/* * Copyright (c) 2017 Intel Corporation * Copyright (c) 2020 Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include "testing.h" #include "net.h" #include "crypto.h" #include "beacon.h" #include "prov.h" #include "common/bt_str.h" #define LOG_LEVEL CONFIG_BT_MESH_PROV_LOG_LEVEL #include LOG_MODULE_REGISTER(bt_mesh_pb_adv); #define GPCF(gpc) (gpc & 0x03) #define GPC_START(last_seg) (((last_seg) << 2) | 0x00) #define GPC_ACK 0x01 #define GPC_CONT(seg_id) (((seg_id) << 2) | 0x02) #define GPC_CTL(op) (((op) << 2) | 0x03) #define START_PAYLOAD_MAX 20 #define CONT_PAYLOAD_MAX 23 #define RX_BUFFER_MAX 65 #define START_LAST_SEG(gpc) (gpc >> 2) #define CONT_SEG_INDEX(gpc) (gpc >> 2) #define BEARER_CTL(gpc) (gpc >> 2) #define LINK_OPEN 0x00 #define LINK_ACK 0x01 #define LINK_CLOSE 0x02 #define XACT_SEG_OFFSET(_seg) (20 + ((_seg - 1) * 23)) #define XACT_SEG_DATA(_seg) (&link.rx.buf->data[XACT_SEG_OFFSET(_seg)]) #define XACT_SEG_RECV(_seg) (link.rx.seg &= ~(1 << (_seg))) #define XACT_ID_MAX 0x7f #define XACT_ID_NVAL 0xff #define SEG_NVAL 0xff #define RETRANSMIT_TIMEOUT K_MSEC(CONFIG_BT_MESH_PB_ADV_RETRANS_TIMEOUT) #define BUF_TIMEOUT K_MSEC(400) #define CLOSING_TIMEOUT 3 #define TRANSACTION_TIMEOUT 30 /* Acked messages, will do retransmissions manually, taking acks into account: */ #define RETRANSMITS_RELIABLE CONFIG_BT_MESH_PB_ADV_TRANS_PDU_RETRANSMIT_COUNT /* PDU acks: */ #define RETRANSMITS_ACK CONFIG_BT_MESH_PB_ADV_TRANS_ACK_RETRANSMIT_COUNT /* Link close retransmits: */ #define RETRANSMITS_LINK_CLOSE CONFIG_BT_MESH_PB_ADV_LINK_CLOSE_RETRANSMIT_COUNT enum { ADV_LINK_ACTIVE, /* Link has been opened */ ADV_LINK_ACK_RECVD, /* Ack for link has been received */ ADV_LINK_CLOSING, /* Link is closing down */ ADV_LINK_INVALID, /* Error occurred during provisioning */ ADV_ACK_PENDING, /* An acknowledgment is being sent */ ADV_PROVISIONER, /* The link was opened as provisioner */ ADV_LINK_ACK_SENDING, /* Link Ack tx was scheduled but not finished. */ ADV_SENDING, /* Sending any PDU */ ADV_NUM_FLAGS, }; struct pb_adv { uint32_t id; /* Link ID */ ATOMIC_DEFINE(flags, ADV_NUM_FLAGS); const struct prov_bearer_cb *cb; void *cb_data; struct { uint8_t id; /* Most recent transaction ID */ uint8_t seg; /* Bit-field of unreceived segments */ uint8_t last_seg; /* Last segment (to check length) */ uint8_t fcs; /* Expected FCS value */ struct net_buf_simple *buf; } rx; struct { /* Start timestamp of the transaction */ int64_t start; /* Transaction id */ uint8_t id; /* Current ack id */ uint8_t pending_ack; /* Transaction timeout in seconds */ uint8_t timeout; /* Pending outgoing adv(s) (Link Open, Gen Trans Start and Gen Trans Cont) */ struct bt_mesh_adv *adv[3]; /* Index of the next adv to be sent */ int next; prov_bearer_send_complete_t cb; void *cb_data; /* Retransmit timer */ struct k_work_delayable retransmit; /* Unacked adv buffers (Link Ack, Link Close and Gen Trans Ack). Array size is * hardcoded to 2 allowing to send Gen Trans Ack and Link Close at the same time. */ struct unacked_adv_ctx { struct bt_mesh_adv *adv; prov_bearer_send_complete_t cb; void *cb_data; } unacked[2]; /* Last sent unacked[] buffer */ int last_unacked; } tx; /* Protocol timeout */ struct k_work_delayable prot_timer; }; struct prov_rx { uint32_t link_id; uint8_t xact_id; uint8_t gpc; }; NET_BUF_SIMPLE_DEFINE_STATIC(rx_buf, RX_BUFFER_MAX); static struct pb_adv link = { .rx = { .buf = &rx_buf } }; static void gen_prov_ack_send(uint8_t xact_id); static void link_open(struct prov_rx *rx, struct net_buf_simple *buf); static void link_ack(struct prov_rx *rx, struct net_buf_simple *buf); static void link_close(struct prov_rx *rx, struct net_buf_simple *buf); static void prov_link_close(enum prov_bearer_link_status status); static void close_link(enum prov_bearer_link_status status); static void tx_work_handler(struct k_work *work); static K_WORK_DELAYABLE_DEFINE(tx_work, tx_work_handler); static void tx_schedule(void) { uint16_t random_delay; if (atomic_test_bit(link.flags, ADV_SENDING)) { LOG_DBG("Another tx is in progress"); return; } (void)bt_rand(&random_delay, sizeof(random_delay)); random_delay = 20 + (random_delay % 30); LOG_DBG("Next PDU delayed by %ums", random_delay); (void)k_work_schedule(&tx_work, K_MSEC(random_delay)); } static int send_unacked(struct bt_mesh_adv *adv, prov_bearer_send_complete_t cb, void *cb_data) { for (int i = 0; i < ARRAY_SIZE(link.tx.unacked); i++) { if (link.tx.unacked[i].adv != NULL) { continue; } link.tx.unacked[i].adv = adv; link.tx.unacked[i].cb = cb; link.tx.unacked[i].cb_data = cb_data; tx_schedule(); return 0; } LOG_WRN("No memory to send unacked PDU: %s", bt_hex(adv->b.data, adv->b.len)); return -ENOMEM; } static void send_reliable(void) { /* Dropping next tx adv index to start transmission from the first adv buffer. */ link.tx.next = 0; tx_schedule(); } static void delayed_adv_send_end(int err, void *user_data) { bool unacked = (bool)user_data; struct unacked_adv_ctx *unacked_adv = &link.tx.unacked[link.tx.last_unacked]; if (unacked && unacked_adv->adv != NULL) { if (unacked_adv->cb) { unacked_adv->cb(err, unacked_adv->cb_data); } bt_mesh_adv_unref(unacked_adv->adv); unacked_adv->adv = NULL; } atomic_clear_bit(link.flags, ADV_SENDING); tx_schedule(); } static void delayed_adv_send_start(uint16_t duration, int err, void *user_data) { if (err) { delayed_adv_send_end(err, user_data); } } static const struct bt_mesh_send_cb delayed_adv_send_cb = { .start = delayed_adv_send_start, .end = delayed_adv_send_end, }; static void tx_work_handler(struct k_work *work) { int i; /* Send Link Ack, Link Close and Gen Trans Ack first. */ for (i = 0; i < ARRAY_SIZE(link.tx.unacked); i++) { int idx = (i + link.tx.last_unacked) % ARRAY_SIZE(link.tx.unacked); struct unacked_adv_ctx *unacked = &link.tx.unacked[idx]; if (!unacked->adv) { continue; } atomic_set_bit(link.flags, ADV_SENDING); bt_mesh_adv_send(unacked->adv, &delayed_adv_send_cb, (void *)true); link.tx.last_unacked = idx; return; } /* Send Trans Start, Trans Cont and Link Open */ if (link.tx.next >= ARRAY_SIZE(link.tx.adv) || link.tx.adv[link.tx.next] == NULL) { LOG_DBG("All