#!/usr/bin/env python3 # Copyright (c) 2019 - 2020 Nordic Semiconductor ASA # Copyright (c) 2019 Linaro Limited # Copyright (c) 2024 SILA Embedded Solutions GmbH # SPDX-License-Identifier: BSD-3-Clause # This script uses edtlib to generate a header file from a pickled # edt file. # # Note: Do not access private (_-prefixed) identifiers from edtlib here (and # also note that edtlib is not meant to expose the dtlib API directly). # Instead, think of what API you need, and add it as a public documented API in # edtlib. This will keep this script simple. import argparse from collections import defaultdict import os import pathlib import pickle import re import sys from typing import Iterable, NoReturn, Optional sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'python-devicetree', 'src')) import edtlib_logger from devicetree import edtlib def main(): global header_file global flash_area_num args = parse_args() edtlib_logger.setup_edtlib_logging() with open(args.edt_pickle, 'rb') as f: edt = pickle.load(f) flash_area_num = 0 # Create the generated header. with open(args.header_out, "w", encoding="utf-8") as header_file: write_top_comment(edt) write_utils() sorted_nodes = sorted(edt.nodes, key=lambda node: node.dep_ordinal) # populate all z_path_id first so any children references will # work correctly. for node in sorted_nodes: node.z_path_id = node_z_path_id(node) # Check to see if we have duplicate "zephyr,memory-region" property values. regions = dict() for node in sorted_nodes: if 'zephyr,memory-region' in node.props: region = node.props['zephyr,memory-region'].val if region in regions: sys.exit(f"ERROR: Duplicate 'zephyr,memory-region' ({region}) properties " f"between {regions[region].path} and {node.path}") regions[region] = node for node in sorted_nodes: write_node_comment(node) out_comment("Node's full path:") out_dt_define(f"{node.z_path_id}_PATH", f'"{escape(node.path)}"') out_comment("Node's name with unit-address:") out_dt_define(f"{node.z_path_id}_FULL_NAME", f'"{escape(node.name)}"') out_dt_define(f"{node.z_path_id}_FULL_NAME_UNQUOTED", f'{escape(node.name)}') out_dt_define(f"{node.z_path_id}_FULL_NAME_TOKEN", f'{edtlib.str_as_token(escape(node.name))}') out_dt_define(f"{node.z_path_id}_FULL_NAME_UPPER_TOKEN", f'{edtlib.str_as_token(escape(node.name)).upper()}') if node.parent is not None: out_comment(f"Node parent ({node.parent.path}) identifier:") out_dt_define(f"{node.z_path_id}_PARENT", f"DT_{node.parent.z_path_id}") out_comment(f"Node's index in its parent's list of children:") out_dt_define(f"{node.z_path_id}_CHILD_IDX", node.parent.child_index(node)) out_comment("Helpers for dealing with node labels:") out_dt_define(f"{node.z_path_id}_NODELABEL_NUM", len(node.labels)) out_dt_define(f"{node.z_path_id}_FOREACH_NODELABEL(fn)", " ".join(f"fn({nodelabel})" for nodelabel in node.labels)) out_dt_define(f"{node.z_path_id}_FOREACH_NODELABEL_VARGS(fn, ...)", " ".join(f"fn({nodelabel}, __VA_ARGS__)" for nodelabel in node.labels)) write_parent(node) write_children(node) write_dep_info(node) write_idents_and_existence(node) write_bus(node) write_special_props(node) write_vanilla_props(node) write_chosen(edt) write_global_macros(edt) def node_z_path_id(node: edtlib.Node) -> str: # Return the node specific bit of the node's path identifier: # # - the root node's path "/" has path identifier "N" # - "/foo" has "N_S_foo" # - "/foo/bar" has "N_S_foo_S_bar" # - "/foo/bar@123" has "N_S_foo_S_bar_123" # # This is used throughout this file to generate macros related to # the node. components = ["N"] if node.parent is not None: components.extend(f"S_{str2ident(component)}" for component in node.path.split("/")[1:]) return "_".join(components) def parse_args() -> argparse.Namespace: # Returns parsed command-line arguments parser = argparse.ArgumentParser(allow_abbrev=False) parser.add_argument("--header-out", required=True, help="path to write header to") parser.add_argument("--edt-pickle", help="path to read pickled edtlib.EDT object from") return parser.parse_args() def write_top_comment(edt: edtlib.EDT) -> None: # Writes an overview comment with misc. info at the top of the header and # configuration