# Copyright 2009-2013, 2019 Peter A. Bigot # # SPDX-License-Identifier: Apache-2.0 # This implementation is derived from the one in # [PyXB](https://github.com/pabigot/pyxb), stripped down and modified # specifically to manage edtlib Node instances. import collections class Graph: """ Represent a directed graph with edtlib Node objects as nodes. This is used to determine order dependencies among nodes in a devicetree. An edge from C{source} to C{target} indicates that some aspect of C{source} requires that some aspect of C{target} already be available. """ def __init__(self, root=None): self.__roots = None if root is not None: self.__roots = {root} self.__edge_map = collections.defaultdict(set) self.__reverse_map = collections.defaultdict(set) self.__nodes = set() def add_node(self, node): """ Add a node without any target to the graph. """ self.__nodes.add(node) def add_edge(self, source, target): """ Add a directed edge from the C{source} to the C{target}. The nodes are added to the graph if necessary. """ self.__edge_map[source].add(target) if source != target: self.__reverse_map[target].add(source) self.__nodes.add(source) self.__nodes.add(target) def roots(self): """ Return the set of nodes calculated to be roots (i.e., those that have no incoming edges). This caches the roots calculated in a previous invocation. @rtype: C{set} """ if not self.__roots: self.__roots = set() for n in self.__nodes: if n not in self.__reverse_map: self.__roots.add(n) return self.__roots def _tarjan(self): # Execute Tarjan's algorithm on the graph. # # Tarjan's algorithm # (http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm) # computes the strongly-connected components # (http://en.wikipedia.org/wiki/Strongly_connected_component) # of the graph: i.e., the sets of nodes that form a minimal # closed set under edge transition. In essence, the loops. # We use this to detect groups of components that have a # dependency cycle, and to impose a total order on components # based on dependencies. self.__stack = [] self.__scc_order = [] self.__index = 0 self.__tarjan_index = {} self.__tarjan_low_link = {} for v in self.__nodes: self.__tarjan_index[v] = None roots = sorted(self.roots(), key=node_key) if self.__nodes and not roots: raise Exception('TARJAN: No roots found in graph with {} nodes'.format(len(self.__nodes))) for r in roots: self._tarjan_root(r) # Assign ordinals for edtlib ordinal = 0 for scc in self.__scc_order: # Zephyr customization: devicetree Node graphs should have # no loops, so all SCCs should be singletons. That may # change in the future, but for now we only give an # ordinal to singletons. if len(scc) == 1: scc[0].dep_ordinal = ordinal ordinal += 1 def _tarjan_root(self, v): # Do the work of Tarjan's algorithm for a given root node. if self.__tarjan_index.get(v) is not None: # "Root" was already reached. return self.__tarjan_index[v] = self.__tarjan_low_link[v] = self.__index self.__index += 1 self.__stack.append(v) source = v for target in sorted(self.__edge_map[source], key=node_key): if self.__tarjan_index[target] is None: self._tarjan_root(target) self.__tarjan_low_link[v] = min(self.__tarjan_low_link[v], self.__tarjan_low_link[target]) elif target in self.__stack: self.__tarjan_low_link[v] = min(self.__tarjan_low_link[v], self.__tarjan_low_link[target]) if self.__tarjan_low_link[v] == self.__tarjan_index[v]: scc = [] while True: scc.append(self.__stack.pop()) if v == scc[-1]: break self.__scc_order.append(scc) def scc_order(self): """Return the strongly-connected components in order. The data structure is a list, in dependency order, of strongly connected components (which can be single nodes). Appearance of a node in a set earlier in the list indicates that it has no dependencies on any node that appears in a subsequent set. This order is preferred over a depth-first-search order for code generation, since it detects loops. """ if not self.__scc_order: self._tarjan() return self.__scc_order __scc_order = None def depends_on(self, node): """Get the nodes that 'node' directly depends on.""" return sorted(self.__edge_map[node], key=node_key) def required_by(self, node): """Get the nodes that directly depend on 'node'.""" return sorted(self.__reverse_map[node], key=node_key) def node_key(node): # This sort key ensures that sibling nodes with the same name will # use unit addresses as tiebreakers. That in turn ensures ordinals # for otherwise indistinguishable siblings are in increasing order # by unit address, which is convenient for displaying output. if node.parent: parent_path = node.parent.path else: parent_path = '/' if node.unit_addr is not None: name = node.name.rsplit('@', 1)[0] unit_addr = node.unit_addr else: name = node.name unit_addr = -1 return (parent_path, name, unit_addr)