PDUs were sent"); return; } atomic_set_bit(link.flags, ADV_SENDING); bt_mesh_adv_send(link.tx.adv[link.tx.next], &delayed_adv_send_cb, (void *)false); link.tx.next++; if (link.tx.next == ARRAY_SIZE(link.tx.adv) || link.tx.adv[link.tx.next] == NULL) { /* All ack-able PDUs are sent. Now we can run the retransmit timer. */ LOG_DBG("Starting retransmit timer"); k_work_reschedule(&link.tx.retransmit, RETRANSMIT_TIMEOUT); } } static uint8_t last_seg(uint16_t len) { if (len <= START_PAYLOAD_MAX) { return 0; } len -= START_PAYLOAD_MAX; return 1 + (len / CONT_PAYLOAD_MAX); } static void free_segments(void) { int i; bool canceled = false; for (i = 0; i < ARRAY_SIZE(link.tx.adv); i++) { struct bt_mesh_adv *adv = link.tx.adv[i]; int err; if (!adv) { break; } link.tx.adv[i] = NULL; /* Terminate active adv */ if (adv->ctx.busy == 0U) { err = bt_mesh_adv_terminate(adv); if (err == 0) { canceled = true; } } else { /* Mark as canceled */ adv->ctx.busy = 0U; canceled = true; } bt_mesh_adv_unref(adv); } if (canceled) { atomic_clear_bit(link.flags, ADV_SENDING); tx_schedule(); } } static uint8_t next_transaction_id(uint8_t id) { return (((id + 1) & XACT_ID_MAX) | (id & (XACT_ID_MAX+1))); } static void prov_clear_tx(void) { LOG_DBG(""); /* If this fails, the work handler will not find any advs to send, * and return without rescheduling. The work handler also checks the * LINK_ACTIVE flag, so if this call is part of reset_adv_link, it'll * exit early. */ (void)k_work_cancel_delayable(&link.tx.retransmit); free_segments(); } static void reset_adv_link(void) { LOG_DBG(""); prov_clear_tx(); /* If this fails, the work handler will exit early on the LINK_ACTIVE * check. */ (void)k_work_cancel_delayable(&link.prot_timer); if (atomic_test_bit(link.flags, ADV_PROVISIONER)) { /* Clear everything except the retransmit and protocol timer * delayed work objects. */ (void)memset(&link, 0, offsetof(struct pb_adv, tx.retransmit)); link.rx.id = XACT_ID_NVAL; } else { /* If provisioned, reset the link callback to stop receiving provisioning advs, * otherwise keep the callback to accept another provisioning attempt. */ if (bt_mesh_is_provisioned()) { link.cb = NULL; } link.id = 0; atomic_clear(link.flags); link.rx.id = XACT_ID_MAX; link.tx.id = XACT_ID_NVAL; } link.tx.pending_ack = XACT_ID_NVAL; link.rx.buf = &rx_buf; net_buf_simple_reset(link.rx.buf); } static void close_link(enum prov_bearer_link_status reason) { const struct prov_bearer_cb *cb = link.cb; void *cb_data = link.cb_data; reset_adv_link(); cb->link_closed(&bt_mesh_pb_adv, cb_data, reason); } static struct bt_mesh_adv *adv_create(uint8_t retransmits) { struct bt_mesh_adv *adv; adv = bt_mesh_adv_create(BT_MESH_ADV_PROV, BT_MESH_ADV_TAG_PROV, BT_MESH_TRANSMIT(retransmits, 20), BUF_TIMEOUT); if (!adv) { LOG_ERR("Out of provisioning advs"); return NULL; } return adv; } static void ack_complete(int err, void *user_data) { LOG_DBG("xact 0x%x complete", (uint8_t)link.tx.pending_ack); atomic_clear_bit(link.flags, ADV_ACK_PENDING); } static bool