file s = f"""\ Generated by gen_defines.py DTS input file: {edt.dts_path} Directories with bindings: {", ".join(map(relativize, edt.bindings_dirs))} Node dependency ordering (ordinal and path): """ for scc in edt.scc_order: if len(scc) > 1: err("cycle in devicetree involving " + ", ".join(node.path for node in scc)) s += f" {scc[0].dep_ordinal:<3} {scc[0].path}\n" s += """ Definitions derived from these nodes in dependency order are next, followed by /chosen nodes. """ out_comment(s, blank_before=False) def write_utils() -> None: # Writes utility macros out_comment("Used to remove brackets from around a single argument") out_define("DT_DEBRACKET_INTERNAL(...)", "__VA_ARGS__") def write_node_comment(node: edtlib.Node) -> None: # Writes a comment describing 'node' to the header and configuration file s = f"""\ Devicetree node: {node.path} Node identifier: DT_{node.z_path_id} """ if node.matching_compat: if node.binding_path: s += f""" Binding (compatible = {node.matching_compat}): {relativize(node.binding_path)} """ else: s += f""" Binding (compatible = {node.matching_compat}): No yaml (bindings inferred from properties) """ if node.description: # We used to put descriptions in the generated file, but # devicetree bindings now have pages in the HTML # documentation. Let users who are accustomed to digging # around in the generated file where to find the descriptions # now. # # Keeping them here would mean that the descriptions # themselves couldn't contain C multi-line comments, which is # inconvenient when we want to do things like quote snippets # of .dtsi files within the descriptions, or otherwise # include the string "*/". s += ("\n(Descriptions have moved to the Devicetree Bindings Index\n" "in the documentation.)\n") out_comment(s) def relativize(path) -> Optional[str]: # If 'path' is within $ZEPHYR_BASE, returns it relative to $ZEPHYR_BASE, # with a "$ZEPHYR_BASE/..." hint at the start of the string. Otherwise, # returns 'path' unchanged. zbase = os.getenv("ZEPHYR_BASE") if zbase is None: return path try: return str("$ZEPHYR_BASE" / pathlib.Path(path).relative_to(zbase)) except ValueError: # Not within ZEPHYR_BASE return path def write_idents_and_existence(node: edtlib.Node) -> None: # Writes macros related to the node's aliases, labels, etc., # as well as existence flags. # Aliases idents = [f"N_ALIAS_{str2ident(alias)}" for alias in node.aliases] # Instances for compat in node.compats: instance_no = node.edt.compat2nodes[compat].index(node) idents.append(f"N_INST_{instance_no}_{str2ident(compat)}") # Node labels idents.extend(f"N_NODELABEL_{str2ident(label)}" for label in node.labels) out_comment("Existence and alternate IDs:") out_dt_define(f"{node.z_path_id}_EXISTS", 1) # Only determine maxlen if we have any idents if idents: maxlen = max(len(f"DT_{ident}") for ident in idents) for ident in idents: out_dt_define(ident, f"DT_{node.z_path_id}", width=maxlen) def write_bus(node: edtlib.Node) -> None: # Macros about the node's bus controller, if there is one bus = node.bus_node if not bus: return out_comment(f"Bus info (controller: '{bus.path}', type: '{node.on_buses}')") for one_bus in node.on_buses: out_dt_define(f"{node.z_path_id}_BUS_{str2ident(one_bus)}", 1) out_dt_define(f"{node.z_path_id}_BUS", f"DT_{bus.z_path_id}") def write_special_props(node: edtlib.Node) -> None: # Writes required macros for special case properties, when the # data cannot otherwise be obtained from write_vanilla_props() # results # Macros that are special to the devicetree specification out_comment("Macros for properties that are special in the specification:") write_regs(node) write_ranges(node) write_interrupts(node) write_compatibles(node) write_status(node) # Macros that are special to bindings inherited from Linux, which # we can't capture with the current bindings language. write_pinctrls(node) write_fixed_partitions(node) write_gpio_hogs(node) def write_ranges(node: edtlib.Node) -> None: # ranges property: edtlib knows the right #address-cells and # #size-cells of parent and child, and can therefore pack the # child & parent addresses and sizes correctly idx_vals = [] path_id = node.z_path_id if