/* * Copyright (c) 2021 Vestas Wind Systems A/S * Copyright (c) 2018 Karsten Koenig * Copyright (c) 2018 Alexander Wachter * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Controller Area Network (CAN) driver API. */ #ifndef ZEPHYR_INCLUDE_DRIVERS_CAN_H_ #define ZEPHYR_INCLUDE_DRIVERS_CAN_H_ #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /** * @brief CAN Interface * @defgroup can_interface CAN Interface * @since 1.12 * @version 1.1.0 * @ingroup io_interfaces * @{ */ /** * @name CAN frame definitions * @{ */ /** * @brief Bit mask for a standard (11-bit) CAN identifier. */ #define CAN_STD_ID_MASK 0x7FFU /** * @brief Bit mask for an extended (29-bit) CAN identifier. */ #define CAN_EXT_ID_MASK 0x1FFFFFFFU /** * @brief Maximum data length code for CAN 2.0A/2.0B. */ #define CAN_MAX_DLC 8U /** * @brief Maximum data length code for CAN FD. */ #define CANFD_MAX_DLC 15U /** * @cond INTERNAL_HIDDEN * Internally calculated maximum data length */ #ifndef CONFIG_CAN_FD_MODE #define CAN_MAX_DLEN 8U #else #define CAN_MAX_DLEN 64U #endif /* CONFIG_CAN_FD_MODE */ /** @endcond */ /** @} */ /** * @name CAN controller mode flags * @anchor CAN_MODE_FLAGS * * @{ */ /** Normal mode. */ #define CAN_MODE_NORMAL 0 /** Controller is in loopback mode (receives own frames). */ #define CAN_MODE_LOOPBACK BIT(0) /** Controller is not allowed to send dominant bits. */ #define CAN_MODE_LISTENONLY BIT(1) /** Controller allows transmitting/receiving CAN FD frames. */ #define CAN_MODE_FD BIT(2) /** Controller does not retransmit in case of lost arbitration or missing ACK */ #define CAN_MODE_ONE_SHOT BIT(3) /** Controller uses triple sampling mode */ #define CAN_MODE_3_SAMPLES BIT(4) /** Controller requires manual recovery after entering bus-off state */ #define CAN_MODE_MANUAL_RECOVERY BIT(5) /** @} */ /** * @brief Provides a type to hold CAN controller configuration flags. * * The lower 24 bits are reserved for common CAN controller mode flags. The upper 8 bits are * reserved for CAN controller/driver specific flags. * * @see @ref CAN_MODE_FLAGS. */ typedef uint32_t can_mode_t; /** * @brief Defines the state of the CAN controller */ enum can_state { /** Error-active state (RX/TX error count < 96). */ CAN_STATE_ERROR_ACTIVE, /** Error-warning state (RX/TX error count < 128). */ CAN_STATE_ERROR_WARNING, /** Error-passive state (RX/TX error count < 256). */ CAN_STATE_ERROR_PASSIVE, /** Bus-off state (RX/TX error count >= 256). */ CAN_STATE_BUS_OFF, /** CAN controller is stopped and does not participate in CAN communication. */ CAN_STATE_STOPPED, }; /** * @name CAN frame flags * @anchor CAN_FRAME_FLAGS * * @{ */ /** Frame uses extended (29-bit) CAN ID */ #define CAN_FRAME_IDE BIT(0) /** Frame is a Remote Transmission Request (RTR) */ #define CAN_FRAME_RTR BIT(1) /** Frame uses CAN FD format (FDF) */ #define CAN_FRAME_FDF BIT(2) /** Frame uses CAN FD Baud Rate Switch (BRS). Only valid in combination with ``CAN_FRAME_FDF``. */ #define CAN_FRAME_BRS BIT(3) /** CAN FD Error State Indicator (ESI). Indicates that the transmitting node is in error-passive * state. Only valid in combination with ``CAN_FRAME_FDF``. */ #define CAN_FRAME_ESI BIT(4) /** @} */ /** * @brief CAN frame structure */ struct can_frame { /** Standard (11-bit) or extended (29-bit) CAN identifier. */ uint32_t id; /** Data Length Code (DLC) indicating data length in bytes. */ uint8_t dlc; /** Flags. @see @ref CAN_FRAME_FLAGS. */ uint8_t flags; #if defined(CONFIG_CAN_RX_TIMESTAMP) || defined(__DOXYGEN__) /** Captured value of the free-running timer in the CAN controller when * this frame was received. The timer is incremented every bit time and * captured at the start of frame bit (SOF). * * @note @kconfig{CONFIG_CAN_RX_TIMESTAMP} must be selected for this * field to be available. */ uint16_t timestamp; #else /** @cond INTERNAL_HIDDEN */ /** Padding. */ uint16_t reserved; /** @endcond */ #endif /** The frame payload data. */ union { /** Payload data accessed as unsigned 8 bit values. */ uint8_t data[CAN_MAX_DLEN]; /** Payload data accessed as unsigned 32 bit values. */ uint32_t data_32[DIV_ROUND_UP(CAN_MAX_DLEN, sizeof(uint32_t))]; }; }; /** * @name CAN filter flags * @anchor CAN_FILTER_FLAGS * * @{ */ /** Filter matches frames with extended (29-bit) CAN IDs */ #define CAN_FILTER_IDE BIT(0) /** @} */ /** * @brief CAN filter structure */ struct can_filter { /** CAN identifier to match. */ uint32_t id; /** CAN identifier matching mask. If a bit in this mask is 0, the value * of the corresponding bit in the ``id`` field is ignored by the filter. */ uint32_t mask; /** Flags. @see @ref CAN_FILTER_FLAGS. */ uint8_t flags; }; /** * @brief CAN controller error counters */ struct can_bus_err_cnt { /** Value of the CAN controller transmit error counter. */ uint8_t tx_err_cnt; /** Value of the CAN controller receive error counter. */ uint8_t rx_err_cnt; }; /** * @brief CAN bus timing structure * * This struct is used to pass bus timing values to the configuration and * bitrate calculation functions. * * The propagation segment represents the time of the signal propagation. Phase * segment 1 and phase segment 2 define the sampling point. The ``prop_seg`` and * ``phase_seg1`` values affect the sampling point in the same way and some * controllers only have a register for the sum of those two. The sync segment * always has a length of 1 time quantum (see below). * * @code{.text} * * +---------+----------+------------+------------+ * |sync_seg | prop_seg | phase_seg1 | phase_seg2 | * +---------+----------+------------+------------+ * ^ * Sampling-Point * * @endcode * * 1 time quantum (tq) has the length of 1/(core_clock / prescaler). The bitrate * is defined by the core clock divided by the prescaler and the sum of the * segments: * * br = (core_clock / prescaler) / (1 + prop_seg + phase_seg1 + phase_seg2) * * The Synchronization Jump Width (SJW) defines the amount of time quanta the * sample point can be moved. The sample point is moved when resynchronization * is needed. */ struct can_timing { /** Synchronisation jump width. */ uint16_t sjw; /** Propagation segment. */ uint16_t prop_seg; /** Phase segment 1. */ uint16_t phase_seg1; /** Phase segment 2. */ uint16_t phase_seg2; /** Prescaler value. */ uint16_t prescaler; }; /** * @brief Defines the application callback handler function signature * * @param dev Pointer to the device structure for the driver instance. * @param error Status of the performed send operation. See the list of * return values for @a can_send() for value descriptions. * @param user_data User data provided when the frame was sent. */ typedef void (*can_tx_callback_t)(const struct device *dev, int error, void *user_data); /** * @brief Defines the application callback handler function signature for receiving. * * @param dev Pointer to the device structure for the