ack_pending(void) { return atomic_test_bit(link.flags, ADV_ACK_PENDING); } static void prov_failed(uint8_t err) { LOG_DBG("%u", err); link.cb->error(&bt_mesh_pb_adv, link.cb_data, err); atomic_set_bit(link.flags, ADV_LINK_INVALID); } static void prov_msg_recv(void) { k_work_reschedule(&link.prot_timer, bt_mesh_prov_protocol_timeout_get()); if (!bt_mesh_fcs_check(link.rx.buf, link.rx.fcs)) { LOG_ERR("Incorrect FCS"); return; } gen_prov_ack_send(link.rx.id); if (atomic_test_bit(link.flags, ADV_LINK_INVALID)) { LOG_WRN("Unexpected msg 0x%02x on invalidated link", link.rx.buf->data[0]); prov_failed(PROV_ERR_UNEXP_PDU); return; } link.cb->recv(&bt_mesh_pb_adv, link.cb_data, link.rx.buf); } static void protocol_timeout(struct k_work *work) { if (!atomic_test_bit(link.flags, ADV_LINK_ACTIVE)) { return; } LOG_DBG(""); link.rx.seg = 0U; prov_link_close(PROV_BEARER_LINK_STATUS_TIMEOUT); } /******************************************************************************* * Generic provisioning ******************************************************************************/ static void gen_prov_ack_send(uint8_t xact_id) { struct bt_mesh_adv *adv; bool pending = atomic_test_and_set_bit(link.flags, ADV_ACK_PENDING); int err; LOG_DBG("xact_id 0x%x", xact_id); if (pending && link.tx.pending_ack == xact_id) { LOG_DBG("Not sending duplicate ack"); return; } adv = adv_create(RETRANSMITS_ACK); if (!adv) { atomic_clear_bit(link.flags, ADV_ACK_PENDING); return; } if (!pending) { link.tx.pending_ack = xact_id; } net_buf_simple_add_be32(&adv->b, link.id); net_buf_simple_add_u8(&adv->b, xact_id); net_buf_simple_add_u8(&adv->b, GPC_ACK); err = send_unacked(adv, pending ? NULL : ack_complete, NULL); if (err) { atomic_clear_bit(link.flags, ADV_ACK_PENDING); } } static void gen_prov_cont(struct prov_rx *rx, struct net_buf_simple *buf) { uint8_t seg = CONT_SEG_INDEX(rx->gpc); if (link.tx.adv[0]) { LOG_DBG("Ongoing tx transaction has not been completed yet"); return; } LOG_DBG("len %u, seg_index %u", buf->len, seg); if (!link.rx.seg && link.rx.id == rx->xact_id) { if (!ack_pending()) { LOG_DBG("Resending ack"); gen_prov_ack_send(rx->xact_id); } return; } if (!link.rx.seg && next_transaction_id(link.rx.id) == rx->xact_id) { LOG_DBG("Start segment lost"); link.rx.id = rx->xact_id; net_buf_simple_reset(link.rx.buf); link.rx.seg = SEG_NVAL; link.rx.last_seg = SEG_NVAL; prov_clear_tx(); } else if (rx->xact_id != link.rx.id) { LOG_WRN("Data for unknown transaction (0x%x != 0x%x)", rx->xact_id, link.rx.id); return; } if (seg > link.rx.last_seg) { LOG_ERR("Invalid segment index %u", seg); prov_failed(PROV_ERR_NVAL_FMT); return; } if (!(link.rx.seg & BIT(seg))) { LOG_DBG("Ignoring already received segment"); return; } if (XACT_SEG_OFFSET(seg) + buf->len > RX_BUFFER_MAX) { LOG_WRN("Rx buffer overflow. Malformed generic prov frame?"); return; } memcpy(XACT_SEG_DATA(seg), buf->data, buf->len); XACT_SEG_RECV(seg); if (seg == link.rx.last_seg && !