/* * Copyright (c) 2020-2024 Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #define TIMEOUT_SYNC_CREATE K_SECONDS(10) #define NAME_LEN 30 static bool per_adv_found; static bt_addr_le_t per_addr; static uint16_t per_adv_sync_timeout; static uint8_t per_sid; static K_SEM_DEFINE(sem_per_adv, 0, 1); static K_SEM_DEFINE(sem_per_sync, 0, 1); static K_SEM_DEFINE(sem_per_sync_lost, 0, 1); /* The devicetree node identifier for the "led0" alias. */ #define LED0_NODE DT_ALIAS(led0) #ifdef CONFIG_PER_BLINK_LED0 static const struct gpio_dt_spec led = GPIO_DT_SPEC_GET(LED0_NODE, gpios); #define BLINK_ONOFF K_MSEC(500) static struct k_work_delayable blink_work; static bool led_is_on; static void blink_timeout(struct k_work *work) { led_is_on = !led_is_on; gpio_pin_set(led.port, led.pin, (int)led_is_on); k_work_schedule(&blink_work, BLINK_ONOFF); } #endif static bool data_cb(struct bt_data *data, void *user_data) { char *name = user_data; uint8_t len; switch (data->type) { case BT_DATA_NAME_SHORTENED: case BT_DATA_NAME_COMPLETE: len = MIN(data->data_len, NAME_LEN - 1); memcpy(name, data->data, len); name[len] = '\0'; return false; default: return true; } } static const char *phy2str(uint8_t phy) { switch (phy) { case 0: return "No packets"; case BT_GAP_LE_PHY_1M: return "LE 1M"; case BT_GAP_LE_PHY_2M: return "LE 2M"; case BT_GAP_LE_PHY_CODED: return "LE Coded"; default: return "Unknown"; } } static void scan_recv(const struct bt_le_scan_recv_info *info, struct net_buf_simple *buf) { char le_addr[BT_ADDR_LE_STR_LEN]; char name[NAME_LEN]; (void)memset(name, 0, sizeof(name)); bt_data_parse(buf, data_cb, name); if (strlen(CONFIG_PER_ADV_NAME) > 0 && strcmp(name, CONFIG_PER_ADV_NAME) != 0) { return; } bt_addr_le_to_str(info->addr, le_addr, sizeof(le_addr)); printk("[DEVICE]: %s, AD evt type %u, Tx Pwr: %i, RSSI %i %s " "C:%u S:%u D:%u SR:%u E:%u Prim: %s, Secn: %s, " "Interval: 0x%04x (%u ms), SID: %u\n", le_addr, info->adv_type, info->tx_power, info->rssi, name, (info->adv_props & BT_GAP_ADV_PROP_CONNECTABLE) != 0, (info->adv_props & BT_GAP_ADV_PROP_SCANNABLE) != 0, (info->adv_props & BT_GAP_ADV_PROP_DIRECTED) != 0, (info->adv_props & BT_GAP_ADV_PROP_SCAN_RESPONSE) != 0, (info->adv_props & BT_GAP_ADV_PROP_EXT_ADV) != 0, phy2str(info->primary_phy), phy2str(info->secondary_phy), info->interval, info->interval * 5 / 4, info->sid); if (!per_adv_found && info->interval) { uint32_t interval_us; uint32_t timeout; per_adv_found = true; /* Add retries and convert to unit in 10's of ms */ interval_us = BT_GAP_PER_ADV_INTERVAL_TO_US(info->interval); timeout = BT_GAP_US_TO_PER_ADV_SYNC_TIMEOUT(interval_us); /* 10 attempts */ timeout *= 10; /* Enforce restraints */ per_adv_sync_timeout = CLAMP(timeout, BT_GAP_PER_ADV_MIN_TIMEOUT, BT_GAP_PER_ADV_MAX_TIMEOUT); per_sid = info->sid; bt_addr_le_copy(&per_addr, info->addr); k_sem_give(&sem_per_adv); } } static struct bt_le_scan_cb scan_callbacks = { .recv = scan_recv, }; static void sync_cb(struct bt_le_per_adv_sync *sync, struct bt_le_per_adv_sync_synced_info *info) { char le_addr[BT_ADDR_LE_STR_LEN]; bt_addr_le_to_str(info->addr, le_addr, sizeof(le_addr)); printk("PER_ADV_SYNC[%u]: [DEVICE]: %s synced, " "Interval 0x%04x (%u ms), PHY %s\n", bt_le_per_adv_sync_get_index(sync), le_addr, info->interval, info->interval * 5 / 4, phy2str(info->phy)); k_sem_give(&sem_per_sync); } static void term_cb(struct bt_le_per_adv_sync *sync, const struct bt_le_per_adv_sync_term_info *info) { char