driver instance. * @param frame Received frame. * @param user_data User data provided when the filter was added. */ typedef void (*can_rx_callback_t)(const struct device *dev, struct can_frame *frame, void *user_data); /** * @brief Defines the state change callback handler function signature * * @param dev Pointer to the device structure for the driver instance. * @param state State of the CAN controller. * @param err_cnt CAN controller error counter values. * @param user_data User data provided the callback was set. */ typedef void (*can_state_change_callback_t)(const struct device *dev, enum can_state state, struct can_bus_err_cnt err_cnt, void *user_data); /** * @cond INTERNAL_HIDDEN * * For internal driver use only, skip these in public documentation. */ /** * @brief Calculate Transmitter Delay Compensation Offset from data phase timing parameters. * * Calculates the TDC Offset in minimum time quanta (mtq) using the sample point and CAN core clock * prescaler specified by a set of data phase timing parameters. * * The result is clamped to the minimum/maximum supported TDC Offset values provided. * * @param _timing_data Pointer to data phase timing parameters. * @param _tdco_min Minimum supported TDC Offset value in mtq. * @param _tdco_max Maximum supported TDC Offset value in mtq. * @return Calculated TDC Offset value in mtq. */ #define CAN_CALC_TDCO(_timing_data, _tdco_min, _tdco_max) \ CLAMP((1U + _timing_data->prop_seg + _timing_data->phase_seg1) * _timing_data->prescaler, \ _tdco_min, _tdco_max) /** * @brief Common CAN controller driver configuration. * * This structure is common to all CAN controller drivers and is expected to be the first element in * the object pointed to by the config field in the device structure. */ struct can_driver_config { /** Pointer to the device structure for the associated CAN transceiver device or NULL. */ const struct device *phy; /** The minimum bitrate supported by the CAN controller/transceiver combination. */ uint32_t min_bitrate; /** The maximum bitrate supported by the CAN controller/transceiver combination. */ uint32_t max_bitrate; /** Initial CAN classic/CAN FD arbitration phase bitrate. */ uint32_t bitrate; /** Initial CAN classic/CAN FD arbitration phase sample point in permille. */ uint16_t sample_point; #ifdef CONFIG_CAN_FD_MODE /** Initial CAN FD data phase sample point in permille. */ uint16_t sample_point_data; /** Initial CAN FD data phase bitrate. */ uint32_t bitrate_data; #endif /* CONFIG_CAN_FD_MODE */ }; /** * @brief Static initializer for @p can_driver_config struct * * @param node_id Devicetree node identifier * @param _min_bitrate minimum bitrate supported by the CAN controller * @param _max_bitrate maximum bitrate supported by the CAN controller */ #define CAN_DT_DRIVER_CONFIG_GET(node_id, _min_bitrate, _max_bitrate) \ { \ .phy = DEVICE_DT_GET_OR_NULL(DT_PHANDLE(node_id, phys)), \ .min_bitrate = DT_CAN_TRANSCEIVER_MIN_BITRATE(node_id, _min_bitrate), \ .max_bitrate = DT_CAN_TRANSCEIVER_MAX_BITRATE(node_id, _max_bitrate), \ .bitrate = DT_PROP_OR(node_id, bitrate, \ DT_PROP_OR(node_id, bus_speed, CONFIG_CAN_DEFAULT_BITRATE)), \ .sample_point = DT_PROP_OR(node_id, sample_point, 0), \ IF_ENABLED(CONFIG_CAN_FD_MODE, \ (.bitrate_data = DT_PROP_OR(node_id, bitrate_data, \ DT_PROP_OR(node_id, bus_speed_data, CONFIG_CAN_DEFAULT_BITRATE_DATA)), \ .sample_point_data = DT_PROP_OR(node_id, sample_point_data, 0),)) \ } /** * @brief Static initializer for @p can_driver_config struct from DT_DRV_COMPAT instance * * @param inst DT_DRV_COMPAT instance number * @param _min_bitrate minimum bitrate supported by the CAN controller * @param _max_bitrate maximum bitrate supported by the CAN controller * @see CAN_DT_DRIVER_CONFIG_GET() */ #define CAN_DT_DRIVER_CONFIG_INST_GET(inst, _min_bitrate, _max_bitrate) \ CAN_DT_DRIVER_CONFIG_GET(DT_DRV_INST(inst), _min_bitrate, _max_bitrate) /** * @brief Common CAN controller driver data. * * This structure is common to all CAN controller drivers and is expected to be the first element in * the driver's struct driver_data declaration. */ struct can_driver_data { /** Current CAN controller mode. */ can_mode_t mode; /** True if the CAN controller is started, false otherwise. */ bool started; /** State change callback function pointer or NULL. */ can_state_change_callback_t state_change_cb; /** State change callback user data pointer or NULL. */ void *state_change_cb_user_data; }; /** * @brief Callback API upon setting CAN bus timing * See @a can_set_timing() for argument description */ typedef int (*can_set_timing_t)(const struct device *dev, const struct can_timing *timing); /** * @brief Optional callback API upon setting CAN FD bus timing for the data phase. * See @a can_set_timing_data() for argument description */ typedef int (*can_set_timing_data_t)(const struct device *dev, const struct can_timing *timing_data); /** * @brief Callback API upon getting CAN controller capabilities * See @a can_get_capabilities() for argument description */ typedef int (*can_get_capabilities_t)(const struct device *dev, can_mode_t *cap); /** * @brief Callback API upon starting CAN controller * See @a can_start() for argument description */ typedef int (*can_start_t)(const struct device *dev); /** * @brief Callback API upon stopping CAN controller * See @a can_stop() for argument description */ typedef int (*can_stop_t)(const struct device *dev); /** * @brief Callback API upon setting CAN controller mode * See @a can_set_mode() for argument description */ typedef int (*can_set_mode_t)(const struct device *dev, can_mode_t mode); /** * @brief Callback API upon sending a CAN frame * See @a can_send() for argument description * * @note From a driver perspective `callback` will never be `NULL` as a default callback will be * provided if none is provided by the caller. This allows for simplifying the driver handling. */ typedef int (*can_send_t)(const struct device *dev, const struct can_frame *frame, k_timeout_t timeout, can_tx_callback_t callback, void *user_data); /** * @brief Callback API upon adding an RX filter * See @a can_add_rx_callback() for argument description */ typedef int (*can_add_rx_filter_t)(const struct device *dev, can_rx_callback_t callback, void *user_data, const struct can_filter *filter); /** * @brief Callback API upon removing an RX filter * See @a can_remove_rx_filter() for argument description */ typedef void (*can_remove_rx_filter_t)(const struct device *dev, int filter_id); /** * @brief Optional callback API upon manually recovering the CAN controller from bus-off state * See @a can_recover() for argument description */ typedef int (*can_recover_t)(const struct device *dev, k_timeout_t timeout); /** * @brief Callback API upon getting the CAN controller state * See @a can_get_state() for argument description */ typedef