFlt1, __logf_lut_f32[4]); /* * b = (__logf_lut_f32[6] * r.f) + (__logf_lut_f32[2]); */ vecAcc1 = vdupq_n_f32(__logf_lut_f32[2]); vecAcc1 = vfmaq(vecAcc1, vecTmpFlt1, __logf_lut_f32[6]); /* * c = (__logf_lut_f32[5] * r.f) + (__logf_lut_f32[1]); */ vecAcc2 = vdupq_n_f32(__logf_lut_f32[1]); vecAcc2 = vfmaq(vecAcc2, vecTmpFlt1, __logf_lut_f32[5]); /* * d = (__logf_lut_f32[7] * r.f) + (__logf_lut_f32[3]); */ vecAcc3 = vdupq_n_f32(__logf_lut_f32[3]); vecAcc3 = vfmaq(vecAcc3, vecTmpFlt1, __logf_lut_f32[7]); /* * a = a + b * xx; */ vecAcc0 = vfmaq(vecAcc0, vecAcc1, vecTmpFlt0); /* * c = c + d * xx; */ vecAcc2 = vfmaq(vecAcc2, vecAcc3, vecTmpFlt0); /* * xx = xx * xx; */ vecTmpFlt0 = vecTmpFlt0 * vecTmpFlt0; vecExpUnBiasedFlt = vcvtq_f32_s32(vecExpUnBiased); /* * r.f = a + c * xx; */ vecAcc0 = vfmaq(vecAcc0, vecAcc2, vecTmpFlt0); /* * add exponent * r.f = r.f + ((float32_t) m) * __logf_rng_f32; */ vecAcc0 = vfmaq(vecAcc0, vecExpUnBiasedFlt, __logf_rng_f32); // set log0 down to -inf vecAcc0 = vdupq_m(vecAcc0, -INFINITY, vcmpeqq(vecIn, 0.0f)); return vecAcc0; } __STATIC_INLINE f32x4_t vexpq_f32( f32x4_t x) { // Perform range reduction [-log(2),log(2)] int32x4_t m = vcvtq_s32_f32(vmulq_n_f32(x, 1.4426950408f)); f32x4_t val = vfmsq_f32(x, vcvtq_f32_s32(m), vdupq_n_f32(0.6931471805f)); // Polynomial Approximation f32x4_t poly = vtaylor_polyq_f32(val, exp_tab); // Reconstruct poly = (f32x4_t) (vqaddq_s32((q31x4_t) (poly), vqshlq_n_s32(m, 23))); poly = vdupq_m(poly, 0.0f, vcmpltq_n_s32(m, -126)); return poly; } __STATIC_INLINE f32x4_t arm_vec_exponent_f32(f32x4_t x, int32_t nb) { f32x4_t r = x; nb--; while (nb > 0) { r = vmulq(r, x); nb--; } return (r); } __STATIC_INLINE f32x4_t vrecip_f32(f32x4_t vecIn) { f32x4_t vecSx, vecW, vecTmp; any32x4_t v; vecSx = vabsq(vecIn); v.f = vecIn; v.i = vsubq(vdupq_n_s32(INV_NEWTON_INIT_F32), v.i); vecW = vmulq(vecSx, v.f); // v.f = v.f * (8 + w * (-28 + w * (56 + w * (-70 + w *(56 + w * (-28 + w * (8 - w))))))); vecTmp = vsubq(vdupq_n_f32(8.0f), vecW); vecTmp = vfmasq(vecW, vecTmp, -28.0f); vecTmp = vfmasq(vecW, vecTmp, 56.0f); vecTmp = vfmasq(vecW, vecTmp, -70.0f); vecTmp = vfmasq(vecW, vecTmp, 56.0f); vecTmp = vfmasq(vecW, vecTmp, -28.0f); vecTmp = vfmasq(vecW, vecTmp, 8.0f); v.f = vmulq(v.f, vecTmp); v.f = vdupq_m(v.f, INFINITY, vcmpeqq(vecIn, 0.0f)); /* * restore sign */ v.f = vnegq_m(v.f, v.f, vcmpltq(vecIn, 0.0f)); return v.f; } __STATIC_INLINE f32x4_t vtanhq_f32( f32x4_t val) { f32x4_t x = vminnmq_f32(vmaxnmq_f32(val, vdupq_n_f32(-10.f)), vdupq_n_f32(10.0f)); f32x4_t exp2x = vexpq_f32(vmulq_n_f32(x, 2.f)); f32x4_t num = vsubq_n_f32(exp2x, 1.f); f32x4_t den = vaddq_n_f32(exp2x, 1.f); f32x4_t tanh = vmulq_f32(num, vrecip_f32(den)); return tanh; } __STATIC_INLINE f32x4_t vpowq_f32( f32x4_t val, f32x4_t n) { return vexpq_f32(vmulq_f32(n, vlogq_f32(val))); } #endif /* (defined(ARM_MATH_MVEF) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE)*/ #if (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM)) && !defined(ARM_MATH_AUTOVECTORIZE) #endif /* (defined(ARM_MATH_MVEI) || defined(ARM_MATH_HELIUM)) */ #if (defined(ARM_MATH_NEON) || defined(ARM_MATH_NEON_EXPERIMENTAL)) && !defined(ARM_MATH_AUTOVECTORIZE) #include "NEMath.h" /** * @brief Vectorized integer exponentiation * @param[in] x value * @param[in] nb integer exponent >= 1 * @return x^nb * */ __STATIC_INLINE float32x4_t arm_vec_exponent_f32(float32x4_t x, int32_t nb) { float32x4_t r = x; nb --; while(nb > 0) { r = vmulq_f32(r , x); nb--; } return(r); } __STATIC_INLINE float32x4_t __arm_vec_sqrt_f32_neon(float32x4_t x) { float32x4_t x1 = vmaxq_f32(x, vdupq_n_f32(FLT_MIN)); float32x4_t e = vrsqrteq_f32(x1); e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x1, e), e), e); e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x1, e), e), e); return vmulq_f32(x, e); } __STATIC_INLINE int16x8_t __arm_vec_sqrt_q15_neon(int16x8_t vec) { float32x4_t tempF; int32x4_t tempHI,tempLO; tempLO = vmovl_s16(vget_low_s16(vec)); tempF = vcvtq_n_f32_s32(tempLO,15); tempF = __arm_vec_sqrt_f32_neon(tempF); tempLO = vcvtq_n_s32_f32(tempF,15); tempHI = vmovl_s16(vget_high_s16(vec)); tempF = vcvtq_n_f32_s32(tempHI,15); tempF = __arm_vec_sqrt_f32_neon(tempF); tempHI = vcvtq_n_s32_f32(tempF,15); return(vcombine_s16(vqmovn_s32(tempLO),vqmovn_s32(tempHI))); } __STATIC_INLINE int32x4_t __arm_vec_sqrt_q31_neon(int32x4_t vec) { float32x4_t temp; temp = vcvtq_n_f32_s32(vec,31); temp = __arm_vec_sqrt_f32_neon(temp); return(vcvtq_n_s32_f32(temp,31)); } #endif /* (defined(ARM_MATH_NEON) || defined(ARM_MATH_NEON_EXPERIMENTAL)) && !defined(ARM_MATH_AUTOVECTORIZE) */ #ifdef __cplusplus } #endif #endif /* _ARM_VEC_MATH_H */ /** * * End of file. */