/* * Copyright (c) 2024 Microchip Technology Incorporated * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT microchip_mec5_ktimer #include #include #include #include #include #include #include #include #include #include #include BUILD_ASSERT(!IS_ENABLED(CONFIG_SMP), "MCHP MEC5 ktimer doesn't support SMP"); BUILD_ASSERT(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 32768, "MCHP MEC5 ktimer HW frequency is fixed at 32768"); #ifndef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT BUILD_ASSERT(0, "MCHP MEC5 ktimer requires ARCH_HAS_CUSTOM_BUSY_WAIT"); #endif #ifdef CONFIG_SOC_MEC_DEBUG_AND_TRACING #define RTIMER_START_VAL MEC_RTIMER_START_EXT_HALT #else #define RTIMER_START_VAL MEC_RTIMER_START #endif /* * Overview: * * This driver enables the Microchip XEC 32KHz based RTOS timer as the Zephyr * system timer. It supports both legacy ("tickful") mode as well as * TICKLESS_KERNEL. The XEC RTOS timer is a down counter with a fixed * frequency of 32768 Hz. The driver is based upon the Intel local APIC * timer driver. * Configuration: * * CONFIG_MCHP_XEC_RTOS_TIMER=y * * CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC= must be set to 32768. * * To reduce truncation errors from accumulating due to conversion * to/from time, ticks, and HW cycles set ticks per second equal to * the frequency. With tickless kernel mode enabled the kernel will not * program a periodic timer at this fast rate. * CONFIG_SYS_CLOCK_TICKS_PER_SEC=32768 */ #define CYCLES_PER_TICK (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC) /* Mask off bits[31:28] of 32-bit count */ #define RTIMER_MAX 0x0fffffffu #define RTIMER_COUNT_MASK 0x0fffffffu #define RTIMER_STOPPED 0xf0000000u /* Adjust cycle count programmed into timer for HW restart latency */ #define RTIMER_ADJUST_LIMIT 2 #define RTIMER_ADJUST_CYCLES 1 /* max number of ticks we can load into the timer in one shot */ #define MAX_TICKS (RTIMER_MAX / CYCLES_PER_TICK) #define RTIMER_NODE_ID DT_INST(0, DT_DRV_COMPAT) #define RTIMER_NVIC_NO DT_INST_IRQN(0) #define RTIMER_NVIC_PRIO DT_INST_IRQ(0, priority) static struct mec_rtmr_regs *const rtimer = (struct mec_rtmr_regs *)DT_INST_REG_ADDR(0); #ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT #define BTIMER_NODE_ID DT_CHOSEN(rtimer_busy_wait_timer) #define MEC5_BTIMER_FDIV (MEC5_BTIMER_MAX_FREQ_HZ / 1000000u) static struct mec_btmr_regs *const btimer = (struct mec_btmr_regs *)DT_REG_ADDR(BTIMER_NODE_ID); #endif /* * The spinlock protects all access to the RTIMER registers, as well as * 'total_cycles', 'last_announcement', and 'cached_icr'. * * One important invariant that must be observed: `total_cycles` + `cached_icr` * is always an integral multiple of CYCLE_PER_TICK; this is, timer interrupts * are only ever scheduled to occur at tick boundaries. */ static struct k_spinlock lock; static uint32_t total_cycles; static uint32_t cached_icr = CYCLES_PER_TICK; /* * Read the RTOS timer counter handling the case where the timer * has been reloaded within 1 32KHz clock of reading its count register. * The RTOS timer hardware must synchronize the write to its control register * on the AHB clock domain with the 32KHz clock domain of its internal logic. * This synchronization can take from nearly 0 time up to 1 32KHz clock as it * depends upon which 48MHz AHB clock with a 32KHz period the register write * was on. We detect the timer is in the load state by checking the read-only * count register and the START bit in the control register. If count register * is 0 and the START bit is set then the timer has been started and is in the * process of moving the preload register value into the count register. */ static inline uint32_t rtimer_count(void) { uint32_t ccr = mec_hal_rtimer_count(rtimer); if ((ccr == 0) && mec_hal_rtimer_is_started(rtimer)) { ccr = cached_icr; } return ccr; } #ifdef CONFIG_TICKLESS_KERNEL static uint32_t last_announcement; /* last time we called sys_clock_announce() */ /* * Request a timeout n Zephyr ticks in the future from now. * Requested number of ticks in the future of n <= 1 means the kernel wants * the tick announced as soon as possible, ideally no more than one tick * in the future. * * Per comment below we don't clear RTMR pending interrupt. * RTMR counter register is read-only and is loaded from the preload * register by a 0->1 transition of the control register start bit. * Writing a new value to preload only takes effect once the count * register reaches 0. */ void sys_clock_set_timeout(int32_t n, bool idle) { ARG_UNUSED(idle); uint32_t ccr, temp; int full_ticks; /* number of complete ticks we'll wait */ uint32_t full_cycles; /* full_ticks represented as cycles */ uint32_t partial_cycles; /* number of cycles to first tick boundary */ if (idle && (n == K_TICKS_FOREVER)) { /* * We are not in a locked section. Are writes to two * global objects safe from pre-emption? */ mec_hal_rtimer_stop(rtimer); cached_icr = RTIMER_STOPPED; return; } if (n < 1) { full_ticks = 0; } else if ((n == K_TICKS_FOREVER) || (n > MAX_TICKS)) { full_ticks = MAX_TICKS - 1; } else { full_ticks = n - 1; } full_cycles = full_ticks * CYCLES_PER_TICK; k_spinlock_key_t key = k_spin_lock(&lock); ccr = rtimer_count(); /* turn off to clear any pending interrupt status */ mec_hal_rtimer_stop(rtimer); mec_hal_rtimer_status_clear_all(rtimer); NVIC_ClearPendingIRQ(RTIMER_NVIC_NO); temp = total_cycles; temp += (cached_icr - ccr); temp &= RTIMER_COUNT_MASK; total_cycles = temp; partial_cycles = CYCLES_PER_TICK - (total_cycles % CYCLES_PER_TICK); cached_icr = full_cycles + partial_cycles; /* adjust for up to one 32KHz cycle startup time */ temp = cached_icr; if (temp > RTIMER_ADJUST_LIMIT) { temp -= RTIMER_ADJUST_CYCLES; } mec_hal_rtimer_stop_and_load(rtimer, temp, RTIMER_START_VAL); k_spin_unlock(&lock, key); } /* * Return the number of Zephyr ticks elapsed from last call to * sys_clock_announce in the ISR. The caller casts uint32_t to int32_t. * We must make sure bit[31] is 0 in the return value. */ uint32_t sys_clock_elapsed(void) { uint32_t ccr; uint32_t ticks; int32_t elapsed; k_spinlock_key_t key = k_spin_lock(&lock); ccr = rtimer_count(); /* It may not look efficient but the compiler does a good job */ elapsed = (int32_t)total_cycles - (int32_t)last_announcement; if (elapsed < 0) { elapsed = -1 * elapsed; } ticks = (uint32_t)elapsed; ticks += cached_icr - ccr; ticks /= CYCLES_PER_TICK; ticks &= RTIMER_COUNT_MASK; k_spin_unlock(&lock, key); return ticks; } static void mec5_ktimer_isr(const void *arg) { ARG_UNUSED(arg); uint32_t cycles; int32_t ticks; k_spinlock_key_t key = k_spin_lock(&lock); mec_hal_rtimer_status_clear_all(rtimer); /* Restart the timer as early as possible to minimize drift... */ mec_hal_rtimer_stop_and_load(rtimer, MAX_TICKS * CYCLES_PER_TICK, RTIMER_START_VAL); cycles = cached_icr; cached_icr = MAX_TICKS * CYCLES_PER_TICK; total_cycles += cycles; total_cycles &= RTIMER_COUNT_MASK; /* handle wrap by using (power of 2) - 1 mask */ ticks = total_cycles - last_announcement; ticks &= RTIMER_COUNT_MASK; ticks /= CYCLES_PER_TICK; last_announcement = total_cycles; k_spin_unlock(&lock, key); sys_clock_announce(ticks); } #else /* Non-tickless kernel build. */ static void mec5_ktimer_isr(const void *arg) { ARG_UNUSED(arg); k_spinlock_key_t key = k_spin_lock(&lock); mec_hal_rtimer_status_clear_all(rtimer); /* Restart the timer as early as possible to minimize drift... */ mec_hal_rtimer_stop_and_load(rtimer, cached_icr, RTIMER_START_VAL); uint32_t temp = total_cycles + CYCLES_PER_TICK; total_cycles = temp & RTIMER_COUNT_MASK; k_spin_unlock(&lock, key); sys_clock_announce(1); } uint32_t sys_clock_elapsed(void) { return 0U; } #endif /* CONFIG_TICKLESS_KERNEL */ /* * Warning RTOS timer resolution is 30.5 us. * This is called by two code paths: * 1. Kernel call to k_cycle_get_32() -> arch_k_cycle_get_32() -> here. * The kernel is casting return to (int) and using it uncasted in math * expressions with int types. Expression result is stored in an int. * 2. If CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT is not defined then * z_impl_k_busy_wait calls here. This code path uses the value as uint32_t. * */ uint32_t sys_clock_cycle_get_32(void) { uint32_t ret; uint32_t ccr; k_spinlock_key_t key = k_spin_lock(&lock); ccr = rtimer_count(); ret = (total_cycles + (cached_icr - ccr)) & RTIMER_COUNT_MASK; k_spin_unlock(&lock, key); return ret; } void sys_clock_idle_exit(void) { if (cached_icr == RTIMER_STOPPED) { cached_icr = CYCLES_PER_TICK; mec_hal_rtimer_stop_and_load(rtimer, cached_icr, RTIMER_START_VAL); } } void sys_clock_disable(void) { mec_hal_rtimer_stop(rtimer); } #ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT /* Custom kernel busy wait API implementation using a 48MHz based * 32-bit basic timer divided down to 1 MHz. Basic timer configured * for count up, auto-reload, and no interrupt mode. */ void arch_busy_wait(uint32_t usec_to_wait) { if (usec_to_wait == 0) { return; } uint32_t start = mec_hal_btimer_count(btimer); for (;;) { uint32_t curr = mec_hal_btimer_count(btimer); if ((curr - start) >= usec_to_wait) { break; } } } /* k_busy_wait parameter is the number of microseconds to wait. * Configure basic timer for 1 MHz (1 us tick) operation. */ static int config_custom_busy_wait(void) { uint32_t bflags = (BIT(MEC5_BTIMER_CFG_FLAG_START_POS) | BIT(MEC5_BTIMER_CFG_FLAG_AUTO_RELOAD_POS) | BIT(MEC5_BTIMER_CFG_FLAG_COUNT_UP_POS)); uint32_t count = 0; mec_hal_btimer_init(btimer, MEC5_BTIMER_FDIV, count, bflags); return 0; } void soc_ktimer_pm_entry(bool is_deep_sleep) { if (is_deep_sleep) { mec_hal_btimer_disable(btimer); } } void soc_ktimer_pm_exit(bool is_deep_sleep) { if (is_deep_sleep) { mec_hal_btimer_enable(btimer); } } #else void soc_ktimer_pm_entry(void) { } void soc_ktimer_pm_exit(void) { } #endif /* CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT */ static int sys_clock_driver_init(void) { uint32_t rtmr_cfg = BIT(MEC_RTMR_CFG_EN_POS) | BIT(MEC_RTMR_CFG_IEN_POS); if (IS_ENABLED(CONFIG_SOC_MEC_DEBUG_AND_TRACING)) { rtmr_cfg |= BIT(MEC_RTMR_CFG_DBG_HALT_POS); } #ifdef CONFIG_TICKLESS_KERNEL cached_icr = MAX_TICKS; #endif mec_hal_rtimer_init(rtimer, rtmr_cfg, cached_icr); IRQ_CONNECT(RTIMER_NVIC_NO, RTIMER_NVIC_PRIO, mec5_ktimer_isr, 0, 0); irq_enable(RTIMER_NVIC_NO); #ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT config_custom_busy_wait(); #endif mec_hal_rtimer_start(rtimer); while (!mec_hal_rtimer_is_counting(rtimer)) { ; } return 0; } SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);