int (*can_get_state_t)(const struct device *dev, enum can_state *state, struct can_bus_err_cnt *err_cnt); /** * @brief Callback API upon setting a state change callback * See @a can_set_state_change_callback() for argument description */ typedef void(*can_set_state_change_callback_t)(const struct device *dev, can_state_change_callback_t callback, void *user_data); /** * @brief Callback API upon getting the CAN core clock rate * See @a can_get_core_clock() for argument description */ typedef int (*can_get_core_clock_t)(const struct device *dev, uint32_t *rate); /** * @brief Optional callback API upon getting the maximum number of concurrent CAN RX filters * See @a can_get_max_filters() for argument description */ typedef int (*can_get_max_filters_t)(const struct device *dev, bool ide); __subsystem struct can_driver_api { can_get_capabilities_t get_capabilities; can_start_t start; can_stop_t stop; can_set_mode_t set_mode; can_set_timing_t set_timing; can_send_t send; can_add_rx_filter_t add_rx_filter; can_remove_rx_filter_t remove_rx_filter; #if defined(CONFIG_CAN_MANUAL_RECOVERY_MODE) || defined(__DOXYGEN__) can_recover_t recover; #endif /* CONFIG_CAN_MANUAL_RECOVERY_MODE */ can_get_state_t get_state; can_set_state_change_callback_t set_state_change_callback; can_get_core_clock_t get_core_clock; can_get_max_filters_t get_max_filters; /* Min values for the timing registers */ struct can_timing timing_min; /* Max values for the timing registers */ struct can_timing timing_max; #if defined(CONFIG_CAN_FD_MODE) || defined(__DOXYGEN__) can_set_timing_data_t set_timing_data; /* Min values for the timing registers during the data phase */ struct can_timing timing_data_min; /* Max values for the timing registers during the data phase */ struct can_timing timing_data_max; #endif /* CONFIG_CAN_FD_MODE */ }; /** @endcond */ #if defined(CONFIG_CAN_STATS) || defined(__DOXYGEN__) #include /** @cond INTERNAL_HIDDEN */ STATS_SECT_START(can) STATS_SECT_ENTRY32(bit_error) STATS_SECT_ENTRY32(bit0_error) STATS_SECT_ENTRY32(bit1_error) STATS_SECT_ENTRY32(stuff_error) STATS_SECT_ENTRY32(crc_error) STATS_SECT_ENTRY32(form_error) STATS_SECT_ENTRY32(ack_error) STATS_SECT_ENTRY32(rx_overrun) STATS_SECT_END; STATS_NAME_START(can) STATS_NAME(can, bit_error) STATS_NAME(can, bit0_error) STATS_NAME(can, bit1_error) STATS_NAME(can, stuff_error) STATS_NAME(can, crc_error) STATS_NAME(can, form_error) STATS_NAME(can, ack_error) STATS_NAME(can, rx_overrun) STATS_NAME_END(can); /** @endcond */ /** * @brief CAN specific device state which allows for CAN device class specific * additions */ struct can_device_state { /** Common device state. */ struct device_state devstate; /** CAN device statistics */ struct stats_can stats; }; /** @cond INTERNAL_HIDDEN */ /** * @brief Get pointer to CAN statistics structure */ #define Z_CAN_GET_STATS(dev_) \ CONTAINER_OF(dev_->state, struct can_device_state, devstate)->stats /** @endcond */ /** * @brief Increment the bit error counter for a CAN device * * The bit error counter is incremented when the CAN controller is unable to * transmit either a dominant or a recessive bit. * * @note This error counter should only be incremented if the CAN controller is unable to * distinguish between failure to transmit a dominant versus failure to transmit a recessive bit. If * the CAN controller supports distinguishing between the two, the `bit0` or `bit1` error counter * shall be incremented instead. * * @see CAN_STATS_BIT0_ERROR_INC() * @see CAN_STATS_BIT1_ERROR_INC() * * @param dev_ Pointer to the device structure for the driver instance. */ #define CAN_STATS_BIT_ERROR_INC(dev_) \ STATS_INC(Z_CAN_GET_STATS(dev_), bit_error) /** * @brief Increment the bit0 error counter for a CAN device * * The bit0 error counter is incremented when the CAN controller is unable to * transmit a dominant bit. * * Incrementing this counter will automatically increment the bit error counter. * @see CAN_STATS_BIT_ERROR_INC() * * @param dev_ Pointer to the device structure for the driver instance. */ #define CAN_STATS_BIT0_ERROR_INC(dev_) \ do { \ STATS_INC(Z_CAN_GET_STATS(dev_), bit0_error); \ CAN_STATS_BIT_ERROR_INC(dev_); \ } while (0) /** * @brief Increment the bit1 (recessive) error counter for a CAN device * * The bit1 error counter is incremented when the CAN controller is unable to * transmit a recessive bit. * * Incrementing this counter will automatically increment the bit error counter. * @see CAN_STATS_BIT_ERROR_INC() * * @param dev_ Pointer to the device structure for the driver instance. */ #define CAN_STATS_BIT1_ERROR_INC(dev_) \ do { \ STATS_INC(Z_CAN_GET_STATS(dev_), bit1_error); \ CAN_STATS_BIT_ERROR_INC(dev_); \ } while (0) /** * @brief Increment the stuffing error counter for a CAN device * * The stuffing error counter is incremented when the CAN controller detects a * bit stuffing error. * * @param dev_ Pointer to the device structure for the driver instance. */ #define CAN_STATS_STUFF_ERROR_INC(dev_) \ STATS_INC(Z_CAN_GET_STATS(dev_), stuff_error) /** * @brief Increment the CRC error counter for a CAN device * * The CRC error counter is incremented when the CAN controller detects a frame * with an invalid CRC. * * @param dev_ Pointer to the device structure for the driver instance. */ #define CAN_STATS_CRC_ERROR_INC(dev_) \ STATS_INC(Z_CAN_GET_STATS(dev_), crc_error) /** * @brief Increment the form error counter for a CAN device * * The form error counter is incremented when the CAN controller detects a * fixed-form bit field containing illegal bits. * * @param dev_ Pointer to the device structure for the driver instance. */ #define CAN_STATS_FORM_ERROR_INC(dev_) \ STATS_INC(Z_CAN_GET_STATS(dev_), form_error) /** * @brief Increment the acknowledge error counter for a CAN device * * The acknowledge error counter is incremented when the CAN controller does not * monitor a dominant bit in the ACK slot. * * @param dev_ Pointer to the device structure for the driver instance. */ #define CAN_STATS_ACK_ERROR_INC(dev_) \ STATS_INC(Z_CAN_GET_STATS(dev_), ack_error) /** * @brief Increment the RX overrun counter for a CAN device * * The RX overrun counter is incremented when the CAN controller receives a CAN * frame matching an installed filter but lacks the capacity to store it (either * due to an already full RX mailbox or a full RX FIFO). * * @param dev_ Pointer to the device structure for the driver instance. */ #define CAN_STATS_RX_OVERRUN_INC(dev_) \ STATS_INC(Z_CAN_GET_STATS(dev_), rx_overrun) /** * @brief Zero all statistics for a CAN device * * The driver is responsible for resetting the statistics before starting the CAN * controller. * * @param dev_ Pointer to the device structure for the driver instance. */ #define CAN_STATS_RESET(dev_) \ stats_reset(&(Z_CAN_GET_STATS(dev_).s_hdr)) /** @cond INTERNAL_HIDDEN */ /** * @brief