le_addr[BT_ADDR_LE_STR_LEN]; bt_addr_le_to_str(info->addr, le_addr, sizeof(le_addr)); printk("PER_ADV_SYNC[%u]: [DEVICE]: %s sync terminated\n", bt_le_per_adv_sync_get_index(sync), le_addr); k_sem_give(&sem_per_sync_lost); } static void recv_cb(struct bt_le_per_adv_sync *sync, const struct bt_le_per_adv_sync_recv_info *info, struct net_buf_simple *buf) { char le_addr[BT_ADDR_LE_STR_LEN]; char data_str[129]; bt_addr_le_to_str(info->addr, le_addr, sizeof(le_addr)); bin2hex(buf->data, buf->len, data_str, sizeof(data_str)); printk("PER_ADV_SYNC[%u]: [DEVICE]: %s, tx_power %i, " "RSSI %i, CTE %u, data length %u, data: %s\n", bt_le_per_adv_sync_get_index(sync), le_addr, info->tx_power, info->rssi, info->cte_type, buf->len, data_str); } static struct bt_le_per_adv_sync_cb sync_callbacks = { .synced = sync_cb, .term = term_cb, .recv = recv_cb }; int main(void) { struct bt_le_per_adv_sync_param sync_create_param; struct bt_le_per_adv_sync *sync; int err; printk("Starting Periodic Advertising Synchronization Demo\n"); #ifdef CONFIG_PER_BLINK_LED0 printk("Checking LED device..."); if (!gpio_is_ready_dt(&led)) { printk("failed.\n"); return 0; } printk("done.\n"); printk("Configuring GPIO pin..."); err = gpio_pin_configure_dt(&led, GPIO_OUTPUT_ACTIVE); if (err) { printk("failed.\n"); return 0; } printk("done.\n"); k_work_init_delayable(&blink_work, blink_timeout); #endif /* CONFIG_PER_BLINK_LED0 */ /* Initialize the Bluetooth Subsystem */ err = bt_enable(NULL); if (err) { printk("Bluetooth init failed (err %d)\n", err); return 0; } printk("Scan callbacks register..."); bt_le_scan_cb_register(&scan_callbacks); printk("success.\n"); printk("Periodic Advertising callbacks register..."); bt_le_per_adv_sync_cb_register(&sync_callbacks); printk("Success.\n"); printk("Start scanning..."); err = bt_le_scan_start(BT_LE_SCAN_ACTIVE, NULL); if (err) { printk("failed (err %d)\n", err); return 0; } printk("success.\n"); do { #ifdef CONFIG_PER_BLINK_LED0 struct k_work_sync work_sync; printk("Start blinking LED...\n"); led_is_on = false; gpio_pin_set(led.port, led.pin, (int)led_is_on); k_work_schedule(&blink_work, BLINK_ONOFF); #endif /* CONFIG_PER_BLINK_LED0 */ printk("Waiting for periodic advertising...\n"); per_adv_found = false; err = k_sem_take(&sem_per_adv, K_FOREVER); if (err) { printk("failed (err %d)\n", err); return 0; } printk("Found periodic advertising.\n"); printk("Creating Periodic Advertising Sync..."); bt_addr_le_copy(&sync_create_param.addr, &per_addr); sync_create_param.options = 0; sync_create_param.sid = per_sid; sync_create_param.skip = 0; sync_create_param.timeout = per_adv_sync_timeout; err = bt_le_per_adv_sync_create(&sync_create_param, &sync); if (err) { printk("failed (err %d)\n", err); return 0; } printk("success.\n"); printk("Waiting for periodic sync...\n"); err = k_sem_take(&sem_per_sync, TIMEOUT_SYNC_CREATE); if (err) { printk("failed (err %d)\n", err); printk("Deleting Periodic Advertising Sync..."); err = bt_le_per_adv_sync_delete(sync); if (err) { printk("failed (err %d)\n", err); return 0; } continue; } printk("Periodic sync established.\n"); #ifdef CONFIG_PER_BLINK_LED0 printk("Stop blinking LED.\n"); k_work_cancel_delayable_sync(&blink_work, &work_sync); /* Keep LED on */ led_is_on = true; gpio_pin_set(led.port, led.pin, (int)led_is_on); #endif /* CONFIG_PER_BLINK_LED0 */ printk("Waiting for periodic sync lost...\n"); err = k_sem_take(&sem_per_sync_lost, K_FOREVER); if (err) { printk("failed (err %d)\n", err); return 0; } printk("Periodic sync lost.\n"); } while (true); }