/* * Copyright (c) 2020 ITE Corporation. All Rights Reserved. * * SPDX-License-Identifier: Apache-2.0 * */ #include #include #include #include #include "ilm.h" #include #include "soc_espi.h" #include /* * This define gets the total number of USBPD ports available on the * ITE EC chip from dtsi (include status disable). Both it81202 and * it81302 support two USBPD ports. */ #define SOC_USBPD_ITE_PHY_PORT_COUNT \ COND_CODE_1(DT_NODE_EXISTS(DT_INST(1, ite_it8xxx2_usbpd)), (2), (1)) /* * This define gets the number of active USB Power Delivery (USB PD) * ports in use on the ITE microcontroller from dts (only status okay). * The active port usage should follow the order of ITE TCPC port index, * ex. if we're active only one ITE USB PD port, then the port should be * 0x3700 (port0 register base), instead of 0x3800 (port1 register base). */ #define SOC_USBPD_ITE_ACTIVE_PORT_COUNT DT_NUM_INST_STATUS_OKAY(ite_it8xxx2_usbpd) /* PLL Frequency Auto-Calibration Control 0 Register */ #define PLL_FREQ_AUTO_CAL_EN BIT(7) #define LOCK_TUNING_FACTORS_OF_LCO BIT(3) /* LC Oscillator Control Register */ #define LCO_Power_CTRL BIT(1) /* LC Oscillator Control Register 1 */ #define LDO_Power_CTRL BIT(1) /* LC Oscillator Tuning Factor 2 */ #define LCO_SC_FACTOR_MASK GENMASK(6, 4) #define LCO_SC_FACTOR(n) FIELD_PREP(LCO_SC_FACTOR_MASK, n) /* PLL Frequency Auto-Calibration Control 2 Register */ #define AUTO_CAL_ENABLE BIT(1) #define PLL_FREQ_AUTO_CAL_START BIT(0) #define AUTO_CAL_ENABLE_AND_START (AUTO_CAL_ENABLE | PLL_FREQ_AUTO_CAL_START) uint32_t chip_get_pll_freq(void) { uint32_t pllfreq; switch (IT8XXX2_ECPM_PLLFREQR & 0x0F) { case 0: pllfreq = MHZ(8); break; case 1: pllfreq = MHZ(16); break; case 2: pllfreq = MHZ(24); break; case 3: pllfreq = MHZ(32); break; case 4: pllfreq = MHZ(48); break; case 5: pllfreq = MHZ(64); break; case 6: pllfreq = MHZ(72); break; case 7: pllfreq = MHZ(96); break; default: return -ERANGE; } return pllfreq; } void __soc_ram_code chip_pll_ctrl(enum chip_pll_mode mode) { volatile uint8_t _pll_ctrl __unused; IT8XXX2_ECPM_PLLCTRL = mode; /* * for deep doze / sleep mode * This load operation will ensure PLL setting is taken into * control register before wait for interrupt instruction. */ _pll_ctrl = IT8XXX2_ECPM_PLLCTRL; } #ifdef CONFIG_SOC_IT8XXX2_PLL_FLASH_48M struct pll_config_t { uint8_t pll_freq; uint8_t div_mcu; uint8_t div_fnd; uint8_t div_usb; uint8_t div_uart; uint8_t div_smb; uint8_t div_sspi; uint8_t div_ec; uint8_t div_jtag; uint8_t div_pwm; uint8_t div_usbpd; }; enum pll_frequency { PLL_FREQ_48M = 0, PLL_FREQ_96M, PLL_FREQ_CNT }; static const struct pll_config_t pll_configuration[PLL_FREQ_CNT] = { /* * PLL