Define a statically allocated and section assigned CAN device state */ #define Z_CAN_DEVICE_STATE_DEFINE(dev_id) \ static struct can_device_state Z_DEVICE_STATE_NAME(dev_id) \ __attribute__((__section__(".z_devstate"))) /** * @brief Define a CAN device init wrapper function * * This does device instance specific initialization of common data (such as stats) * and calls the given init_fn */ #define Z_CAN_INIT_FN(dev_id, init_fn) \ static inline int UTIL_CAT(dev_id, _init)(const struct device *dev) \ { \ struct can_device_state *state = \ CONTAINER_OF(dev->state, struct can_device_state, devstate); \ stats_init(&state->stats.s_hdr, STATS_SIZE_32, 8, \ STATS_NAME_INIT_PARMS(can)); \ stats_register(dev->name, &(state->stats.s_hdr)); \ if (!is_null_no_warn(init_fn)) { \ return init_fn(dev); \ } \ \ return 0; \ } /** @endcond */ /** * @brief Like DEVICE_DT_DEFINE() with CAN device specifics. * * @details Defines a device which implements the CAN API. May generate a custom * device_state container struct and init_fn wrapper when needed depending on * @kconfig{CONFIG_CAN_STATS}. * * @param node_id The devicetree node identifier. * @param init_fn Name of the init function of the driver. * @param pm PM device resources reference (NULL if device does not use PM). * @param data Pointer to the device's private data. * @param config The address to the structure containing the configuration * information for this instance of the driver. * @param level The initialization level. See SYS_INIT() for * details. * @param prio Priority within the selected initialization level. See * SYS_INIT() for details. * @param api Provides an initial pointer to the API function struct * used by the driver. Can be NULL. */ #define CAN_DEVICE_DT_DEFINE(node_id, init_fn, pm, data, config, level, \ prio, api, ...) \ Z_CAN_DEVICE_STATE_DEFINE(Z_DEVICE_DT_DEV_ID(node_id)); \ Z_CAN_INIT_FN(Z_DEVICE_DT_DEV_ID(node_id), init_fn) \ Z_DEVICE_DEFINE(node_id, Z_DEVICE_DT_DEV_ID(node_id), \ DEVICE_DT_NAME(node_id), \ &UTIL_CAT(Z_DEVICE_DT_DEV_ID(node_id), _init), \ pm, data, config, level, prio, api, \ &(Z_DEVICE_STATE_NAME(Z_DEVICE_DT_DEV_ID(node_id)).devstate), \ __VA_ARGS__) #else /* CONFIG_CAN_STATS */ #define CAN_STATS_BIT_ERROR_INC(dev_) #define CAN_STATS_BIT0_ERROR_INC(dev_) #define CAN_STATS_BIT1_ERROR_INC(dev_) #define CAN_STATS_STUFF_ERROR_INC(dev_) #define CAN_STATS_CRC_ERROR_INC(dev_) #define CAN_STATS_FORM_ERROR_INC(dev_) #define CAN_STATS_ACK_ERROR_INC(dev_) #define CAN_STATS_RX_OVERRUN_INC(dev_) #define CAN_STATS_RESET(dev_) #define CAN_DEVICE_DT_DEFINE(node_id, init_fn, pm, data, config, level, \ prio, api, ...) \ DEVICE_DT_DEFINE(node_id, init_fn, pm, data, config, level, \ prio, api, __VA_ARGS__) #endif /* CONFIG_CAN_STATS */ /** * @brief Like CAN_DEVICE_DT_DEFINE() for an instance of a DT_DRV_COMPAT compatible * * @param inst Instance number. This is replaced by DT_DRV_COMPAT(inst) * in the call to CAN_DEVICE_DT_DEFINE(). * @param ... Other parameters as expected by CAN_DEVICE_DT_DEFINE(). */ #define CAN_DEVICE_DT_INST_DEFINE(inst, ...) \ CAN_DEVICE_DT_DEFINE(DT_DRV_INST(inst), __VA_ARGS__) /** * @name CAN controller configuration * * @{ */ /** * @brief Get the CAN core clock rate * * Returns the CAN core clock rate. One minimum time quantum (mtq) is 1/(core clock rate). The CAN * core clock can be further divided by the CAN clock prescaler (see the @a can_timing struct), * providing the time quantum (tq). * * @param dev Pointer to the device structure for the driver instance. * @param[out] rate CAN core clock rate in Hz. * * @return 0 on success, or a negative error code on error */ __syscall int can_get_core_clock(const struct device *dev, uint32_t *rate); static inline int z_impl_can_get_core_clock(const struct device *dev, uint32_t *rate) { const struct can_driver_api *api = (const struct can_driver_api *)dev->api; return api->get_core_clock(dev, rate); } /** * @brief Get minimum supported bitrate * * Get the minimum supported bitrate for the CAN controller/transceiver combination. * * @note The minimum bitrate represents limitations of the CAN controller/transceiver * combination. Whether the CAN controller can achieve this bitrate depends on the CAN core clock * rate and the minimum CAN timing limits. * * @see can_get_core_clock() * @see can_get_timing_min() * @see can_get_timing_data_min() * * @param dev Pointer to the device structure for the driver instance. * @return Minimum supported bitrate in bits/s. A value of 0 means the lower limit is unspecified. */ __syscall uint32_t can_get_bitrate_min(const struct device *dev); static inline uint32_t z_impl_can_get_bitrate_min(const struct device *dev) { const struct can_driver_config *common = (const struct can_driver_config *)dev->config; return common->min_bitrate; } /** * @brief Get maximum supported bitrate * * Get the maximum supported bitrate for the CAN controller/transceiver combination. * * @note The maximum bitrate represents limitations of the CAN controller/transceiver * combination. Whether the CAN controller can achieve this bitrate depends on the CAN core clock * rate and the maximum CAN timing limits. * * @see can_get_core_clock() * @see can_get_timing_max() * @see can_get_timing_data_max() * * @param dev Pointer to the device structure for the driver instance. * @return Maximum supported bitrate in bits/s */ __syscall uint32_t can_get_bitrate_max(const struct device *dev); static inline uint32_t z_impl_can_get_bitrate_max(const struct device *dev) { const struct can_driver_config *common = (const struct can_driver_config *)dev->config; return common->max_bitrate; } /** * @brief Get the minimum supported timing parameter values. * * @param dev Pointer to the device structure for the driver instance. * * @return Pointer to the minimum supported timing parameter values. */ __syscall const struct can_timing *can_get_timing_min(const struct device *dev); static inline const struct can_timing *z_impl_can_get_timing_min(const struct device *dev) { const struct can_driver_api *api = (const struct can_driver_api *)dev->api; return &api->timing_min; } /** * @brief Get the maximum supported timing parameter values. * * @param dev Pointer to the device structure for the driver instance. * * @return Pointer to the maximum supported timing parameter values. */ __syscall const struct can_timing *can_get_timing_max(const struct device *dev); static inline const struct can_timing *z_impl_can_get_timing_max(const struct device *dev) { const struct can_driver_api *api = (const struct can_driver_api *)dev->api; return &api->timing_max; } /** * @brief Calculate timing parameters from bitrate and sample point * * Calculate the timing parameters from a given bitrate in bits/s and the * sampling point in permill (1/1000) of the entire bit time. The bitrate must * always match