# Lint as: python3 # coding=utf-8 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Split data into train, validation and test dataset according to person. That is, use some people's data as train, some other people's data as validation, and the rest ones' data as test. These data would be saved separately under "/person_split". It will generate new files with the following structure: ├──person_split │   ├── test │   ├── train │   └──valid """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import random from data_split import read_data from data_split import write_data def person_split(whole_data, train_names, valid_names, test_names): """Split data by person.""" random.seed(30) random.shuffle(whole_data) train_data = [] valid_data = [] test_data = [] for idx, data in enumerate(whole_data): # pylint: disable=unused-variable if data["name"] in train_names: train_data.append(data) elif data["name"] in valid_names: valid_data.append(data) elif data["name"] in test_names: test_data.append(data) print("train_length:" + str(len(train_data))) print("valid_length:" + str(len(valid_data))) print("test_length:" + str(len(test_data))) return train_data, valid_data, test_data if __name__ == "__main__": data = read_data("./data/complete_data") train_names = [ "hyw", "shiyun", "tangsy", "dengyl", "jiangyh", "xunkai", "negative3", "negative4", "negative5", "negative6" ] valid_names = ["lsj", "pengxl", "negative2", "negative7"] test_names = ["liucx", "zhangxy", "negative1", "negative8"] train_data, valid_data, test_data = person_split(data, train_names, valid_names, test_names) if not os.path.exists("./person_split"): os.makedirs("./person_split") write_data(train_data, "./person_split/train") write_data(valid_data, "./person_split/valid") write_data(test_data, "./person_split/test")