(link.rx.seg & BIT(0))) { uint8_t expect_len; expect_len = (link.rx.buf->len - 20U - ((link.rx.last_seg - 1) * 23U)); if (expect_len != buf->len) { LOG_ERR("Incorrect last seg len: %u != %u", expect_len, buf->len); prov_failed(PROV_ERR_NVAL_FMT); return; } } if (!link.rx.seg) { prov_msg_recv(); } } static void gen_prov_ack(struct prov_rx *rx, struct net_buf_simple *buf) { LOG_DBG("len %u", buf->len); if (!link.tx.adv[0]) { return; } if (rx->xact_id == link.tx.id) { /* Don't clear resending of link_close messages */ if (!atomic_test_bit(link.flags, ADV_LINK_CLOSING)) { prov_clear_tx(); } if (link.tx.cb) { link.tx.cb(0, link.tx.cb_data); } } } static void gen_prov_start(struct prov_rx *rx, struct net_buf_simple *buf) { uint8_t seg = SEG_NVAL; if (link.tx.adv[0]) { LOG_DBG("Ongoing tx transaction has not been completed yet"); return; } if (rx->xact_id == link.rx.id) { if (!link.rx.seg) { if (!ack_pending()) { LOG_DBG("Resending ack"); gen_prov_ack_send(rx->xact_id); } return; } if (!(link.rx.seg & BIT(0))) { LOG_DBG("Ignoring duplicate segment"); return; } } else if (rx->xact_id != next_transaction_id(link.rx.id)) { LOG_WRN("Unexpected xact 0x%x, expected 0x%x", rx->xact_id, next_transaction_id(link.rx.id)); return; } net_buf_simple_reset(link.rx.buf); link.rx.buf->len = net_buf_simple_pull_be16(buf); link.rx.id = rx->xact_id; link.rx.fcs = net_buf_simple_pull_u8(buf); LOG_DBG("len %u last_seg %u total_len %u fcs 0x%02x", buf->len, START_LAST_SEG(rx->gpc), link.rx.buf->len, link.rx.fcs); if (link.rx.buf->len < 1) { LOG_ERR("Ignoring zero-length provisioning PDU"); prov_failed(PROV_ERR_NVAL_FMT); return; } if (link.rx.buf->len > link.rx.buf->size) { LOG_ERR("Too large provisioning PDU (%u bytes)", link.rx.buf->len); prov_failed(PROV_ERR_NVAL_FMT); return; } if (START_LAST_SEG(rx->gpc) > 0 && link.rx.buf->len <= 20U) { LOG_ERR("Too small total length for multi-segment PDU"); prov_failed(PROV_ERR_NVAL_FMT); return; } if (START_LAST_SEG(rx->gpc) != last_seg(link.rx.buf->len)) { LOG_ERR("Invalid SegN (%u, calculated %u)", START_LAST_SEG(rx->gpc), last_seg(link.rx.buf->len)); prov_failed(PROV_ERR_NVAL_FMT); return; } prov_clear_tx(); link.rx.last_seg = START_LAST_SEG(rx->gpc); if ((link.rx.seg & BIT(0)) && (find_msb_set((~link.rx.seg) & SEG_NVAL) - 1 > link.rx.last_seg)) { LOG_ERR("Invalid segment index %u", seg); prov_failed(PROV_ERR_NVAL_FMT); return; } if (link.rx.seg) { seg = link.rx.seg; } link.rx.seg = seg & ((1 << (START_LAST_SEG(rx->gpc) + 1)) - 1); memcpy(link.rx.buf->data, buf->data, buf->len); XACT_SEG_RECV(0); if (!link.rx.seg) { prov_msg_recv(); } } static void gen_prov_ctl(struct prov_rx *rx, struct net_buf_simple *buf) { LOG_DBG("op 0x%02x len %u", BEARER_CTL(rx->gpc), buf->len); switch (BEARER_CTL(rx->gpc)) { case LINK_OPEN: link_open(rx, buf); break; case LINK_ACK: if (!atomic_test_bit(link.flags, ADV_LINK_ACTIVE)) { return; } link_ack(rx, buf); break; case LINK_CLOSE: if (!atomic_test_bit(link.flags, ADV_LINK_ACTIVE)) { return; } link_close(rx, buf); break; default: LOG_ERR("Unknown bearer opcode: 0x%02x", BEARER_CTL(rx->gpc)); if (IS_ENABLED(CONFIG_BT_TESTING)) { bt_mesh_test_prov_invalid_bearer(BEARER_CTL(rx->gpc)); } return; } } static