perfectly. If no result can be reached for the given parameters, * -EINVAL is returned. * * If the sample point is set to 0, this function defaults to a sample point of 75.0% * for bitrates over 800 kbit/s, 80.0% for bitrates over 500 kbit/s, and 87.5% for * all other bitrates. * * @note The requested ``sample_pnt`` will not always be matched perfectly. The * algorithm calculates the best possible match. * * @param dev Pointer to the device structure for the driver instance. * @param[out] res Result is written into the @a can_timing struct provided. * @param bitrate Target bitrate in bits/s. * @param sample_pnt Sample point in permille of the entire bit time or 0 for * automatic sample point location. * * @retval 0 or positive sample point error on success. * @retval -EINVAL if the requested bitrate or sample point is out of range. * @retval -ENOTSUP if the requested bitrate is not supported. * @retval -EIO if @a can_get_core_clock() is not available. */ __syscall int can_calc_timing(const struct device *dev, struct can_timing *res, uint32_t bitrate, uint16_t sample_pnt); /** * @brief Get the minimum supported timing parameter values for the data phase. * * Same as @a can_get_timing_min() but for the minimum values for the data phase. * * @note @kconfig{CONFIG_CAN_FD_MODE} must be selected for this function to be * available. * * @param dev Pointer to the device structure for the driver instance. * * @return Pointer to the minimum supported timing parameter values, or NULL if * CAN FD support is not implemented by the driver. */ __syscall const struct can_timing *can_get_timing_data_min(const struct device *dev); #ifdef CONFIG_CAN_FD_MODE static inline const struct can_timing *z_impl_can_get_timing_data_min(const struct device *dev) { const struct can_driver_api *api = (const struct can_driver_api *)dev->api; return &api->timing_data_min; } #endif /* CONFIG_CAN_FD_MODE */ /** * @brief Get the maximum supported timing parameter values for the data phase. * * Same as @a can_get_timing_max() but for the maximum values for the data phase. * * @note @kconfig{CONFIG_CAN_FD_MODE} must be selected for this function to be * available. * * @param dev Pointer to the device structure for the driver instance. * * @return Pointer to the maximum supported timing parameter values, or NULL if * CAN FD support is not implemented by the driver. */ __syscall const struct can_timing *can_get_timing_data_max(const struct device *dev); #ifdef CONFIG_CAN_FD_MODE static inline const struct can_timing *z_impl_can_get_timing_data_max(const struct device *dev) { const struct can_driver_api *api = (const struct can_driver_api *)dev->api; return &api->timing_data_max; } #endif /* CONFIG_CAN_FD_MODE */ /** * @brief Calculate timing parameters for the data phase * * Same as @a can_calc_timing() but with the maximum and minimum values from the * data phase. * * @note @kconfig{CONFIG_CAN_FD_MODE} must be selected for this function to be * available. * * @param dev Pointer to the device structure for the driver instance. * @param[out] res Result is written into the @a can_timing struct provided. * @param bitrate Target bitrate for the data phase in bits/s * @param sample_pnt Sample point for the data phase in permille of the entire bit * time or 0 for automatic sample point location. * * @retval 0 or positive sample point error on success. * @retval -EINVAL if the requested bitrate or sample point is out of range. * @retval -ENOTSUP if the requested bitrate is not supported. * @retval -EIO if @a can_get_core_clock() is not available. */ __syscall int can_calc_timing_data(const struct device *dev, struct can_timing *res, uint32_t bitrate, uint16_t sample_pnt); /** * @brief Configure the bus timing for the data phase of a CAN FD controller. * * @note @kconfig{CONFIG_CAN_FD_MODE} must be selected for this function to be * available. * * @see can_set_timing() * * @param dev Pointer to the device structure for the driver instance. * @param timing_data Bus timings for data phase * * @retval 0 If successful. * @retval -EBUSY if the CAN controller is not in stopped state. * @retval -EIO General input/output error, failed to configure device. * @retval -ENOTSUP if the timing parameters are not supported by the driver. * @retval -ENOSYS if CAN FD support is not implemented by the driver. */ __syscall int can_set_timing_data(const struct device *dev, const struct can_timing *timing_data); /** * @brief Set the bitrate for the data phase of the CAN FD controller * * CAN in Automation (CiA) 301 v4.2.0 recommends a sample point location of * 87.5% percent for all bitrates. However, some CAN controllers have * difficulties meeting this for higher bitrates. * * This function defaults to using a sample point of 75.0% for bitrates over 800 * kbit/s, 80.0% for bitrates over 500 kbit/s, and 87.5% for all other * bitrates. This is in line with the sample point locations used by the Linux * kernel. * * @note @kconfig{CONFIG_CAN_FD_MODE} must be selected for this function to be * available. * * @see can_set_bitrate() * @param dev Pointer to the device structure for the driver instance. * @param bitrate_data Desired data phase bitrate. * * @retval 0 If successful. * @retval -EBUSY if the CAN controller is not in stopped state. * @retval -EINVAL if the requested bitrate is out of range. * @retval -ENOTSUP if the requested bitrate not supported by the CAN controller/transceiver * combination. * @retval -ERANGE if the resulting sample point is off by more than +/- 5%. * @retval -EIO General input/output error, failed to set bitrate. */ __syscall int can_set_bitrate_data(const struct device *dev, uint32_t bitrate_data); /** * @brief Configure the bus timing of a CAN controller. * * @see can_set_timing_data() * * @param dev Pointer to the device structure for the driver instance. * @param timing Bus timings. * * @retval 0 If successful. * @retval -EBUSY if the CAN controller is not in stopped state. * @retval -ENOTSUP if the timing parameters are not supported by the driver. * @retval -EIO General input/output error, failed to configure device. */ __syscall int can_set_timing(const struct device *dev, const struct can_timing *timing); /** * @brief Get the supported modes of the CAN controller * * The returned capabilities may not necessarily be supported at the same time (e.g. some CAN * controllers support both ``CAN_MODE_LOOPBACK`` and ``CAN_MODE_LISTENONLY``, but not at the same * time). * * @param dev Pointer to the device structure for the driver instance. * @param[out] cap Supported capabilities. * * @retval 0 If successful. * @retval -EIO General input/output error, failed to get capabilities. */ __syscall int can_get_capabilities(const struct device *dev, can_mode_t *cap); static inline int z_impl_can_get_capabilities(const struct device *dev, can_mode_t *cap) { const struct can_driver_api *api = (const struct can_driver_api *)dev->api; return api->get_capabilities(dev, cap); } /** * @brief Get the CAN transceiver associated with the CAN controller * * Get a pointer to the device structure for the CAN transceiver associated with the CAN controller. * * @param dev Pointer to the device structure for the driver instance. * @return Pointer to the device structure for the associated CAN transceiver driver instance, or * NULL if no transceiver is associated. */ __syscall const struct device *can_get_transceiver(const struct device *dev); static const struct device *z_impl_can_get_transceiver(const struct device *dev) { const struct can_driver_config *common = (const struct can_driver_config *)dev->config; return common->phy; } /** * @brief Start the CAN controller * * Bring the CAN controller out of `CAN_STATE_STOPPED`. This will reset the RX/TX error counters, * enable the CAN controller to participate in CAN communication, and enable the CAN transceiver, if * supported. * * Starting the CAN controller resets all the CAN controller statistics. * * @see can_stop() * @see can_transceiver_enable() * * @param dev Pointer to the device structure for the driver instance. * @retval 0 if successful. * @retval -EALREADY if the device is already started. * @retval -EIO General input/output error, failed to start device. */ __syscall int can_start(const struct device *dev); static inline int z_impl_can_start(const struct device *dev) { const struct can_driver_api *api = (const struct can_driver_api *)dev->api; return api->start(dev); } /** * @brief Stop the CAN controller * * Bring the CAN controller into `CAN_STATE_STOPPED`. This will disallow the CAN controller from * participating in CAN communication, abort any pending CAN frame transmissions, and disable the * CAN transceiver, if supported. * * @see can_start() * @see can_transceiver_disable() * * @param dev Pointer to the device structure for the driver instance. * @retval 0 if successful. * @retval -EALREADY if the device is already stopped. * @retval -EIO General input/output error, failed to stop device. */ __syscall int can_stop(const struct device *dev); static inline int z_impl_can_stop(const struct device *dev) { const struct can_driver_api *api = (const struct can_driver_api *)dev->api; return api->stop(dev); } /** * @brief Set the CAN controller to the given operation mode * * @param dev Pointer to the device structure for the driver instance. * @param mode Operation mode. * * @retval 0 If successful. * @retval -EBUSY if the CAN controller is not in stopped state. * @retval -EIO General input/output error, failed to configure device. */ __syscall int can_set_mode(const struct device *dev, can_mode_t mode); static inline int z_impl_can_set_mode(const struct device *dev, can_mode_t mode) { const struct can_driver_api *api = (const struct can_driver_api *)dev->api; return api->set_mode(dev, mode); } /** * @brief Get the operation mode of the CAN controller * * @param dev Pointer to the device structure for the driver instance. * * @return Current operation mode. */ __syscall can_mode_t can_get_mode(const struct device *dev); static inline can_mode_t z_impl_can_get_mode(const struct device *dev) { const struct can_driver_data *common = (const struct can_driver_data *)dev->data; return common->mode; } /** * @brief Set the bitrate of the CAN controller * * CAN in Automation (CiA) 301 v4.2.0 recommends a sample point location of * 87.5% percent for all bitrates. However, some CAN controllers have * difficulties meeting this for higher bitrates. * * This function defaults to using a sample point of 75.0% for bitrates over 800 * kbit/s, 80.0% for bitrates over 500 kbit/s, and 87.5% for all other * bitrates. This is in line with the sample point locations used by the Linux * kernel. * * @see can_set_bitrate_data() * * @param dev Pointer to the device structure for the driver instance. * @param bitrate Desired arbitration phase bitrate. * * @retval 0 If successful. * @retval -EBUSY if the CAN controller is not in stopped state. * @retval -EINVAL if the requested bitrate is out of range. * @retval -ENOTSUP if the requested bitrate not supported by the CAN controller/transceiver * combination. * @retval -ERANGE if the resulting sample point is off by more than +/- 5%. * @retval -EIO General input/output error, failed to set bitrate. */ __syscall int can_set_bitrate(const struct device *dev, uint32_t bitrate); /** @} */ /** * @name Transmitting CAN frames * * @{ */ /** * @brief Queue a CAN frame for transmission on the CAN bus * * Queue a CAN frame for transmission on the CAN bus with optional timeout and * completion callback function. * * Queued CAN frames are transmitted in order according to the their priority: * - The lower the CAN-ID, the higher the priority. * - Data frames have higher priority than Remote Transmission Request (RTR) * frames with identical CAN-IDs. * - Frames with standard (11-bit) identifiers have higher priority than frames * with extended (29-bit) identifiers with identical base IDs (the higher 11 * bits of the extended identifier). * - Transmission order for queued frames with the same priority is hardware * dependent. * * @note If transmitting segmented messages spanning multiple CAN frames with * identical CAN-IDs, the sender must ensure to only queue one frame at a time * if FIFO order is required. * * By default, the CAN controller will automatically retry transmission in case * of lost bus arbitration or missing acknowledge. Some CAN controllers support * disabling automatic retransmissions via ``CAN_MODE_ONE_SHOT``. * * @param dev Pointer to the device structure for the driver instance. * @param frame CAN frame to transmit. * @param timeout Timeout waiting for a empty TX mailbox or ``K_FOREVER``. * @param callback Optional callback for when the frame was sent or a * transmission error occurred. If ``NULL``, this function is * blocking until frame is sent. The callback must be ``NULL`` * if called from user mode. * @param user_data User data to pass to callback function. * * @retval 0 if successful. * @retval -EINVAL if an invalid parameter was passed to the function. * @retval -ENOTSUP if an unsupported parameter was passed to the function. * @retval -ENETDOWN if the CAN controller is in stopped state. * @retval -ENETUNREACH if the CAN controller is in bus-off state. * @retval -EBUSY if CAN bus arbitration was lost (only applicable if automatic * retransmissions are disabled). * @retval -EIO if a general transmit error occurred (e.g. missing ACK if * automatic retransmissions are disabled). * @retval -EAGAIN on timeout. */ __syscall int can_send(const struct device *dev, const struct can_frame *frame, k_timeout_t timeout, can_tx_callback_t callback, void *user_data); /** @} */ /** * @name