node.ranges is not None: idx_vals.append((f"{path_id}_RANGES_NUM", len(node.ranges))) for i,range in enumerate(node.ranges): idx_vals.append((f"{path_id}_RANGES_IDX_{i}_EXISTS", 1)) if "pcie" in node.buses: idx_vals.append((f"{path_id}_RANGES_IDX_{i}_VAL_CHILD_BUS_FLAGS_EXISTS", 1)) idx_macro = f"{path_id}_RANGES_IDX_{i}_VAL_CHILD_BUS_FLAGS" idx_value = range.child_bus_addr >> ((range.child_bus_cells - 1) * 32) idx_vals.append((idx_macro, f"{idx_value} /* {hex(idx_value)} */")) if range.child_bus_addr is not None: idx_macro = f"{path_id}_RANGES_IDX_{i}_VAL_CHILD_BUS_ADDRESS" if "pcie" in node.buses: idx_value = range.child_bus_addr & ((1 << (range.child_bus_cells - 1) * 32) - 1) else: idx_value = range.child_bus_addr idx_vals.append((idx_macro, f"{idx_value} /* {hex(idx_value)} */")) if range.parent_bus_addr is not None: idx_macro = f"{path_id}_RANGES_IDX_{i}_VAL_PARENT_BUS_ADDRESS" idx_vals.append((idx_macro, f"{range.parent_bus_addr} /* {hex(range.parent_bus_addr)} */")) if range.length is not None: idx_macro = f"{path_id}_RANGES_IDX_{i}_VAL_LENGTH" idx_vals.append((idx_macro, f"{range.length} /* {hex(range.length)} */")) for macro, val in idx_vals: out_dt_define(macro, val) out_dt_define(f"{path_id}_FOREACH_RANGE(fn)", " ".join(f"fn(DT_{path_id}, {i})" for i,range in enumerate(node.ranges))) def write_regs(node: edtlib.Node) -> None: # reg property: edtlib knows the right #address-cells and # #size-cells, and can therefore pack the register base addresses # and sizes correctly idx_vals = [] name_vals = [] path_id = node.z_path_id if node.regs is not None: idx_vals.append((f"{path_id}_REG_NUM", len(node.regs))) for i, reg in enumerate(node.regs): idx_vals.append((f"{path_id}_REG_IDX_{i}_EXISTS", 1)) if reg.addr is not None: idx_macro = f"{path_id}_REG_IDX_{i}_VAL_ADDRESS" idx_vals.append((idx_macro, f"{reg.addr} /* {hex(reg.addr)} */")) if reg.name: name_vals.append((f"{path_id}_REG_NAME_{reg.name}_EXISTS", 1)) name_macro = f"{path_id}_REG_NAME_{reg.name}_VAL_ADDRESS" name_vals.append((name_macro, f"DT_{idx_macro}")) if reg.size is not None: idx_macro = f"{path_id}_REG_IDX_{i}_VAL_SIZE" idx_vals.append((idx_macro, f"{reg.size} /* {hex(reg.size)} */")) if reg.name: name_macro = f"{path_id}_REG_NAME_{reg.name}_VAL_SIZE" name_vals.append((name_macro, f"DT_{idx_macro}")) for macro, val in idx_vals: out_dt_define(macro, val) for macro, val in name_vals: out_dt_define(macro, val) def write_interrupts(node: edtlib.Node) -> None: # interrupts property: we have some hard-coded logic for interrupt # mapping here. # # TODO: can we push map_arm_gic_irq_type() out of Python and into C with # macro magic in devicetree.h? def map_arm_gic_irq_type(irq, irq_num): # Maps ARM GIC IRQ (type)+(index) combo to linear IRQ number if "type" not in irq.data: err(f"Expected binding for {irq.controller!r} to have 'type' in " "interrupt-cells") irq_type = irq.data["type"] if irq_type == 0: # GIC_SPI return irq_num + 32 if irq_type == 1: # GIC_PPI return irq_num + 16 err(f"Invalid interrupt type specified for {irq!r}") idx_vals = [] name_vals = [] path_id = node.z_path_id if node.interrupts is not None: idx_vals.append((f"{path_id}_IRQ_NUM", len(node.interrupts))) for i, irq in enumerate(node.interrupts): for cell_name, cell_value in irq.data.items(): name = str2ident(cell_name) if cell_name == "irq": if "arm,gic" in irq.controller.compats: cell_value = map_arm_gic_irq_type(irq, cell_value) idx_vals.append((f"{path_id}_IRQ_IDX_{i}_EXISTS", 1)) idx_macro = f"{path_id}_IRQ_IDX_{i}_VAL_{name}" idx_vals.append((idx_macro, cell_value)) idx_vals.append((idx_macro + "_EXISTS", 1)) if irq.name: name_macro = ( f"{path_id}_IRQ_NAME_{str2ident(irq.name)}_VAL_{name}") name_vals.append((name_macro, f"DT_{idx_macro}")) name_vals.append((name_macro + "_EXISTS", 1)) idx_controller_macro = f"{path_id}_IRQ_IDX_{i}_CONTROLLER" idx_controller_path = f"DT_{irq.controller.z_path_id}" idx_vals.append((idx_controller_macro, idx_controller_path)) if irq.name: name_controller_macro = f"{path_id}_IRQ_NAME_{str2ident(irq.name)}_CONTROLLER" name_vals.append((name_controller_macro, f"DT_{idx_controller_macro}")) # Interrupt controller info irqs = [] while node.interrupts is not None and len(node.interrupts) > 0: irq = node.interrupts[0] irqs.append(irq) if node == irq.controller: break node = irq.controller idx_vals.append((f"{path_id}_IRQ_LEVEL", len(irqs))) for macro, val in idx_vals: out_dt_define(macro, val) for macro, val in name_vals: out_dt_define(macro, val) def write_compatibles(node: edtlib.Node) -> None: # Writes a macro for each of the node's compatibles. We don't care # about whether edtlib / Zephyr's binding language recognizes # them. The compatibles the node provides are what is important. for i, compat in enumerate(node.compats): out_dt_define( f"{node.z_path_id}_COMPAT_MATCHES_{str2ident(compat)}", 1) if node.edt.compat2vendor[compat]: out_dt_define(f"{node.z_path_id}_COMPAT_VENDOR_IDX_{i}_EXISTS", 1) out_dt_define(f"{node.z_path_id}_COMPAT_VENDOR_IDX_{i}", quote_str(node.edt.compat2vendor[compat])) if node.edt.compat2model[compat]: out_dt_define(f"{node.z_path_id}_COMPAT_MODEL_IDX_{i}_EXISTS", 1) out_dt_define(f"{node.z_path_id}_COMPAT_MODEL_IDX_{i}", quote_str(node.edt.compat2model[compat])) def write_parent(node: edtlib.Node) -> None: # Visit all parent nodes. def _visit_parent_node(node: edtlib.Node): while node is not None: yield node.parent node = node.parent # Writes helper macros for dealing with node's parent. out_dt_define(f"{node.z_path_id}_FOREACH_ANCESTOR(fn)", " ".join(f"fn(DT_{parent.z_path_id})" for parent in _visit_parent_node(node) if parent is not None)) def write_children(node: edtlib.Node) -> None: # Writes helper macros for dealing with node's children. out_comment("Helper macros for child nodes of this node.") out_dt_define(f"{node.z_path_id}_CHILD_NUM", len(node.children)) ok_nodes_num = 0 for child in node.children.values(): if child.status == "okay": ok_nodes_num = ok_nodes_num + 1 out_dt_define(f"{node.z_path_id}_CHILD_NUM_STATUS_OKAY", ok_nodes_num) out_dt_define(f"{node.z_path_id}_FOREACH_CHILD(fn)", " ".join(f"fn(DT_{child.z_path_id})" for child in node.children.values())) out_dt_define(f"{node.z_path_id}_FOREACH_CHILD_SEP(fn, sep)", " DT_DEBRACKET_INTERNAL sep ".join(f"fn(DT_{child.z_path_id})" for child in node.children.values())) out_dt_define(f"{node.z_path_id}_FOREACH_CHILD_VARGS(fn, ...)", " ".join(f"fn(DT_{child.z_path_id}, __VA_ARGS__)" for child in node.children.values())) out_dt_define(f"{node.z_path_id}_FOREACH_CHILD_SEP_VARGS(fn, sep, ...)", " DT_DEBRACKET_INTERNAL sep ".join(f"fn(DT_{child.z_path_id}, __VA_ARGS__)" for child in node.children.values())) out_dt_define(f"{node.z_path_id}_FOREACH_CHILD_STATUS_OKAY(fn)", " ".join(f"fn(DT_{child.z_path_id})" for child in node.children.values() if child.status == "okay")) out_dt_define(f"{node.z_path_id}_FOREACH_CHILD_STATUS_OKAY_SEP(fn, sep)", " DT_DEBRACKET_INTERNAL sep ".join(f"fn(DT_{child.z_path_id})" for child in node.children.values() if child.status == "okay")) out_dt_define(f"{node.z_path_id}_FOREACH_CHILD_STATUS_OKAY_VARGS(fn, ...)", " ".join(f"fn(DT_{child.z_path_id}, __VA_ARGS__)" for child in node.children.values() if child.status == "okay")) out_dt_define(f"{node.z_path_id}_FOREACH_CHILD_STATUS_OKAY_SEP_VARGS(fn, sep, ...)", " DT_DEBRACKET_INTERNAL sep ".join(f"fn(DT_{child.z_path_id}, __VA_ARGS__)" for child in node.children.values() if child.status == "okay")) def write_status(node: edtlib.Node) -> None: out_dt_define(f"{node.z_path_id}_STATUS_{str2ident(node.status)}", 1) def write_pinctrls(node: edtlib.Node) -> None: # Write special macros for pinctrl- and pinctrl-names properties. out_comment("Pin control (pinctrl-, pinctrl-names) properties:") out_dt_define(f"{node.z_path_id}_PINCTRL_NUM", len(node.pinctrls)) if not node.pinctrls: return for pc_idx, pinctrl in enumerate(node.pinctrls): out_dt_define(f"{node.z_path_id}_PINCTRL_IDX_{pc_idx}_EXISTS", 1) if not pinctrl.name: continue name = pinctrl.name_as_token # Below we rely on the fact that edtlib ensures the # pinctrl- properties are contiguous, start from 0, # and contain only phandles. out_dt_define(f"{node.z_path_id}_PINCTRL_IDX_{pc_idx}_TOKEN", name) out_dt_define(f"{node.z_path_id}_PINCTRL_IDX_{pc_idx}_UPPER_TOKEN", name.upper()) out_dt_define(f"{node.z_path_id}_PINCTRL_NAME_{name}_EXISTS", 