/* * Copyright (c) 2013-2014 Wind River Systems, Inc. * Copyright (c) 2019 Nordic Semiconductor ASA. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief ARM AArch32 public interrupt handling * * ARM AArch32-specific kernel interrupt handling interface. Included by * arm/arch.h. */ #ifndef ZEPHYR_INCLUDE_ARCH_ARM_IRQ_H_ #define ZEPHYR_INCLUDE_ARCH_ARM_IRQ_H_ #include #include #ifdef __cplusplus extern "C" { #endif #ifdef _ASMLANGUAGE GTEXT(z_arm_int_exit); GTEXT(arch_irq_enable) GTEXT(arch_irq_disable) GTEXT(arch_irq_is_enabled) #if defined(CONFIG_ARM_CUSTOM_INTERRUPT_CONTROLLER) GTEXT(z_soc_irq_get_active) GTEXT(z_soc_irq_eoi) #endif /* CONFIG_ARM_CUSTOM_INTERRUPT_CONTROLLER */ #else #if !defined(CONFIG_ARM_CUSTOM_INTERRUPT_CONTROLLER) extern void arch_irq_enable(unsigned int irq); extern void arch_irq_disable(unsigned int irq); extern int arch_irq_is_enabled(unsigned int irq); /* internal routine documented in C file, needed by IRQ_CONNECT() macro */ extern void z_arm_irq_priority_set(unsigned int irq, unsigned int prio, uint32_t flags); #else /* * When a custom interrupt controller is specified, map the architecture * interrupt control functions to the SoC layer interrupt control functions. */ void z_soc_irq_init(void); void z_soc_irq_enable(unsigned int irq); void z_soc_irq_disable(unsigned int irq); int z_soc_irq_is_enabled(unsigned int irq); void z_soc_irq_priority_set( unsigned int irq, unsigned int prio, unsigned int flags); unsigned int z_soc_irq_get_active(void); void z_soc_irq_eoi(unsigned int irq); #define arch_irq_enable(irq) z_soc_irq_enable(irq) #define arch_irq_disable(irq) z_soc_irq_disable(irq) #define arch_irq_is_enabled(irq) z_soc_irq_is_enabled(irq) #define z_arm_irq_priority_set(irq, prio, flags) \ z_soc_irq_priority_set(irq, prio, flags) #endif /* !CONFIG_ARM_CUSTOM_INTERRUPT_CONTROLLER */ extern void z_arm_int_exit(void); extern void z_arm_interrupt_init(void); /* Flags for use with IRQ_CONNECT() */ /** * Set this interrupt up as a zero-latency IRQ. If CONFIG_ZERO_LATENCY_LEVELS * is 1 it has a fixed hardware priority level (discarding what was supplied * in the interrupt's priority argument). If CONFIG_ZERO_LATENCY_LEVELS is * greater 1 it has the priority level assigned by the argument. * The interrupt will run even if irq_lock() is active. Be careful! */ #define IRQ_ZERO_LATENCY BIT(0) #ifdef CONFIG_CPU_CORTEX_M #if defined(CONFIG_ZERO_LATENCY_LEVELS) #define ZERO_LATENCY_LEVELS CONFIG_ZERO_LATENCY_LEVELS #else #define ZERO_LATENCY_LEVELS 1 #endif #define _CHECK_PRIO(priority_p, flags_p) \ BUILD_ASSERT(((flags_p & IRQ_ZERO_LATENCY) && \ ((ZERO_LATENCY_LEVELS == 1) || \ (priority_p < ZERO_LATENCY_LEVELS))) || \ (priority_p <= IRQ_PRIO_LOWEST), \ "Invalid interrupt priority. Values must not exceed IRQ_PRIO_LOWEST"); #else #define _CHECK_PRIO(priority_p, flags_p) #endif /* All arguments must be computable by the compiler at build time. * * Z_ISR_DECLARE will populate the .intList section with the interrupt's * parameters, which will then be used by gen_irq_tables.py to create * the vector table and the software ISR table. This is all done at * build-time. * * We additionally set the priority in the interrupt controller at * runtime. */ #define ARCH_IRQ_CONNECT(irq_p, priority_p, isr_p, isr_param_p, flags_p) \ { \ BUILD_ASSERT(IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS) || !(flags_p & IRQ_ZERO_LATENCY), \ "ZLI interrupt registered but feature is disabled"); \ _CHECK_PRIO(priority_p, flags_p) \ Z_ISR_DECLARE(irq_p, 0, isr_p, isr_param_p); \ z_arm_irq_priority_set(irq_p, priority_p, flags_p); \ } #define ARCH_IRQ_DIRECT_CONNECT(irq_p, priority_p, isr_p, flags_p) \ { \ BUILD_ASSERT(IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS) || !