const struct { void (*func)(struct prov_rx *rx, struct net_buf_simple *buf); bool require_link; uint8_t min_len; } gen_prov[] = { { gen_prov_start, true, 3 }, { gen_prov_ack, true, 0 }, { gen_prov_cont, true, 0 }, { gen_prov_ctl, false, 0 }, }; static void gen_prov_recv(struct prov_rx *rx, struct net_buf_simple *buf) { if (buf->len < gen_prov[GPCF(rx->gpc)].min_len) { LOG_ERR("Too short GPC message type %u", GPCF(rx->gpc)); return; } if (!atomic_test_bit(link.flags, ADV_LINK_ACTIVE) && gen_prov[GPCF(rx->gpc)].require_link) { LOG_DBG("Ignoring message that requires active link"); return; } gen_prov[GPCF(rx->gpc)].func(rx, buf); } /******************************************************************************* * TX ******************************************************************************/ static void prov_retransmit(struct k_work *work) { LOG_DBG(""); if (!atomic_test_bit(link.flags, ADV_LINK_ACTIVE)) { LOG_WRN("Link not active"); return; } if (k_uptime_get() - link.tx.start > link.tx.timeout * MSEC_PER_SEC) { LOG_WRN("Giving up transaction"); prov_link_close(PROV_BEARER_LINK_STATUS_TIMEOUT); return; } send_reliable(); } static struct bt_mesh_adv *ctl_adv_create(uint8_t op, const void *data, uint8_t data_len, uint8_t retransmits) { struct bt_mesh_adv *adv; LOG_DBG("op 0x%02x data_len %u", op, data_len); adv = adv_create(retransmits); if (!adv) { return NULL; } net_buf_simple_add_be32(&adv->b, link.id); /* Transaction ID, always 0 for Bearer messages */ net_buf_simple_add_u8(&adv->b, 0x00); net_buf_simple_add_u8(&adv->b, GPC_CTL(op)); net_buf_simple_add_mem(&adv->b, data, data_len); return adv; } static int bearer_ctl_send(struct bt_mesh_adv *adv) { if (!adv) { return -ENOMEM; } prov_clear_tx(); k_work_reschedule(&link.prot_timer, bt_mesh_prov_protocol_timeout_get()); link.tx.start = k_uptime_get(); link.tx.adv[0] = adv; send_reliable(); return 0; } static void buf_sent(int err, void *user_data) { enum prov_bearer_link_status reason = (enum prov_bearer_link_status)(int)user_data; atomic_clear_bit(link.flags, ADV_LINK_ACK_SENDING); if (atomic_test_and_clear_bit(link.flags, ADV_LINK_CLOSING)) { close_link(reason); return; } } static int bearer_ctl_send_unacked(struct bt_mesh_adv *adv, void *user_data) { int err; if (!adv) { return -ENOMEM; } prov_clear_tx(); k_work_reschedule(&link.prot_timer, bt_mesh_prov_protocol_timeout_get()); err = send_unacked(adv, &buf_sent, user_data); if (err) { bt_mesh_adv_unref(adv); } return err; } static int prov_send_adv(struct net_buf_simple *msg, prov_bearer_send_complete_t cb, void *cb_data) { struct bt_mesh_adv *start, *adv; uint8_t seg_len, seg_id; prov_clear_tx(); k_work_reschedule(&link.prot_timer, bt_mesh_prov_protocol_timeout_get()); start = adv_create(RETRANSMITS_RELIABLE); if (!start) { return -ENOBUFS; } link.tx.id = next_transaction_id(link.tx.id); net_buf_simple_add_be32(&start->b, link.id); net_buf_simple_add_u8(&start->b, link.tx.id); net_buf_simple_add_u8(&start->b, GPC_START(last_seg(msg->len))); net_buf_simple_add_be16(&start->b, msg->len); net_buf_simple_add_u8(&start->b, bt_mesh_fcs_calc(msg->data, msg->len)); link.tx.adv[0] = start; link.tx.cb = cb; link.tx.cb_data = cb_data; link.tx.start = k_uptime_get(); LOG_DBG("xact_id: 0x%x len: %u", link.tx.id, msg->len); seg_len = MIN(msg->len, START_PAYLOAD_MAX); LOG_DBG("seg 0 len %u: %s", seg_len, bt_hex(msg->data, seg_len)); net_buf_simple_add_mem(&start->b, msg->data, seg_len); net_buf_simple_pull(msg, seg_len); adv = start; for (seg_id = 1U; msg->len > 0; seg_id++) { if (seg_id >= ARRAY_SIZE(link.tx.adv)) { LOG_ERR("Too big message"); free_segments(); return -E2BIG; } adv = adv_create(RETRANSMITS_RELIABLE); if (!adv) { free_segments(); return -ENOBUFS; } link.tx.adv[seg_id] = adv; seg_len = MIN(msg->len, CONT_PAYLOAD_MAX); LOG_DBG("seg %u len %u: %s", seg_id, seg_len, bt_hex(msg->data, seg_len)); net_buf_simple_add_be32(&adv->b, link.id); net_buf_simple_add_u8(&adv->b, link.tx.id); net_buf_simple_add_u8(&adv->b, GPC_CONT(seg_id)); net_buf_simple_add_mem(&adv->b, msg->data, seg_len); net_buf_simple_pull(msg, seg_len); } send_reliable(); return 0; } /******************************************************************************* * Link management rx ******************************************************************************/ static void link_open(struct prov_rx *rx, struct net_buf_simple *buf) { int err; LOG_DBG("len %u", buf->len); if (buf->len < 16) { LOG_ERR("Too short bearer open message (len %u)", buf->len); return; } if (atomic_test_bit(link.flags, ADV_LINK_ACTIVE)) { /* Send another link ack if the provisioner missed the last */ if (link.id != rx->link_id) { LOG_DBG("Ignoring bearer open: link already active"); return; } if (atomic_test_bit(link.flags, ADV_LINK_ACK_SENDING)) { LOG_DBG("Still sending Link Ack"); return; } /* Ignore errors, message will be attempted again if we keep receiving link open: */ atomic_set_bit(link.flags, ADV_LINK_ACK_SENDING); (void)bearer_ctl_send_unacked( ctl_adv_create(LINK_ACK, NULL, 0, RETRANSMITS_ACK), (void *)PROV_BEARER_LINK_STATUS_SUCCESS); return; } if (memcmp(buf->data, bt_mesh_prov_get()->uuid, 16)) { LOG_DBG("Bearer open message not for us"); return; } link.id = rx->link_id; atomic_set_bit(link.flags, ADV_LINK_ACTIVE); net_buf_simple_reset(link.rx.buf); atomic_set_bit(link.flags, ADV_LINK_ACK_SENDING); err = bearer_ctl_send_unacked( ctl_adv_create(LINK_ACK, NULL, 0, RETRANSMITS_ACK), (void *)PROV_BEARER_LINK_STATUS_SUCCESS); if (err) { reset_adv_link(); return; } link.cb->link_opened(&bt_mesh_pb_adv, link.cb_data); } static void link_ack(struct prov_rx *rx, struct net_buf_simple *buf) { LOG_DBG("len %u", buf->len); if (atomic_test_bit(link.flags, ADV_PROVISIONER)) { if (atomic_test_and_set_bit(link.flags, ADV_LINK_ACK_RECVD)) { return; } prov_clear_tx(); link.tx.timeout = TRANSACTION_TIMEOUT; link.cb->link_opened(&bt_mesh_pb_adv, link.cb_data); } } static void link_close(struct prov_rx *rx, struct net_buf_simple *buf) { LOG_DBG("len %u", buf->len); if (buf->len != 