1) out_dt_define(f"{node.z_path_id}_PINCTRL_NAME_{name}_IDX", pc_idx) for idx, ph in enumerate(pinctrl.conf_nodes): out_dt_define(f"{node.z_path_id}_PINCTRL_NAME_{name}_IDX_{idx}_PH", f"DT_{ph.z_path_id}") def write_fixed_partitions(node: edtlib.Node) -> None: # Macros for child nodes of each fixed-partitions node. if not (node.parent and "fixed-partitions" in node.parent.compats): return global flash_area_num out_comment("fixed-partitions identifier:") out_dt_define(f"{node.z_path_id}_PARTITION_ID", flash_area_num) flash_area_num += 1 def write_gpio_hogs(node: edtlib.Node) -> None: # Write special macros for gpio-hog node properties. macro = f"{node.z_path_id}_GPIO_HOGS" macro2val = {} for i, entry in enumerate(node.gpio_hogs): macro2val.update(controller_and_data_macros(entry, i, macro)) if macro2val: out_comment("GPIO hog properties:") out_dt_define(f"{macro}_EXISTS", 1) out_dt_define(f"{macro}_NUM", len(node.gpio_hogs)) for macro, val in macro2val.items(): out_dt_define(macro, val) def write_vanilla_props(node: edtlib.Node) -> None: # Writes macros for any and all properties defined in the # "properties" section of the binding for the node. # # This does generate macros for special properties as well, like # regs, etc. Just let that be rather than bothering to add # never-ending amounts of special case code here to skip special # properties. This function's macros can't conflict with # write_special_props() macros, because they're in different # namespaces. Special cases aren't special enough to break the rules. macro2val = {} for prop_name, prop in node.props.items(): prop_id = str2ident(prop_name) macro = f"{node.z_path_id}_P_{prop_id}" val = prop2value(prop) if val is not None: # DT_N__P_ macro2val[macro] = val if prop.spec.type == 'string': macro2val.update(string_macros(macro, prop.val)) # DT_N__P__IDX_0: # DT_N__P__IDX_0_EXISTS: # Allows treating the string like a degenerate case of a # string-array of length 1. macro2val[f"{macro}_IDX_0"] = quote_str(prop.val) macro2val[f"{macro}_IDX_0_EXISTS"] = 1 if prop.enum_indices is not None: macro2val.update(enum_macros(prop, macro)) if "phandle" in prop.type: macro2val.update(phandle_macros(prop, macro)) elif "array" in prop.type: macro2val.update(array_macros(prop, macro)) plen = prop_len(prop) if plen is not None: # DT_N__P__FOREACH_PROP_ELEM macro2val[f"{macro}_FOREACH_PROP_ELEM(fn)"] = ( ' \\\n\t'.join(f'fn(DT_{node.z_path_id}, {prop_id}, {i})' for i in range(plen))) # DT_N__P__FOREACH_PROP_ELEM_SEP macro2val[f"{macro}_FOREACH_PROP_ELEM_SEP(fn, sep)"] = ( ' DT_DEBRACKET_INTERNAL sep \\\n\t'.join( f'fn(DT_{node.z_path_id}, {prop_id}, {i})' for i in range(plen))) # DT_N__P__FOREACH_PROP_ELEM_VARGS macro2val[f"{macro}_FOREACH_PROP_ELEM_VARGS(fn, ...)"] = ( ' \\\n\t'.join( f'fn(DT_{node.z_path_id}, {prop_id}, {i}, __VA_ARGS__)' for i in range(plen))) # DT_N__P__FOREACH_PROP_ELEM_SEP_VARGS macro2val[f"{macro}_FOREACH_PROP_ELEM_SEP_VARGS(fn, sep, ...)"] = ( ' DT_DEBRACKET_INTERNAL sep \\\n\t'.join( f'fn(DT_{node.z_path_id}, {prop_id}, {i}, __VA_ARGS__)' for i in range(plen))) # DT_N__P__LEN macro2val[f"{macro}_LEN"] = plen # DT_N__P__EXISTS macro2val[f"{macro}_EXISTS"] = 1 if macro2val: out_comment("Generic property macros:") for macro, val in macro2val.items(): out_dt_define(macro, val) else: out_comment("(No generic property macros)") def string_macros(macro: str, val: str): # Returns a dict of macros for a string 'val'. # The 'macro' argument is the N__P_... part. as_token = edtlib.str_as_token(val) return { # DT_N__P__IDX__STRING_UNQUOTED f"{macro}_STRING_UNQUOTED": escape_unquoted(val), # DT_N__P__IDX__STRING_TOKEN f"{macro}_STRING_TOKEN": as_token, # DT_N__P__IDX__STRING_UPPER_TOKEN f"{macro}_STRING_UPPER_TOKEN": as_token.upper()} def enum_macros(prop: edtlib.Property, macro: str): # Returns a dict of macros for property 'prop' with a defined enum in their dt-binding. # The 'macro' argument is the N__P_ part. spec = prop.spec # DT_N__P__IDX__ENUM_IDX ret = {f"{macro}_IDX_{i}_ENUM_IDX": index for i, index in enumerate(prop.enum_indices)} val = prop.val_as_tokens if spec.enum_tokenizable else (prop.val if