frequency setting = 4 (48MHz) * MCU div = 0 (PLL / 1 = 48 mhz) * FND div = 0 (PLL / 1 = 48 mhz) * USB div = 0 (PLL / 1 = 48 mhz) * UART div = 1 (PLL / 2 = 24 mhz) * SMB div = 1 (PLL / 2 = 24 mhz) * SSPI div = 1 (PLL / 2 = 24 mhz) * EC div = 6 (FND / 6 = 8 mhz) * JTAG div = 1 (PLL / 2 = 24 mhz) * PWM div = 0 (PLL / 1 = 48 mhz) * USBPD div = 5 (PLL / 6 = 8 mhz) */ [PLL_FREQ_48M] = {.pll_freq = 4, .div_mcu = 0, .div_fnd = 0, .div_usb = 0, .div_uart = 1, .div_smb = 1, .div_sspi = 1, #ifdef CONFIG_SOC_IT8XXX2_EC_BUS_24MHZ .div_ec = 1, #else .div_ec = 6, #endif .div_jtag = 1, .div_pwm = 0, .div_usbpd = 5}, /* * PLL frequency setting = 7 (96MHz) * MCU div = 1 (PLL / 2 = 48 mhz) * FND div = 1 (PLL / 2 = 48 mhz) * USB div = 1 (PLL / 2 = 48 mhz) * UART div = 3 (PLL / 4 = 24 mhz) * SMB div = 3 (PLL / 4 = 24 mhz) * SSPI div = 3 (PLL / 4 = 24 mhz) * EC div = 6 (FND / 6 = 8 mhz) * JTAG div = 3 (PLL / 4 = 24 mhz) * PWM div = 1 (PLL / 2 = 48 mhz) * USBPD div = 11 (PLL / 12 = 8 mhz) */ [PLL_FREQ_96M] = {.pll_freq = 7, .div_mcu = 1, .div_fnd = 1, .div_usb = 1, .div_uart = 3, .div_smb = 3, .div_sspi = 3, #ifdef CONFIG_SOC_IT8XXX2_EC_BUS_24MHZ .div_ec = 1, #else .div_ec = 6, #endif .div_jtag = 3, .div_pwm = 1, .div_usbpd = 11}, }; void __soc_ram_code chip_run_pll_sequence(const struct pll_config_t *pll) { /* Enable HW timer to wakeup chip from the sleep mode */ timer_5ms_one_shot(); /* * Configure PLL clock dividers. * Writing data to these registers doesn't change the * PLL frequency immediately until the status is changed * into wakeup from the sleep mode. * The following code is intended to make the system * enter sleep mode, and wait HW timer to wakeup chip to * complete PLL update. */ IT8XXX2_ECPM_PLLFREQR = pll->pll_freq; /* Pre-set FND clock frequency = PLL / 3 */ IT8XXX2_ECPM_SCDCR0 = (2 << 4); /* JTAG and EC */ IT8XXX2_ECPM_SCDCR3 = (pll->div_jtag << 4) | pll->div_ec; /* Chip sleep after wait for interrupt (wfi) instruction */ chip_pll_ctrl(CHIP_PLL_SLEEP); /* Chip sleep and wait timer wake it up */ __asm__ volatile ("wfi"); /* New FND and MCU clock frequency */ IT8XXX2_ECPM_SCDCR0 = (pll->div_fnd << 4) | pll->div_mcu; /* Chip doze after wfi instruction */ chip_pll_ctrl(CHIP_PLL_DOZE); /* USB and UART */ IT8XXX2_ECPM_SCDCR1 = (pll->div_usb << 4) | pll->div_uart; /* SSPI and SMB */ IT8XXX2_ECPM_SCDCR2 = (pll->div_sspi << 4) | pll->div_smb; /* USBPD and PWM */ IT8XXX2_ECPM_SCDCR4 = (pll->div_usbpd << 4) | pll->div_pwm; } static void chip_configure_pll(const struct pll_config_t *pll) { /* Re-configure PLL clock or not. */ if (((IT8XXX2_ECPM_PLLFREQR & 0xf) != pll->pll_freq) || ((IT8XXX2_ECPM_SCDCR0 & 0xf0) != (pll->div_fnd << 