1) { return; } close_link(net_buf_simple_pull_u8(buf)); } /******************************************************************************* * Higher level functionality ******************************************************************************/ void bt_mesh_pb_adv_recv(struct net_buf_simple *buf) { struct prov_rx rx; if (!link.cb) { return; } if (buf->len < 6) { LOG_WRN("Too short provisioning packet (len %u)", buf->len); return; } rx.link_id = net_buf_simple_pull_be32(buf); rx.xact_id = net_buf_simple_pull_u8(buf); rx.gpc = net_buf_simple_pull_u8(buf); if (atomic_test_bit(link.flags, ADV_LINK_ACTIVE) && link.id != rx.link_id) { return; } LOG_DBG("link_id 0x%08x xact_id 0x%x", rx.link_id, rx.xact_id); gen_prov_recv(&rx, buf); } static int prov_link_open(const uint8_t uuid[16], uint8_t timeout, const struct prov_bearer_cb *cb, void *cb_data) { int err; LOG_DBG("uuid %s", bt_hex(uuid, 16)); err = bt_mesh_adv_enable(); if (err) { LOG_ERR("Failed enabling advertiser"); return err; } if (atomic_test_and_set_bit(link.flags, ADV_LINK_ACTIVE)) { return -EBUSY; } atomic_set_bit(link.flags, ADV_PROVISIONER); bt_rand(&link.id, sizeof(link.id)); link.tx.id = XACT_ID_MAX; link.rx.id = XACT_ID_NVAL; link.cb = cb; link.cb_data = cb_data; /* The link open time is configurable, but this will be changed to TRANSACTION_TIMEOUT once * the link is established. */ link.tx.timeout = timeout; net_buf_simple_reset(link.rx.buf); return bearer_ctl_send(ctl_adv_create(LINK_OPEN, uuid, 16, RETRANSMITS_RELIABLE)); } static int prov_link_accept(const struct prov_bearer_cb *cb, void *cb_data) { int err; err = bt_mesh_adv_enable(); if (err) { LOG_ERR("Failed enabling advertiser"); return err; } if (atomic_test_bit(link.flags, ADV_LINK_ACTIVE)) { return -EBUSY; } link.rx.id = XACT_ID_MAX; link.tx.id = XACT_ID_NVAL; link.cb = cb; link.cb_data = cb_data; link.tx.timeout = TRANSACTION_TIMEOUT; /* Make sure we're scanning for provisioning invitations */ bt_mesh_scan_enable(); /* Enable unprovisioned beacon sending */ bt_mesh_beacon_enable(); return 0; } static void prov_link_close(enum prov_bearer_link_status status) { int err; if (atomic_test_and_set_bit(link.flags, ADV_LINK_CLOSING)) { return; } /* * According to MshPRTv1.1: 5.3.1.4.3, the close message should * be restransmitted at least three times. Retransmit the LINK_CLOSE * message until CLOSING_TIMEOUT has elapsed. */ link.tx.timeout = CLOSING_TIMEOUT; /* Ignore errors, the link will time out eventually if this doesn't get sent */ err = bearer_ctl_send_unacked( ctl_adv_create(LINK_CLOSE, &status, 1, RETRANSMITS_LINK_CLOSE), (void *)status); if (err) { close_link(status); } } void bt_mesh_pb_adv_init(void) { k_work_init_delayable(&link.prot_timer, protocol_timeout); k_work_init_delayable(&link.tx.retransmit, prov_retransmit); } void bt_mesh_pb_adv_reset(void) { reset_adv_link(); } const struct prov_bearer bt_mesh_pb_adv = { .type = BT_MESH_PROV_ADV, .link_open = prov_link_open, .link_accept = prov_link_accept, .link_close = prov_link_close, .send = prov_send_adv, .clear_tx = prov_clear_tx, };