isinstance(prop.val, list) else [prop.val]) for i, subval in enumerate(val): # DT_N__P__IDX__EXISTS ret[f"{macro}_IDX_{i}_EXISTS"] = 1 # DT_N__P__IDX__ENUM_VAL__EXISTS 1 ret[f"{macro}_IDX_{i}_ENUM_VAL_{subval}_EXISTS"] = 1 return ret def array_macros(prop: edtlib.Property, macro: str): # Returns a dict of macros for array property 'prop'. # The 'macro' argument is the N__P_ part. ret = {} for i, subval in enumerate(prop.val): # DT_N__P__IDX__EXISTS ret[f"{macro}_IDX_{i}_EXISTS"] = 1 # DT_N__P__IDX_ if isinstance(subval, str): ret[f"{macro}_IDX_{i}"] = quote_str(subval) # DT_N__P__IDX__STRING_... ret.update(string_macros(f"{macro}_IDX_{i}", subval)) else: ret[f"{macro}_IDX_{i}"] = subval return ret def write_dep_info(node: edtlib.Node) -> None: # Write dependency-related information about the node. def fmt_dep_list(dep_list): if dep_list: # Sort the list by dependency ordinal for predictability. sorted_list = sorted(dep_list, key=lambda node: node.dep_ordinal) return ("\\\n\t" + " \\\n\t" .join(f"{n.dep_ordinal}, /* {n.path} */" for n in sorted_list)) else: return "/* nothing */" out_comment("Node's dependency ordinal:") out_dt_define(f"{node.z_path_id}_ORD", node.dep_ordinal) out_dt_define(f"{node.z_path_id}_ORD_STR_SORTABLE", f"{node.dep_ordinal:0>5}") out_comment("Ordinals for what this node depends on directly:") out_dt_define(f"{node.z_path_id}_REQUIRES_ORDS", fmt_dep_list(node.depends_on)) out_comment("Ordinals for what depends directly on this node:") out_dt_define(f"{node.z_path_id}_SUPPORTS_ORDS", fmt_dep_list(node.required_by)) def prop2value(prop: edtlib.Property) -> edtlib.PropertyValType: # Gets the macro value for property 'prop', if there is # a single well-defined C rvalue that it can be represented as. # Returns None if there isn't one. if prop.type == "string": return quote_str(prop.val) if prop.type == "int": return prop.val if prop.type == "boolean": return 1 if prop.val else 0 if prop.type in ["array", "uint8-array"]: return list2init(f"{val} /* {hex(val)} */" for val in prop.val) if prop.type == "string-array": return list2init(quote_str(val) for val in prop.val) # phandle, phandles, phandle-array, path, compound: nothing return None def prop_len(prop: edtlib.Property) -> Optional[int]: # Returns the property's length if and only if we should generate # a _LEN macro for the property. Otherwise, returns None. # # The set of types handled here coincides with the allowable types # that can be used with DT_PROP_LEN(). If you change this set, # make sure to update the doxygen string for that macro, and make # sure that DT_FOREACH_PROP_ELEM() works for the new types too. # # This deliberately excludes ranges, dma-ranges, reg and interrupts. # While they have array type, their lengths as arrays are # basically nonsense semantically due to #address-cells and # #size-cells for "reg", #interrupt-cells for "interrupts" # and #address-cells, #size-cells and the #address-cells from the # parent node for "ranges" and "dma-ranges". # # We have special purpose macros for the number of register blocks # / interrupt specifiers. Excluding them from this list means # DT_PROP_LEN(node_id, ...) fails fast at the devicetree.h layer # with a build error. This forces users to switch to the right # macros. if prop.type in ["phandle", "string"]: # phandle is treated as a phandles of length 1. # string is treated as a string-array of length 1. return 1 if (prop.type in ["array", "uint8-array", "string-array", "phandles", "phandle-array"] and prop.name not in ["ranges", "dma-ranges", "reg", "interrupts"]): return len(prop.val) return None def phandle_macros(prop: edtlib.Property, macro: str) -> dict: # Returns a dict of macros for phandle or phandles property 'prop'. # # The 'macro' argument is the N__P_ bit. # # These are currently special because we can't serialize their # values without using label properties, which we're trying to get # away from needing in Zephyr. (Label properties are great for # humans, but have drawbacks for code size and boot time.) # # The names look a bit weird to make it easier for devicetree.h # to use the same macros for phandle, phandles, and phandle-array. ret = {} if