/* * Copyright (c) 2017 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #define STACK_SIZE (512 + CONFIG_TEST_EXTRA_STACK_SIZE) #define NUM_THREAD 4 static K_THREAD_STACK_ARRAY_DEFINE(tstack, NUM_THREAD, STACK_SIZE); static struct k_thread tdata[NUM_THREAD]; #define IDLE_THRESH 20 /*sleep duration tickless*/ #define SLEEP_TICKLESS k_ticks_to_ms_floor64(IDLE_THRESH) /*sleep duration with tick*/ #define SLEEP_TICKFUL k_ticks_to_ms_floor64(IDLE_THRESH - 1) /*slice size is set as half of the sleep duration*/ #define SLICE_SIZE k_ticks_to_ms_floor64(IDLE_THRESH >> 1) /*maximum slice duration accepted by the test*/ #define SLICE_SIZE_LIMIT k_ticks_to_ms_floor64((IDLE_THRESH >> 1) + 1) /*align to millisecond boundary*/ #define ALIGN_MS_BOUNDARY() \ do { \ uint32_t t = k_uptime_get_32(); \ while (t == k_uptime_get_32()) \ Z_SPIN_DELAY(50); \ } while (0) K_SEM_DEFINE(sema, 0, NUM_THREAD); static int64_t elapsed_slice; static void thread_tslice(void *p1, void *p2, void *p3) { int64_t t = k_uptime_delta(&elapsed_slice); TC_PRINT("elapsed slice %" PRId64 ", expected: <%" PRId64 ", %" PRId64 ">\n", t, SLICE_SIZE, SLICE_SIZE_LIMIT); /**TESTPOINT: verify slicing scheduler behaves as expected*/ zassert_true(t >= SLICE_SIZE); /*less than one tick delay*/ zassert_true(t <= SLICE_SIZE_LIMIT); /*keep the current thread busy for more than one slice*/ k_busy_wait(1000 * SLEEP_TICKLESS); k_sem_give(&sema); } /** * @defgroup kernel_tickless_tests Tickless * @ingroup all_tests * @{ */ /** * @brief Verify system clock with and without tickless idle * * @details Check if system clock recovers and works as expected * when tickless idle is enabled and disabled. */ ZTEST(tickless_concept, test_tickless_sysclock) { volatile uint32_t t0, t1; ALIGN_MS_BOUNDARY(); t0 = k_uptime_get_32(); k_msleep(SLEEP_TICKLESS); t1 = k_uptime_get_32(); TC_PRINT("time %d, %d\n", t0, t1); /**TESTPOINT: verify system clock recovery after exiting tickless idle*/ zassert_true((t1 - t0) >= SLEEP_TICKLESS); ALIGN_MS_BOUNDARY(); t0 = k_uptime_get_32(); k_sem_take(&sema, K_MSEC(SLEEP_TICKFUL)); t1 = k_uptime_get_32(); TC_PRINT("time %d, %d\n", t0, t1); /**TESTPOINT: verify system clock recovery after exiting tickful idle*/ zassert_true((t1 - t0) >= SLEEP_TICKFUL); } /** * @brief Verify tickless functionality with time slice * * @details Create threads of equal priority and enable time * slice. Check if the threads execute more than a tick. */ ZTEST(tickless_concept, test_tickless_slice) { k_tid_t tid[NUM_THREAD]; k_sem_reset(&sema); /*enable time slice*/ k_sched_time_slice_set(SLICE_SIZE, K_PRIO_PREEMPT(0)); /*create delayed threads with equal preemptive priority*/ for (int i = 0; i < NUM_THREAD; i++) { tid[i] = k_thread_create(&tdata[i], tstack[i], STACK_SIZE, thread_tslice, NULL, NULL, NULL, K_PRIO_PREEMPT(0), 0, K_MSEC(SLICE_SIZE)); } k_uptime_delta(&elapsed_slice); /*relinquish CPU and wait for each thread to complete*/ for (int i = 0; i < NUM_THREAD; i++) { k_sem_take(&sema, K_FOREVER); } /*test case teardown*/ for (int i = 0; i < NUM_THREAD; i++) { k_thread_abort(tid[i]); } /*disable time slice*/ k_sched_time_slice_set(0, K_PRIO_PREEMPT(0)); } /** * @} */ ZTEST_SUITE(tickless_concept, NULL, NULL, ztest_simple_1cpu_before, ztest_simple_1cpu_after, NULL);