4)) || ((IT8XXX2_ECPM_SCDCR3 & 0xf) != pll->div_ec)) { #ifdef CONFIG_ESPI /* * We have to disable eSPI pad before changing * PLL sequence or sequence will fail if CS# pin is low. */ espi_it8xxx2_enable_pad_ctrl(ESPI_IT8XXX2_SOC_DEV, false); #endif /* Run change PLL sequence */ chip_run_pll_sequence(pll); #ifdef CONFIG_ESPI /* Enable eSPI pad after changing PLL sequence */ espi_it8xxx2_enable_pad_ctrl(ESPI_IT8XXX2_SOC_DEV, true); #endif } } static int chip_change_pll(void) { if (IS_ENABLED(CONFIG_HAS_ITE_INTC)) { ite_intc_save_and_disable_interrupts(); } /* Disable auto calibration before setting PLL frequency */ if (IT8XXX2_ECPM_PFACC0R & PLL_FREQ_AUTO_CAL_EN) { IT8XXX2_ECPM_PFACC0R &= ~PLL_FREQ_AUTO_CAL_EN; } /* configure PLL/CPU/flash clock */ if (IS_ENABLED(CONFIG_SOC_IT8XXX2_LCVCO)) { chip_configure_pll(&pll_configuration[PLL_FREQ_96M]); /* Enable LCVCO calibration */ IT8XXX2_ECPM_PFACC1R = 0x01; IT8XXX2_ECPM_PFACC0R |= (PLL_FREQ_AUTO_CAL_EN | LOCK_TUNING_FACTORS_OF_LCO); IT8XXX2_ECPM_LCOCR |= LCO_Power_CTRL; IT8XXX2_ECPM_LCOCR1 |= LDO_Power_CTRL; IT8XXX2_ECPM_LCOTF2 &= ~LCO_SC_FACTOR_MASK; IT8XXX2_ECPM_LCOTF2 |= LCO_SC_FACTOR(2); IT8XXX2_ECPM_PFACC2R = AUTO_CAL_ENABLE_AND_START; } else { chip_configure_pll(&pll_configuration[PLL_FREQ_48M]); } if (IS_ENABLED(CONFIG_HAS_ITE_INTC)) { ite_intc_restore_interrupts(); } return 0; } SYS_INIT(chip_change_pll, PRE_KERNEL_1, CONFIG_IT8XXX2_PLL_SEQUENCE_PRIORITY); BUILD_ASSERT(CONFIG_FLASH_INIT_PRIORITY < CONFIG_IT8XXX2_PLL_SEQUENCE_PRIORITY, "CONFIG_FLASH_INIT_PRIORITY must be less than CONFIG_IT8XXX2_PLL_SEQUENCE_PRIORITY"); #endif /* CONFIG_SOC_IT8XXX2_PLL_FLASH_48M */ #ifdef CONFIG_SOC_IT8XXX2_CPU_IDLE_GATING /* Preventing CPU going into idle mode during command queue. */ static atomic_t cpu_idle_disabled; void chip_permit_idle(void) { atomic_dec(&cpu_idle_disabled); } void chip_block_idle(void) { atomic_inc(&cpu_idle_disabled); } bool cpu_idle_not_allowed(void) { return !!(atomic_get(&cpu_idle_disabled)); } #endif /* The routine must be called with interrupts locked */ void riscv_idle(enum chip_pll_mode mode, unsigned int key) { /* * The routine is called with interrupts locked (in kernel/idle()). * But on kernel/context test_kernel_cpu_idle test, the routine will be * called without interrupts locked. Hence we disable M-mode external * interrupt here to protect the below content. */ csr_clear(mie, MIP_MEIP); sys_trace_idle(); #ifdef CONFIG_ESPI /* * H2RAM feature requires RAM clock to be active. Since the below doze * mode will disable CPU and RAM clocks, enable eSPI transaction * interrupt to restore clocks. With this interrupt, EC will not defer * eSPI bus while transaction