prop.type == "phandle": # A phandle is treated as a phandles with fixed length 1. ret[f"{macro}"] = f"DT_{prop.val.z_path_id}" ret[f"{macro}_IDX_0"] = f"DT_{prop.val.z_path_id}" ret[f"{macro}_IDX_0_PH"] = f"DT_{prop.val.z_path_id}" ret[f"{macro}_IDX_0_EXISTS"] = 1 elif prop.type == "phandles": for i, node in enumerate(prop.val): ret[f"{macro}_IDX_{i}"] = f"DT_{node.z_path_id}" ret[f"{macro}_IDX_{i}_PH"] = f"DT_{node.z_path_id}" ret[f"{macro}_IDX_{i}_EXISTS"] = 1 elif prop.type == "phandle-array": for i, entry in enumerate(prop.val): if entry is None: # Unspecified element. The phandle-array at this index # does not point at a ControllerAndData value, but # subsequent indices in the array may. ret[f"{macro}_IDX_{i}_EXISTS"] = 0 continue ret.update(controller_and_data_macros(entry, i, macro)) return ret def controller_and_data_macros(entry: edtlib.ControllerAndData, i: int, macro: str): # Helper procedure used by phandle_macros(). # # Its purpose is to write the "controller" (i.e. label property of # the phandle's node) and associated data macros for a # ControllerAndData. ret = {} data = entry.data # DT_N__P__IDX__EXISTS ret[f"{macro}_IDX_{i}_EXISTS"] = 1 # DT_N__P__IDX__PH ret[f"{macro}_IDX_{i}_PH"] = f"DT_{entry.controller.z_path_id}" # DT_N__P__IDX__VAL_ for cell, val in data.items(): ret[f"{macro}_IDX_{i}_VAL_{str2ident(cell)}"] = val ret[f"{macro}_IDX_{i}_VAL_{str2ident(cell)}_EXISTS"] = 1 if not entry.name: return ret name = str2ident(entry.name) # DT_N__P__IDX__EXISTS ret[f"{macro}_IDX_{i}_EXISTS"] = 1 # DT_N__P__IDX__NAME ret[f"{macro}_IDX_{i}_NAME"] = quote_str(entry.name) # DT_N__P__NAME__PH ret[f"{macro}_NAME_{name}_PH"] = f"DT_{entry.controller.z_path_id}" # DT_N__P__NAME__EXISTS ret[f"{macro}_NAME_{name}_EXISTS"] = 1 # DT_N__P__NAME__VAL_ for cell, val in data.items(): cell_ident = str2ident(cell) ret[f"{macro}_NAME_{name}_VAL_{cell_ident}"] = ( f"DT_{macro}_IDX_{i}_VAL_{cell_ident}") ret[f"{macro}_NAME_{name}_VAL_{cell_ident}_EXISTS"] = 1 return ret def write_chosen(edt: edtlib.EDT): # Tree-wide information such as chosen nodes is printed here. out_comment("Chosen nodes\n") chosen = {} for name, node in edt.chosen_nodes.items(): chosen[f"DT_CHOSEN_{str2ident(name)}"] = f"DT_{node.z_path_id}" chosen[f"DT_CHOSEN_{str2ident(name)}_EXISTS"] = 1 max_len = max(map(len, chosen), default=0) for macro, value in chosen.items(): out_define(macro, value, width=max_len) def write_global_macros(edt: edtlib.EDT): # Global or tree-wide information, such as number of instances # with status "okay" for each compatible, is printed here. out_comment("Macros for iterating over all nodes and enabled nodes") out_dt_define("FOREACH_HELPER(fn)", " ".join(f"fn(DT_{node.z_path_id})" for node in edt.nodes)) out_dt_define("FOREACH_OKAY_HELPER(fn)", " ".join(f"fn(DT_{node.z_path_id})" for node in edt.nodes if node.status == "okay")) out_dt_define("FOREACH_VARGS_HELPER(fn, ...)", " ".join(f"fn(DT_{node.z_path_id}, __VA_ARGS__)" for node in edt.nodes)) out_dt_define("FOREACH_OKAY_VARGS_HELPER(fn, ...)", " ".join(f"fn(DT_{node.z_path_id}, __VA_ARGS__)" for node in edt.nodes if node.status == "okay")) n_okay_macros = {} for_each_macros = {} compat2buses = defaultdict(list) # just for "okay" nodes for compat, okay_nodes in edt.compat2okay.items(): for node in okay_nodes: buses = node.on_buses for bus in buses: if bus is not None and bus not in compat2buses[compat]: compat2buses[compat].append(bus) ident = str2ident(compat) n_okay_macros[f"DT_N_INST_{ident}_NUM_OKAY"] = len(okay_nodes) # Helpers for non-INST for-each macros that take node # identifiers as arguments. for_each_macros[f"DT_FOREACH_OKAY_{ident}(fn)"] = ( " ".join(f"fn(DT_{node.z_path_id})" for node in okay_nodes)) for_each_macros[f"DT_FOREACH_OKAY_VARGS_{ident}(fn, ...)"] = ( " ".join(f"fn(DT_{node.z_path_id}, __VA_ARGS__)" for node in okay_nodes)) # Helpers for INST versions of for-each macros, which take # instance numbers. We emit separate helpers for these because # avoiding an intermediate node_id --> instance number # conversion in the preprocessor helps to keep the macro # expansions simpler. That hopefully eases