Receiving CAN frames * * @{ */ /** * @brief Add a callback function for a given CAN filter * * Add a callback to CAN identifiers specified by a filter. When a received CAN * frame matching the filter is received by the CAN controller, the callback * function is called in interrupt context. * * If a received frame matches more than one filter (i.e., the filter IDs/masks or * flags overlap), the priority of the match is hardware dependent. * * The same callback function can be used for multiple filters. * * @param dev Pointer to the device structure for the driver instance. * @param callback This function is called by the CAN controller driver whenever * a frame matching the filter is received. * @param user_data User data to pass to callback function. * @param filter Pointer to a @a can_filter structure defining the filter. * * @retval filter_id on success. * @retval -ENOSPC if there are no free filters. * @retval -EINVAL if the requested filter type is invalid. * @retval -ENOTSUP if the requested filter type is not supported. */ int can_add_rx_filter(const struct device *dev, can_rx_callback_t callback, void *user_data, const struct can_filter *filter); /** * @brief Statically define and initialize a CAN RX message queue. * * The message queue's ring buffer contains space for @a max_frames CAN frames. * * @see can_add_rx_filter_msgq() * * @param name Name of the message queue. * @param max_frames Maximum number of CAN frames that can be queued. */ #define CAN_MSGQ_DEFINE(name, max_frames) \ K_MSGQ_DEFINE(name, sizeof(struct can_frame), max_frames, 4) /** * @brief Simple wrapper function for adding a message queue for a given filter * * Wrapper function for @a can_add_rx_filter() which puts received CAN frames * matching the filter in a message queue instead of calling a callback. * * If a received frame matches more than one filter (i.e., the filter IDs/masks or * flags overlap), the priority of the match is hardware dependent. * * The same message queue can be used for multiple filters. * * @note The message queue must be initialized before calling this function and * the caller must have appropriate permissions on it. * * @warning Message queue overruns are silently ignored and overrun frames * discarded. Custom error handling can be implemented by using * @a can_add_rx_filter() and @a k_msgq_put() directly. * * @param dev Pointer to the device structure for the driver instance. * @param msgq Pointer to the already initialized @a k_msgq struct. * @param filter Pointer to a @a can_filter structure defining the filter. * * @retval filter_id on success. * @retval -ENOSPC if there are no free filters. * @retval -ENOTSUP if the requested filter type is not supported. */ __syscall int can_add_rx_filter_msgq(const struct device *dev, struct k_msgq *msgq, const struct can_filter *filter); /** * @brief Remove a CAN RX filter * * This routine removes a CAN RX filter based on the filter ID returned by @a * can_add_rx_filter() or @a can_add_rx_filter_msgq(). * * @param dev Pointer to the device structure for the driver instance. * @param filter_id Filter ID */ __syscall void can_remove_rx_filter(const struct device *dev, int filter_id); static inline void z_impl_can_remove_rx_filter(const struct device *dev, int filter_id) { const struct can_driver_api *api = (const struct can_driver_api *)dev->api; api->remove_rx_filter(dev, filter_id); } /** * @brief Get maximum number of RX filters * * Get the maximum number of concurrent RX filters for the CAN controller. * * @param dev Pointer to the device structure for the driver instance. * @param ide Get the maximum standard (11-bit) CAN ID filters if false, or extended (29-bit) CAN ID * filters if true. * * @retval Positive number of maximum concurrent filters. * @retval -EIO General input/output error. * @retval -ENOSYS If this function is not implemented by the driver. */ __syscall int can_get_max_filters(const struct device *dev, bool ide); static inline int z_impl_can_get_max_filters(const struct device *dev, bool ide) { const struct can_driver_api *api = (const struct can_driver_api *)dev->api; if (api->get_max_filters == NULL) { return -ENOSYS; } return api->get_max_filters(dev, ide); } /** @} */ /** * @name CAN bus error reporting and handling * * @{ */ /** * @brief Get current CAN controller state * * Returns the current state and optionally the error counter values of the CAN * controller. * * @param dev Pointer to the device structure for the driver instance. * @param[out] state Pointer to the state destination enum or NULL. * @param[out] err_cnt Pointer to the err_cnt destination structure or NULL. * * @retval 0 If successful. * @retval -EIO General input/output error, failed to get state. */ __syscall int can_get_state(const struct device *dev, enum can_state *state, struct can_bus_err_cnt *err_cnt); static inline int z_impl_can_get_state(const struct device *dev, enum can_state *state, struct can_bus_err_cnt *err_cnt) { const struct can_driver_api *api = (const struct can_driver_api *)dev->api; return api->get_state(dev, state, err_cnt); } /** * @brief Recover from bus-off state * * Recover the CAN controller from bus-off state to error-active state. * * @note @kconfig{CONFIG_CAN_MANUAL_RECOVERY_MODE} must be enabled for this * function to be available. * * @param dev Pointer to the device structure for the driver instance. * @param timeout Timeout for waiting for the recovery or ``K_FOREVER``. * * @retval 0 on success. * @retval -ENOTSUP if the CAN controller is not in manual recovery mode. * @retval -ENETDOWN if the CAN controller is in stopped state. * @retval -EAGAIN on timeout. * @retval -ENOSYS If this function is not implemented by the driver. */ __syscall int can_recover(const struct device *dev, k_timeout_t timeout); #ifdef CONFIG_CAN_MANUAL_RECOVERY_MODE static inline int z_impl_can_recover(const struct device *dev, k_timeout_t timeout) { const struct can_driver_api *api = (const struct can_driver_api *)dev->api; if (api->recover == NULL) { return -ENOSYS; } return api->recover(dev, timeout); } #endif /* CONFIG_CAN_MANUAL_RECOVERY_MODE */ /** * @brief Set a callback for CAN controller state change events * * Set the callback for CAN controller state change events. The callback * function will be called in interrupt context. * * Only one callback can be registered per controller. Calling this function * again overrides any previously registered callback. * * @param dev Pointer to the device structure for the driver instance. * @param callback Callback function. * @param user_data User data to pass to callback function. */ static inline void can_set_state_change_callback(const struct device *dev, can_state_change_callback_t callback, void *user_data) { const struct can_driver_api *api = (const struct can_driver_api *)dev->api; api->set_state_change_callback(dev, callback, user_data); } /** @} */ /** * @name CAN statistics * * @{ */ /** * @brief Get the bit error counter for a CAN device * * The bit error counter is incremented when the CAN controller is unable to * transmit either a dominant or a recessive bit. * * @note @kconfig{CONFIG_CAN_STATS} must be selected for this function to be * available. * * @param dev Pointer to the device structure for the driver instance. * @return bit error counter */ __syscall uint32_t can_stats_get_bit_errors(const struct device *dev); #ifdef CONFIG_CAN_STATS static inline uint32_t z_impl_can_stats_get_bit_errors(const struct device *dev) { return Z_CAN_GET_STATS(dev).bit_error; } #endif /* CONFIG_CAN_STATS */ /** * @brief Get the bit0 error counter for a CAN device * * The bit0 error counter is incremented when the CAN controller is unable to * transmit a dominant bit. * * @note @kconfig{CONFIG_CAN_STATS} must be selected for this function to be * available. * * @see can_stats_get_bit_errors() * * @param dev Pointer to the device structure for the driver instance. * @return bit0 error counter */ __syscall uint32_t can_stats_get_bit0_errors(const struct device *dev); #ifdef CONFIG_CAN_STATS static inline uint32_t z_impl_can_stats_get_bit0_errors(const struct device *dev) { return Z_CAN_GET_STATS(dev).bit0_error; } #endif /* CONFIG_CAN_STATS */ /** * @brief Get the bit1 error counter for a CAN device * * The bit1 error counter is incremented when the CAN controller is unable to * transmit a recessive bit. * * @note @kconfig{CONFIG_CAN_STATS} must be selected for this function to be * available. * * @see can_stats_get_bit_errors() * * @param dev Pointer to the device structure for the driver instance. * @return bit1 error counter */ __syscall uint32_t can_stats_get_bit1_errors(const struct device *dev); #ifdef CONFIG_CAN_STATS static inline uint32_t z_impl_can_stats_get_bit1_errors(const struct device *dev) { return Z_CAN_GET_STATS(dev).bit1_error; } #endif /* CONFIG_CAN_STATS */ /** * @brief Get the stuffing error counter for a CAN device * * The stuffing error counter is incremented when the CAN controller detects a * bit stuffing error. * * @note @kconfig{CONFIG_CAN_STATS} must be selected for this function to be * available. * * @param dev Pointer to the device structure for the driver instance. * @return stuffing error counter */ __syscall uint32_t can_stats_get_stuff_errors(const struct device *dev); #ifdef CONFIG_CAN_STATS static inline uint32_t z_impl_can_stats_get_stuff_errors(const struct device *dev) { return Z_CAN_GET_STATS(dev).stuff_error; } #endif /* CONFIG_CAN_STATS */ /** * @brief Get the CRC error counter for a CAN device * * The CRC error counter is incremented when the CAN controller detects a frame * with an invalid CRC. * * @note @kconfig{CONFIG_CAN_STATS} must be selected for this function to be * available. * * @param dev Pointer to the device structure for the driver instance. * @return CRC error counter */ __syscall uint32_t can_stats_get_crc_errors(const struct device *dev); #ifdef CONFIG_CAN_STATS static inline uint32_t z_impl_can_stats_get_crc_errors(const struct device *dev) { return Z_CAN_GET_STATS(dev).crc_error; } #endif /* CONFIG_CAN_STATS */ /** * @brief Get the form error counter for a CAN device * * The form error counter is incremented when the CAN controller detects a * fixed-form bit field containing illegal bits. * * @note @kconfig{CONFIG_CAN_STATS} must be selected for this function to be * available. * * @param dev Pointer to the device structure for the driver instance. * @return form error counter */ __syscall uint32_t can_stats_get_form_errors(const struct device *dev); #ifdef CONFIG_CAN_STATS static inline uint32_t z_impl_can_stats_get_form_errors(const struct device *dev) { return Z_CAN_GET_STATS(dev).form_error; } #endif /* CONFIG_CAN_STATS */ /** * @brief Get the acknowledge error counter for a CAN device * * The acknowledge error counter is incremented when the CAN controller does not * monitor a dominant bit in the ACK slot. * * @note @kconfig{CONFIG_CAN_STATS} must be selected for this function to be * available. * * @param dev Pointer to the device structure for the driver instance. * @return acknowledge error counter */ __syscall uint32_t can_stats_get_ack_errors(const struct device *dev); #ifdef CONFIG_CAN_STATS static inline uint32_t z_impl_can_stats_get_ack_errors(const struct device *dev) { return Z_CAN_GET_STATS(dev).ack_error; } #endif /* CONFIG_CAN_STATS */ /** * @brief Get the RX overrun counter for a CAN device * * The RX overrun counter is incremented when the CAN controller receives a CAN * frame matching an installed filter but lacks the capacity to store it (either * due to an already full RX mailbox or a full RX FIFO). * * @note @kconfig{CONFIG_CAN_STATS} must be selected for this function to be * available. * * @param dev Pointer to the device structure for the driver instance. * @return RX overrun counter */ __syscall uint32_t can_stats_get_rx_overruns(const struct device *dev); #ifdef CONFIG_CAN_STATS static inline uint32_t z_impl_can_stats_get_rx_overruns(const struct device *dev) { return Z_CAN_GET_STATS(dev).rx_overrun; } #endif /* CONFIG_CAN_STATS */ /** @} */ /** * @name CAN utility functions * * @{ */ /** * @brief Convert from Data Length Code (DLC) to the number of data bytes * * @param dlc Data Length Code (DLC). * * @retval Number of bytes. */ static inline uint8_t can_dlc_to_bytes(uint8_t dlc) { static const uint8_t dlc_table[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 32, 48, 64}; return dlc_table[MIN(dlc, ARRAY_SIZE(dlc_table) - 1)]; } /** * @brief Convert from number of bytes to Data Length Code (DLC) * * @param num_bytes Number of bytes. * * @retval Data Length Code (DLC). */ static inline uint8_t can_bytes_to_dlc(uint8_t num_bytes) { return num_bytes <= 8 ? num_bytes : num_bytes <= 12 ? 9 : num_bytes <= 16 ? 10 : num_bytes <= 20 ? 11 : num_bytes <= 24 ? 12 : num_bytes <= 32 ? 13 : num_bytes <= 48 ? 14 : 15; } /** * @brief Check if a CAN frame matches a CAN filter * * @param frame CAN frame. * @param filter CAN filter. * @return true if the CAN frame matches the CAN filter, false otherwise */ static inline bool can_frame_matches_filter(const struct can_frame *frame, const struct can_filter *filter) { if ((frame->flags & CAN_FRAME_IDE) != 0 && (filter->flags & CAN_FILTER_IDE) == 0) { /* Extended (29-bit) ID frame, standard (11-bit) filter */ return false; } if ((frame->flags & CAN_FRAME_IDE) == 0 && (filter->flags & CAN_FILTER_IDE) != 0) { /* Standard (11-bit) ID frame, extended (29-bit) filter */ return false; } if ((frame->id ^ filter->id) & filter->mask) { /* Masked ID mismatch */ return false; } return true; } /** @} */ /** * @} */ #ifdef __cplusplus } #endif #include #endif /* ZEPHYR_INCLUDE_DRIVERS_CAN_H_ */