(flags_p & IRQ_ZERO_LATENCY), \ "ZLI interrupt registered but feature is disabled"); \ _CHECK_PRIO(priority_p, flags_p) \ Z_ISR_DECLARE_DIRECT(irq_p, ISR_FLAG_DIRECT, isr_p); \ z_arm_irq_priority_set(irq_p, priority_p, flags_p); \ } #ifdef CONFIG_PM extern void _arch_isr_direct_pm(void); #define ARCH_ISR_DIRECT_PM() _arch_isr_direct_pm() #else #define ARCH_ISR_DIRECT_PM() do { } while (false) #endif #define ARCH_ISR_DIRECT_HEADER() arch_isr_direct_header() #define ARCH_ISR_DIRECT_FOOTER(swap) arch_isr_direct_footer(swap) /* arch/arm/core/exc_exit.S */ extern void z_arm_int_exit(void); #ifdef CONFIG_TRACING_ISR extern void sys_trace_isr_enter(void); extern void sys_trace_isr_exit(void); #endif static inline void arch_isr_direct_header(void) { #ifdef CONFIG_TRACING_ISR sys_trace_isr_enter(); #endif } static inline void arch_isr_direct_footer(int maybe_swap) { #ifdef CONFIG_TRACING_ISR sys_trace_isr_exit(); #endif if (maybe_swap != 0) { z_arm_int_exit(); } } #if defined(__clang__) #define ARCH_ISR_DIAG_OFF \ _Pragma("clang diagnostic push") \ _Pragma("clang diagnostic ignored \"-Wextra\"") #define ARCH_ISR_DIAG_ON _Pragma("clang diagnostic pop") #elif defined(__GNUC__) #define ARCH_ISR_DIAG_OFF \ _Pragma("GCC diagnostic push") \ _Pragma("GCC diagnostic ignored \"-Wattributes\"") #define ARCH_ISR_DIAG_ON _Pragma("GCC diagnostic pop") #else #define ARCH_ISR_DIAG_OFF #define ARCH_ISR_DIAG_ON #endif #define ARCH_ISR_DIRECT_DECLARE(name) \ static inline int name##_body(void); \ ARCH_ISR_DIAG_OFF \ __attribute__ ((interrupt ("IRQ"))) void name(void) \ { \ int check_reschedule; \ ISR_DIRECT_HEADER(); \ check_reschedule = name##_body(); \ ISR_DIRECT_FOOTER(check_reschedule); \ } \ ARCH_ISR_DIAG_ON \ static inline int name##_body(void) #if defined(CONFIG_DYNAMIC_DIRECT_INTERRUPTS) extern void z_arm_irq_direct_dynamic_dispatch_reschedule(void); extern void z_arm_irq_direct_dynamic_dispatch_no_reschedule(void); /** * @brief Macro to register an ISR Dispatcher (with or without re-scheduling * request) for dynamic direct interrupts. * * This macro registers the ISR dispatcher function for dynamic direct * interrupts for a particular IRQ line, allowing the use of dynamic * direct ISRs in the kernel for that interrupt source. * The dispatcher function is invoked when the hardware * interrupt occurs and then triggers the (software) Interrupt Service Routine * (ISR) that is registered dynamically (i.e. at run-time) into the software * ISR table stored in SRAM. The ISR must be connected with * irq_connect_dynamic() and enabled via irq_enable() before the dynamic direct * interrupt can be serviced. This ISR dispatcher must be configured by the * user to trigger thread re-secheduling upon return, using the @param resch * parameter. * * These ISRs are designed for performance-critical interrupt handling and do * not go through all of the common interrupt handling code. * * With respect to their declaration, dynamic 'direct' interrupts are regular * Zephyr interrupts; their signature must match void isr(void* parameter), as, * unlike regular direct interrupts, they are not placed directly into the * ROM hardware vector table but instead they are installed in the software * ISR table. * * The major differences with regular Zephyr interrupts are the following: * - Similar to direct interrupts, the call into the OS to exit power * management idle state is optional. Normal interrupts always do this * before the ISR is run, but with dynamic direct ones when and if it runs * is controlled by the placement of * a ISR_DIRECT_PM() macro, or omitted entirely. * - Similar to direct interrupts, scheduling decisions are optional. Unlike * direct interrupts, the decisions must be made at build time. * They are controlled by @param resch to this macro. * * @param irq_p IRQ line number. * @param priority_p Interrupt priority. * @param flags_p Architecture-specific IRQ configuration flags. * @param resch Set flag to 'reschedule' to request thread * re-scheduling upon ISR function. Set flag * 'no_reschedule' to skip thread re-scheduling * * Note: the function is an ARM Cortex-M only API. * * @return Interrupt vector assigned to this interrupt. */ #define ARM_IRQ_DIRECT_DYNAMIC_CONNECT(irq_p, priority_p, flags_p, resch) \ IRQ_DIRECT_CONNECT(irq_p, priority_p, \ _CONCAT(z_arm_irq_direct_dynamic_dispatch_, resch), flags_p) #endif /* CONFIG_DYNAMIC_DIRECT_INTERRUPTS */ #if defined(CONFIG_ARM_SECURE_FIRMWARE) /* Architecture-specific definition for the target security * state of an NVIC IRQ line. */ typedef enum { IRQ_TARGET_STATE_SECURE = 0, IRQ_TARGET_STATE_NON_SECURE } irq_target_state_t; #endif /* CONFIG_ARM_SECURE_FIRMWARE */ #endif /* _ASMLANGUAGE */ #ifdef __cplusplus } #endif #endif /* ZEPHYR_INCLUDE_ARCH_ARM_IRQ_H_ */