debugging. for_each_macros[f"DT_FOREACH_OKAY_INST_{ident}(fn)"] = ( " ".join(f"fn({edt.compat2nodes[compat].index(node)})" for node in okay_nodes)) for_each_macros[f"DT_FOREACH_OKAY_INST_VARGS_{ident}(fn, ...)"] = ( " ".join(f"fn({edt.compat2nodes[compat].index(node)}, __VA_ARGS__)" for node in okay_nodes)) for compat, nodes in edt.compat2nodes.items(): for node in nodes: if compat == "fixed-partitions": for child in node.children.values(): if "label" in child.props: label = child.props["label"].val macro = f"COMPAT_{str2ident(compat)}_LABEL_{str2ident(label)}" val = f"DT_{child.z_path_id}" out_dt_define(macro, val) out_dt_define(macro + "_EXISTS", 1) out_comment('Macros for compatibles with status "okay" nodes\n') for compat, okay_nodes in edt.compat2okay.items(): if okay_nodes: out_define(f"DT_COMPAT_HAS_OKAY_{str2ident(compat)}", 1) out_comment('Macros for status "okay" instances of each compatible\n') for macro, value in n_okay_macros.items(): out_define(macro, value) for macro, value in for_each_macros.items(): out_define(macro, value) out_comment('Bus information for status "okay" nodes of each compatible\n') for compat, buses in compat2buses.items(): for bus in buses: out_define( f"DT_COMPAT_{str2ident(compat)}_BUS_{str2ident(bus)}", 1) def str2ident(s: str) -> str: # Converts 's' to a form suitable for (part of) an identifier return re.sub('[-,.@/+]', '_', s.lower()) def list2init(l: Iterable[str]) -> str: # Converts 'l', a Python list (or iterable), to a C array initializer return "{" + ", ".join(l) + "}" def out_dt_define( macro: str, val: str, width: Optional[int] = None, deprecation_msg: Optional[str] = None, ) -> str: # Writes "#define DT_ " to the header file # # The macro will be left-justified to 'width' characters if that # is specified, and the value will follow immediately after in # that case. Otherwise, this function decides how to add # whitespace between 'macro' and 'val'. # # If a 'deprecation_msg' string is passed, the generated identifiers will # generate a warning if used, via __WARN()). # # Returns the full generated macro for 'macro', with leading "DT_". ret = f"DT_{macro}" out_define(ret, val, width=width, deprecation_msg=deprecation_msg) return ret def out_define( macro: str, val: str, width: Optional[int] = None, deprecation_msg: Optional[str] = None, ) -> None: # Helper for out_dt_define(). Outputs "#define ", # adds a deprecation message if given, and allocates whitespace # unless told not to. warn = fr' __WARN("{deprecation_msg}")' if deprecation_msg else "" if width: s = f"#define {macro.ljust(width)}{warn} {val}" else: s = f"#define {macro}{warn} {val}" print(s, file=header_file) def out_comment(s: str, blank_before=True) -> None: # Writes 's' as a comment to the header and configuration file. 's' is # allowed to have multiple lines. blank_before=True adds a blank line # before the comment. if blank_before: print(file=header_file) if "\n" in s: # Format multi-line comments like # # /* # * first line # * second line # * # * empty line before this line # */ res = ["/*"] for line in s.splitlines(): # Avoid an extra space after '*' for empty lines. They turn red in # Vim if space error checking is on, which is annoying. res.append(f" * {line}".rstrip()) res.append(" */") print("\n".join(res), file=header_file) else: # Format single-line comments like # # /* foo bar */ print(f"/* {s} */", file=header_file) ESCAPE_TABLE = str.maketrans( { "\n": "\\n", "\r": "\\r", "\\": "\\\\", '"': '\\"', } ) def escape(s: str) -> str: # Backslash-escapes any double quotes, backslashes, and new lines in 's' return s.translate(ESCAPE_TABLE) def quote_str(s: str) -> str: # Puts quotes around 's' and escapes any double quotes and # backslashes within it return f'"{escape(s)}"' def escape_unquoted(s: str) -> str: # C macros cannot contain line breaks, so replace them with spaces. # Whitespace is used to separate preprocessor tokens, but it does not matter # which whitespace characters are used, so a line break and a space are # equivalent with regards to unquoted strings being used as C code. return s.replace("\r", " ").replace("\n", " ") def err(s: str) -> NoReturn: raise Exception(s) if __name__ == "__main__": main()