/* main.c - Synchronization demo */ /* * Copyright (c) 2012-2014 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ #include #include /* * The synchronization demo has two threads that utilize semaphores and sleeping * to take turns printing a greeting message at a controlled rate. The demo * shows both the static and dynamic approaches for spawning a thread; a real * world application would likely use the static approach for both threads. */ #define PIN_THREADS (IS_ENABLED(CONFIG_SMP) && IS_ENABLED(CONFIG_SCHED_CPU_MASK)) /* size of stack area used by each thread */ #define STACKSIZE 1024 /* scheduling priority used by each thread */ #define PRIORITY 7 /* delay between greetings (in ms) */ #define SLEEPTIME 500 /* * @param my_name thread identification string * @param my_sem thread's own semaphore * @param other_sem other thread's semaphore */ void hello_loop(const char *my_name, struct k_sem *my_sem, struct k_sem *other_sem) { const char *tname; uint8_t cpu; struct k_thread *current_thread; while (1) { /* take my semaphore */ k_sem_take(my_sem, K_FOREVER); current_thread = k_current_get(); tname = k_thread_name_get(current_thread); #if CONFIG_SMP cpu = arch_curr_cpu()->id; #else cpu = 0; #endif /* say "hello" */ if (tname == NULL) { printk("%s: Hello World from cpu %d on %s!\n", my_name, cpu, CONFIG_BOARD); } else { printk("%s: Hello World from cpu %d on %s!\n", tname, cpu, CONFIG_BOARD); } /* wait a while, then let other thread have a turn */ k_busy_wait(100000); k_msleep(SLEEPTIME); k_sem_give(other_sem); } } /* define semaphores */ K_SEM_DEFINE(thread_a_sem, 1, 1); /* starts off "available" */ K_SEM_DEFINE(thread_b_sem, 0, 1); /* starts off "not available" */ /* thread_a is a dynamic thread that is spawned in main */ void thread_a_entry_point(void *dummy1, void *dummy2, void *dummy3) { ARG_UNUSED(dummy1); ARG_UNUSED(dummy2); ARG_UNUSED(dummy3); /* invoke routine to ping-pong hello messages with thread_b */ hello_loop(__func__, &thread_a_sem, &thread_b_sem); } K_THREAD_STACK_DEFINE(thread_a_stack_area, STACKSIZE); static struct k_thread thread_a_data; /* thread_b is a static thread spawned immediately */ void thread_b_entry_point(void *dummy1, void *dummy2, void *dummy3) { ARG_UNUSED(dummy1); ARG_UNUSED(dummy2); ARG_UNUSED(dummy3); /* invoke routine to ping-pong hello messages with thread_a */ hello_loop(__func__, &thread_b_sem, &thread_a_sem); } K_THREAD_DEFINE(thread_b, STACKSIZE, thread_b_entry_point, NULL, NULL, NULL, PRIORITY, 0, 0); extern const k_tid_t thread_b; int main(void) { k_thread_create(&thread_a_data, thread_a_stack_area, K_THREAD_STACK_SIZEOF(thread_a_stack_area), thread_a_entry_point, NULL, NULL, NULL, PRIORITY, 0, K_FOREVER); k_thread_name_set(&thread_a_data, "thread_a"); #if PIN_THREADS if (arch_num_cpus() > 1) { k_thread_cpu_pin(&thread_a_data, 0); /* * Thread b is a static thread that is spawned immediately. This means that the * following `k_thread_cpu_pin` call can fail with `-EINVAL` if the thread is * actively running. Let's suspend the thread and resume it after the affinity mask * is set. */ k_thread_suspend(thread_b); k_thread_cpu_pin(thread_b, 1); k_thread_resume(thread_b); } #endif k_thread_start(&thread_a_data); return 0; }