is accepted. */ espi_it8xxx2_enable_trans_irq(ESPI_IT8XXX2_SOC_DEV, true); #endif /* Chip doze after wfi instruction */ chip_pll_ctrl(mode); do { #ifndef CONFIG_SOC_IT8XXX2_JTAG_DEBUG_INTERFACE /* Wait for interrupt */ __asm__ volatile ("wfi"); #endif /* * Sometimes wfi instruction may fail due to CPU's MTIP@mip * register is non-zero. * If the ite_intc_no_irq() is true at this point, * it means that EC waked-up by the above issue not an * interrupt. Hence we loop running wfi instruction here until * wfi success. */ } while (ite_intc_no_irq()); if (IS_ENABLED(CONFIG_SOC_IT8XXX2_LCVCO)) { if (mode != CHIP_PLL_DOZE) { IT8XXX2_ECPM_PFACC2R |= PLL_FREQ_AUTO_CAL_START; } } #ifdef CONFIG_ESPI /* CPU has been woken up, the interrupt is no longer needed */ espi_it8xxx2_enable_trans_irq(ESPI_IT8XXX2_SOC_DEV, false); #endif /* * Enable M-mode external interrupt * An interrupt can not be fired yet until we enable global interrupt */ csr_set(mie, MIP_MEIP); /* Restore global interrupt lockout state */ irq_unlock(key); } void arch_cpu_idle(void) { #ifdef CONFIG_SOC_IT8XXX2_CPU_IDLE_GATING /* * The EC processor(CPU) cannot be in the k_cpu_idle() during * the transactions with the CQ mode(DMA mode). Otherwise, * the EC processor would be clock gated. */ if (cpu_idle_not_allowed()) { /* Restore global interrupt lockout state */ irq_unlock(MSTATUS_IEN); } else #endif { riscv_idle(CHIP_PLL_DOZE, MSTATUS_IEN); } } void arch_cpu_atomic_idle(unsigned int key) { riscv_idle(CHIP_PLL_DOZE, key); } static int ite_it8xxx2_init(void) { struct gpio_it8xxx2_regs *const gpio_regs = GPIO_IT8XXX2_REG_BASE; struct gctrl_it8xxx2_regs *const gctrl_regs = GCTRL_IT8XXX2_REGS_BASE; #if DT_NODE_HAS_STATUS(DT_NODELABEL(usb0), disabled) struct usb_it82xx2_regs *const usb_regs = USB_IT82XX2_REGS_BASE; usb_regs->port0_misc_control &= ~PULL_DOWN_EN; usb_regs->port1_misc_control &= ~PULL_DOWN_EN; #endif /* * bit7: wake up CPU if it is in low power mode and * an interrupt is pending. */ gctrl_regs->GCTRL_WMCR |= BIT(7); /* * Disable USB debug at default, in order to prevent SoC * from entering debug mode when there is signal toggling on GPH5/GPH6. */ gctrl_regs->GCTRL_MCCR &= ~IT8XXX2_GCTRL_USB_DEBUG_EN; /* * Disable this feature that can detect pre-define hardware * target A through I2C0. This is for debugging use, so it * can be disabled to avoid illegal access. */ #ifdef CONFIG_SOC_IT8XXX2_REG_SET_V1 IT8XXX2_SMB_SFFCTL &= ~IT8XXX2_SMB_HSAPE; #elif CONFIG_SOC_IT8XXX2_REG_SET_V2 IT8XXX2_SMB_SCLKTS_BRGS &= ~IT8XXX2_SMB_PREDEN; /* * Setting this bit will disable EGAD pin output driving to avoid * leakage when GPIO E1/E2 on it82002 are set to alternate function. */ IT8XXX2_EGPIO_EGCR |= IT8XXX2_EGPIO_EEPODD; #endif #if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(uart1)) /* UART1 board init */ /* bit2: clocks to UART1 modules are not gated. */ IT8XXX2_ECPM_CGCTRL3R &= ~BIT(2); IT8XXX2_ECPM_AUTOCG &= ~BIT(6); /* bit3: UART1 belongs to the EC side. */ gctrl_regs->GCTRL_RSTDMMC |= IT8XXX2_GCTRL_UART1SD; /* reset UART before config it */ gctrl_regs->GCTRL_RSTC4 = IT8XXX2_GCTRL_RUART1; /* switch UART1 on without hardware flow control */ gpio_regs->GPIO_GCR1 |= IT8XXX2_GPIO_U1CTRL_SIN0_SOUT0_EN; #endif /* DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(uart1)) */ #if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(uart2)) /* UART2 board init */ /* setting voltage 3.3v */ gpio_regs->GPIO_GCR21 &= ~(IT8XXX2_GPIO_GPH1VS | IT8XXX2_GPIO_GPH2VS); /* bit2: clocks to UART2 modules are not gated. */ IT8XXX2_ECPM_CGCTRL3R &= ~BIT(2); IT8XXX2_ECPM_AUTOCG &= ~BIT(5); /* bit3: UART2 belongs to the EC side. */ gctrl_regs->GCTRL_RSTDMMC |= IT8XXX2_GCTRL_UART2SD; /* reset UART before config it */ gctrl_regs->GCTRL_RSTC4 = IT8XXX2_GCTRL_RUART2; /* switch UART2 on without hardware flow control */ gpio_regs->GPIO_GCR1 |= IT8XXX2_GPIO_U2CTRL_SIN1_SOUT1_EN; #endif /* DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(uart2)) */ #if (SOC_USBPD_ITE_PHY_PORT_COUNT > 0) int port; /* * To prevent cc pins leakage, we disable board not active ITE * TCPC port cc modules, then cc pins can be used as gpio if needed. */ for (port = SOC_USBPD_ITE_ACTIVE_PORT_COUNT; port < SOC_USBPD_ITE_PHY_PORT_COUNT; port++) { struct usbpd_it8xxx2_regs *base; if (port == 0) { base = (struct usbpd_it8xxx2_regs *)DT_REG_ADDR(DT_NODELABEL(usbpd0)); } else if (port == 1) { base = (struct usbpd_it8xxx2_regs *)DT_REG_ADDR(DT_NODELABEL(usbpd1)); } else { /* Currently all ITE embedded pd chip support max two ports */ break; } /* Power down all CC, and disable CC voltage detector */ base->CCGCR |= (IT8XXX2_USBPD_DISABLE_CC | IT8XXX2_USBPD_DISABLE_CC_VOL_DETECTOR); /* * Disconnect CC analog module (ex.UP/RD/DET/TX/RX), and * disconnect CC 5.1K to GND */ base->CCCSR |= (IT8XXX2_USBPD_CC2_DISCONNECT | IT8XXX2_USBPD_CC2_DISCONNECT_5_1K_TO_GND | IT8XXX2_USBPD_CC1_DISCONNECT | IT8XXX2_USBPD_CC1_DISCONNECT_5_1K_TO_GND); /* Disconnect CC 5V tolerant */ base->CCPSR |= (IT8XXX2_USBPD_DISCONNECT_POWER_CC2 | IT8XXX2_USBPD_DISCONNECT_POWER_CC1); /* Dis-connect 5.1K dead battery resistor to CC */ base->CCPSR |= (IT8XXX2_USBPD_DISCONNECT_5_1K_CC2_DB | IT8XXX2_USBPD_DISCONNECT_5_1K_CC1_DB); } #endif /* (SOC_USBPD_ITE_PHY_PORT_COUNT > 0) */ return 0; } SYS_INIT(ite_it8xxx2_init, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);