/* * Copyright (c) 2019 Carlo Caione * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME /* precompute CYC_PER_TICK at driver init to avoid runtime double divisions */ static uint32_t cyc_per_tick; #define CYC_PER_TICK cyc_per_tick #else #define CYC_PER_TICK (uint32_t)(sys_clock_hw_cycles_per_sec() \ / CONFIG_SYS_CLOCK_TICKS_PER_SEC) #endif #if defined(CONFIG_GDBSTUB) /* When interactively debugging, the cycle diff can overflow 32-bit variable */ #define cycle_diff_t uint64_t #else /* the unsigned long cast limits divisors to native CPU register width */ #define cycle_diff_t unsigned long #endif #define CYCLE_DIFF_MAX (~(cycle_diff_t)0) /* * We have two constraints on the maximum number of cycles we can wait for. * * 1) sys_clock_announce() accepts at most INT32_MAX ticks. * * 2) The number of cycles between two reports must fit in a cycle_diff_t * variable before converting it to ticks. * * Then: * * 3) Pick the smallest between (1) and (2). * * 4) Take into account some room for the unavoidable IRQ servicing latency. * Let's use 3/4 of the max range. * * Finally let's add the LSB value to the result so to clear out a bunch of * consecutive set bits coming from the original max values to produce a * nicer literal for assembly generation. */ #define CYCLES_MAX_1 ((uint64_t)INT32_MAX * (uint64_t)CYC_PER_TICK) #define CYCLES_MAX_2 ((uint64_t)CYCLE_DIFF_MAX) #define CYCLES_MAX_3 MIN(CYCLES_MAX_1, CYCLES_MAX_2) #define CYCLES_MAX_4 (CYCLES_MAX_3 / 2 + CYCLES_MAX_3 / 4) #define CYCLES_MAX_5 (CYCLES_MAX_4 + LSB_GET(CYCLES_MAX_4)) #ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME /* precompute CYCLES_MAX at driver init to avoid runtime double divisions */ static uint64_t cycles_max; #define CYCLES_MAX cycles_max #else #define CYCLES_MAX CYCLES_MAX_5 #endif static struct k_spinlock lock; static uint64_t last_cycle; static uint64_t last_tick; static uint32_t last_elapsed; #if defined(CONFIG_TEST) const int32_t z_sys_timer_irq_for_test = ARM_ARCH_TIMER_IRQ; #endif static void arm_arch_timer_compare_isr(const void *arg) { ARG_UNUSED(arg); k_spinlock_key_t key = k_spin_lock(&lock); #ifdef CONFIG_ARM_ARCH_TIMER_ERRATUM_740657 /* * Workaround required for Cortex-A9 MPCore erratum 740657 * comp. ARM Cortex-A9 processors Software Developers Errata Notice, * ARM document ID032315. */ if (!arm_arch_timer_get_int_status()) { /* * If the event flag is not set, this is a spurious interrupt. * DO NOT modify the compare register's value, DO NOT announce * elapsed ticks! */ k_spin_unlock(&lock, key); return; } #endif /* CONFIG_ARM_ARCH_TIMER_ERRATUM_740657 */ uint64_t curr_cycle = arm_arch_timer_count(); uint64_t delta_cycles = curr_cycle - last_cycle; uint32_t delta_ticks = (cycle_diff_t)delta_cycles / CYC_PER_TICK; last_cycle += (cycle_diff_t)delta_ticks * CYC_PER_TICK; last_tick += delta_ticks; last_elapsed = 0; if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { uint64_t next_cycle = last_cycle + CYC_PER_TICK; arm_arch_timer_set_compare(next_cycle); arm_arch_timer_set_irq_mask(false); } else { arm_arch_timer_set_irq_mask(true); #ifdef CONFIG_ARM_ARCH_TIMER_ERRATUM_740657 /* * In tickless mode, the compare register is normally not * updated from within the ISR. Yet, to work around the timer's * erratum, a new value *must* be written while the interrupt * is being processed before the interrupt is acknowledged * by the handling interrupt controller. */ arm_arch_timer_set_compare(~0ULL); } /* * Clear the event flag so that in case the erratum strikes (the timer's * vector will still be indicated as pending by the GIC's pending register * after this ISR has been executed) the error will be detected by the * check performed upon entry of the ISR -> the event flag is not set, * therefore, no actual hardware interrupt has occurred. */ arm_arch_timer_clear_int_status(); #else } #endif /* CONFIG_ARM_ARCH_TIMER_ERRATUM_740657 */ k_spin_unlock(&lock, key); sys_clock_announce(delta_ticks); } void sys_clock_set_timeout(int32_t ticks, bool idle) { if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { return; } if (idle && ticks == K_TICKS_FOREVER) { return; } k_spinlock_key_t key = k_spin_lock(&lock); uint64_t next_cycle; if (ticks == K_TICKS_FOREVER) { next_cycle = last_cycle + CYCLES_MAX; } else { next_cycle = (last_tick + last_elapsed + ticks) * CYC_PER_TICK; if ((next_cycle - last_cycle) > CYCLES_MAX) { next_cycle = last_cycle + CYCLES_MAX; } } arm_arch_timer_set_compare(next_cycle); arm_arch_timer_set_irq_mask(false); k_spin_unlock(&lock, key); } uint32_t sys_clock_elapsed(void) { if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { return 0; } k_spinlock_key_t key = k_spin_lock(&lock); uint64_t curr_cycle = arm_arch_timer_count(); uint64_t delta_cycles = curr_cycle - last_cycle; uint32_t delta_ticks = (cycle_diff_t)delta_cycles / CYC_PER_TICK; last_elapsed = delta_ticks; k_spin_unlock(&lock, key); return delta_ticks; } uint32_t sys_clock_cycle_get_32(void) { return (uint32_t)arm_arch_timer_count(); } uint64_t sys_clock_cycle_get_64(void) { return arm_arch_timer_count(); } #ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT void arch_busy_wait(uint32_t usec_to_wait) { if (usec_to_wait == 0) { return; } uint64_t start_cycles = arm_arch_timer_count(); uint64_t cycles_to_wait = sys_clock_hw_cycles_per_sec() / USEC_PER_SEC * usec_to_wait; for (;;) { uint64_t current_cycles = arm_arch_timer_count(); /* this handles the rollover on an unsigned 32-bit value */ if ((current_cycles - start_cycles) >= cycles_to_wait) { break; } } } #endif #ifdef CONFIG_SMP void smp_timer_init(void) { /* * set the initial status of timer0 of each secondary core */ arm_arch_timer_set_compare(last_cycle + CYC_PER_TICK); arm_arch_timer_enable(true); irq_enable(ARM_ARCH_TIMER_IRQ); arm_arch_timer_set_irq_mask(false); } #endif static int sys_clock_driver_init(void) { IRQ_CONNECT(ARM_ARCH_TIMER_IRQ, ARM_ARCH_TIMER_PRIO, arm_arch_timer_compare_isr, NULL, ARM_ARCH_TIMER_FLAGS); arm_arch_timer_init(); #ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME cyc_per_tick = sys_clock_hw_cycles_per_sec() / CONFIG_SYS_CLOCK_TICKS_PER_SEC; cycles_max = CYCLES_MAX_5; #endif arm_arch_timer_enable(true); last_tick = arm_arch_timer_count() / CYC_PER_TICK; last_cycle = last_tick * CYC_PER_TICK; arm_arch_timer_set_compare(last_cycle + CYC_PER_TICK); irq_enable(ARM_ARCH_TIMER_IRQ); arm_arch_timer_set_irq_mask(false); return 0; } SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);