/* * Copyright 2023 EPAM Systems * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include "optee_msg.h" #include "optee_rpc_cmd.h" #include "optee_smc.h" LOG_MODULE_REGISTER(optee); #define DT_DRV_COMPAT linaro_optee_tz /* amount of physical addresses that can be stored in one page */ #define OPTEE_NUMBER_OF_ADDR_PER_PAGE (OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(uint64_t)) /* * TEE Implementation ID */ #define TEE_IMPL_ID_OPTEE 1 /* * OP-TEE specific capabilities */ #define TEE_OPTEE_CAP_TZ BIT(0) struct optee_rpc_param { uint32_t a0; uint32_t a1; uint32_t a2; uint32_t a3; uint32_t a4; uint32_t a5; uint32_t a6; uint32_t a7; }; typedef void (*smc_call_t)(unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3, unsigned long a4, unsigned long a5, unsigned long a6, unsigned long a7, struct arm_smccc_res *res); struct optee_driver_config { const char *method; }; struct optee_notify { sys_dnode_t node; uint32_t key; struct k_sem wait; }; struct optee_supp_req { sys_dnode_t link; bool in_queue; uint32_t func; uint32_t ret; size_t num_params; struct tee_param *param; struct k_sem complete; }; struct optee_supp { /* Serializes access to this struct */ struct k_mutex mutex; int req_id; sys_dlist_t reqs; struct optee_supp_req *current; struct k_sem reqs_c; }; struct optee_driver_data { smc_call_t smc_call; sys_bitarray_t *notif_bitmap; sys_dlist_t notif; struct k_spinlock notif_lock; struct optee_supp supp; unsigned long sec_caps; struct k_sem call_sem; }; /* Wrapping functions so function pointer can be used */ static void optee_smccc_smc(unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3, unsigned long a4, unsigned long a5, unsigned long a6, unsigned long a7, struct arm_smccc_res *res) { arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res); } static void optee_smccc_hvc(unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3, unsigned long a4, unsigned long a5, unsigned long a6, unsigned long a7, struct arm_smccc_res *res) { arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res); } static int param_to_msg_param(const struct tee_param *param, unsigned int num_param, struct optee_msg_param *msg_param) { int i; const struct tee_param *tp = param; struct optee_msg_param *mtp = msg_param; if (!param || !msg_param) { return -EINVAL; } for (i = 0; i < num_param; i++, tp++, mtp++) { if (!tp || !mtp) { LOG_ERR("Wrong param on %d iteration", i); return -EINVAL; } switch (tp->attr) { case TEE_PARAM_ATTR_TYPE_NONE: mtp->attr = OPTEE_MSG_ATTR_TYPE_NONE; memset(&mtp->u, 0, sizeof(mtp->u)); break; case TEE_PARAM_ATTR_TYPE_VALUE_INPUT: case TEE_PARAM_ATTR_TYPE_VALUE_OUTPUT: case TEE_PARAM_ATTR_TYPE_VALUE_INOUT: mtp->attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT + tp->attr - TEE_PARAM_ATTR_TYPE_VALUE_INPUT; mtp->u.value.a = tp->a; mtp->u.value.b = tp->b; mtp->u.value.c = tp->c; break; case TEE_PARAM_ATTR_TYPE_MEMREF_INPUT: case TEE_PARAM_ATTR_TYPE_MEMREF_OUTPUT: case TEE_PARAM_ATTR_TYPE_MEMREF_INOUT: mtp->attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT + tp->attr - TEE_PARAM_ATTR_TYPE_MEMREF_INPUT; mtp->u.rmem.shm_ref = tp->c; mtp->u.rmem.size = tp->b; mtp->u.rmem.offs = tp->a; break; default: return -EINVAL; } } return 0; } static void msg_param_to_tmp_mem(struct tee_param *p, uint32_t attr, const struct optee_msg_param *mp) { struct tee_shm *shm = (struct tee_shm *)mp->u.tmem.shm_ref; p->attr = TEE_PARAM_ATTR_TYPE_MEMREF_INPUT + attr - OPTEE_MSG_ATTR_TYPE_TMEM_INPUT; p->b = mp->u.tmem.size; if (!shm) { p->a = 0; p->c = 0; return; } p->a = mp->u.tmem.buf_ptr - k_mem_phys_addr(shm->addr); p->c = mp->u.tmem.shm_ref; } static int msg_param_to_param(struct tee_param *param, unsigned int num_param, const struct optee_msg_param *msg_param) { int i; struct tee_param *tp = param; const struct optee_msg_param *mtp = msg_param; if (!param || !msg_param) { return -EINVAL; } for (i = 0; i < num_param; i++, tp++, mtp++) { uint32_t attr = mtp->attr & OPTEE_MSG_ATTR_TYPE_MASK; if (!tp || !mtp) { LOG_ERR("Wrong param on %d iteration", i); return -EINVAL; } switch (attr) { case OPTEE_MSG_ATTR_TYPE_NONE: memset(tp, 0, sizeof(*tp)); tp->attr = TEE_PARAM_ATTR_TYPE_NONE; break; case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT: case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: tp->attr = TEE_PARAM_ATTR_TYPE_VALUE_INPUT + attr - OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; tp->a = mtp->u.value.a; tp->b = mtp->u.value.b; tp->c = mtp->u.value.c; break; case OPTEE_MSG_ATTR_TYPE_RMEM_INPUT: case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT: case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT: tp->attr = TEE_PARAM_ATTR_TYPE_MEMREF_INPUT + attr - OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; tp->b = mtp->u.rmem.size; if (!mtp->u.rmem.shm_ref) { tp->a = 0; tp->c = 0; } else { tp->a = mtp->u.rmem.offs; tp->c = mtp->u.rmem.shm_ref; } break; case OPTEE_MSG_ATTR_TYPE_TMEM_INPUT: case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT: case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT: msg_param_to_tmp_mem(tp, attr, mtp); break; default: return -EINVAL; } } return 0; } static uint64_t regs_to_u64(uint32_t reg0, uint32_t reg1) { return (uint64_t)(((uint64_t)reg0 << 32) | reg1); } static void u64_to_regs(uint64_t val, uint32_t *reg0, uint32_t *reg1) { *reg0 = val >> 32; *reg1 = val; } static inline bool check_param_input(struct optee_msg_arg *arg) { return arg->num_params == 1 && arg->params[0].attr == OPTEE_MSG_ATTR_TYPE_VALUE_INPUT; } static void *optee_construct_page_list(void *buf, uint32_t len, uint64_t *phys_buf); static uint32_t optee_call_supp(const struct device *dev, uint32_t func, size_t num_params, struct tee_param *param) { struct optee_driver_data *data = (struct optee_driver_data *)dev->data; struct optee_supp *supp = &data->supp; struct optee_supp_req *req; uint32_t ret; req = k_malloc(sizeof(*req)); if (!req) { return TEEC_ERROR_OUT_OF_MEMORY; } k_sem_init(&req->complete, 0, 1); req->func = func; req->num_params = num_params; req->param = param; /* Insert the request in the request list */ k_mutex_lock(&supp->mutex, K_FOREVER); sys_dlist_append(&supp->reqs, &req->link); k_mutex_unlock(&supp->mutex); /* Tell an event listener there's a new request */ k_sem_give(&supp->reqs_c); /* * Wait for supplicant to process and return result, once we've * returned from k_sem_take(&req->c) successfully we have * exclusive access again. */ k_sem_take(&req->complete, K_FOREVER); ret = req->ret; k_free(req); return ret; } static int cmd_alloc_suppl(const struct device *dev, size_t sz, struct tee_shm **shm) { uint32_t ret; struct tee_param param; param.attr = TEE_PARAM_ATTR_TYPE_VALUE_INOUT; param.a = OPTEE_RPC_SHM_TYPE_APPL; param.b = sz; param.c = 0; ret = optee_call_supp(dev, OPTEE_RPC_CMD_SHM_ALLOC, 1, ¶m); if (ret) { return ret; } ret = tee_add_shm(dev, (void *)param.c, 0, param.b, 0, shm); return ret; } static void cmd_free_suppl(const struct device *dev, struct tee_shm *shm) { struct tee_param param; param.attr = TEE_PARAM_ATTR_TYPE_VALUE_INOUT; param.a = OPTEE_RPC_SHM_TYPE_APPL; param.b = (uint64_t)shm; param.c = 0; optee_call_supp(dev, OPTEE_RPC_CMD_SHM_FREE, 1, ¶m); tee_rm_shm(dev, shm); } static void handle_cmd_alloc(const struct device *dev, struct optee_msg_arg *arg, void **pages) { int rc; struct tee_shm *shm = NULL; void *pl; uint64_t pl_phys_and_offset; arg->ret_origin = TEEC_ORIGIN_COMMS; if (!check_param_input(arg)) { arg->ret = TEEC_ERROR_BAD_PARAMETERS; return; } switch (arg->params[0].u.value.a) { case OPTEE_RPC_SHM_TYPE_KERNEL: /* TODO handle situation when shm was allocated statically so buffer can be reused*/ rc = tee_add_shm(dev, NULL, 0, arg->params[0].u.value.b, TEE_SHM_ALLOC, &shm); break; case OPTEE_RPC_SHM_TYPE_APPL: rc = cmd_alloc_suppl(dev, arg->params[0].u.value.b, &shm); break; default: arg->ret = TEEC_ERROR_BAD_PARAMETERS; return; } if (rc) { if (rc == -ENOMEM) { arg->ret = TEEC_ERROR_OUT_OF_MEMORY; } else { arg->ret = TEEC_ERROR_GENERIC; } return; } pl = optee_construct_page_list(shm->addr, shm->size, &pl_phys_and_offset); if (!pl) { arg->ret = TEEC_ERROR_OUT_OF_MEMORY; goto out; } *pages = pl; arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | OPTEE_MSG_ATTR_NONCONTIG; arg->params[0].u.tmem.buf_ptr = pl_phys_and_offset; arg->params[0].u.tmem.size = shm->size; arg->params[0].u.tmem.shm_ref = (uint64_t)shm; arg->ret = TEEC_SUCCESS; return; out: tee_shm_free(dev, shm); } static void handle_cmd_free(const struct device *dev, struct optee_msg_arg *arg) { int rc = 0; if (!check_param_input(arg)) { arg->ret = TEEC_ERROR_BAD_PARAMETERS; return; } switch (arg->params[0].u.value.a) { case OPTEE_RPC_SHM_TYPE_KERNEL: rc = tee_rm_shm(dev, (struct tee_shm *)arg->params[0].u.value.b); break; case OPTEE_RPC_SHM_TYPE_APPL: cmd_free_suppl(dev, (struct tee_shm *)arg->params[0].u.value.b); break; default: arg->ret = TEEC_ERROR_BAD_PARAMETERS; return; } if (rc) { arg->ret = TEEC_ERROR_OUT_OF_MEMORY; return; } arg->ret = TEEC_SUCCESS; } static void handle_cmd_get_time(const struct device *dev, struct optee_msg_arg *arg) { int64_t ticks; int64_t up_secs; int64_t up_nsecs; if (arg->num_params != 1 || (arg->params[0].attr & OPTEE_MSG_ATTR_TYPE_MASK) != OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT) { arg->ret = TEEC_ERROR_BAD_PARAMETERS; return; } ticks = k_uptime_ticks(); up_secs = ticks / CONFIG_SYS_CLOCK_TICKS_PER_SEC; up_nsecs = k_ticks_to_ns_floor64(ticks - up_secs * CONFIG_SYS_CLOCK_TICKS_PER_SEC); arg->params[0].u.value.a = up_secs; arg->params[0].u.value.b = up_nsecs; arg->ret = TEEC_SUCCESS; } /* This should be called under notif_lock */ static inline bool key_is_pending(struct optee_driver_data *data, uint32_t key) { struct optee_notify *iter; SYS_DLIST_FOR_EACH_CONTAINER(&data->notif, iter, node) { if (iter->key == key) { k_sem_give(&iter->wait); return true; } } return false; } static int optee_notif_send(const struct device *dev, uint32_t key) { struct optee_driver_data *data = dev->data; k_spinlock_key_t sp_key; if (key > CONFIG_OPTEE_MAX_NOTIF) { return -EINVAL; } sp_key = k_spin_lock(&data->notif_lock); if (!key_is_pending(data, key)) { /* If nobody is waiting for key - set bit in the bitmap */ sys_bitarray_set_bit(data->notif_bitmap, key); } k_spin_unlock(&data->notif_lock, sp_key); return 0; } static int optee_notif_wait(const struct device *dev, uint32_t key) { int rc = 0; struct optee_driver_data *data = dev->data; struct optee_notify *entry; k_spinlock_key_t sp_key; int prev_val; if (key > CONFIG_OPTEE_MAX_NOTIF) { return -EINVAL; } entry = k_malloc(sizeof(*entry)); if (!entry) { return -ENOMEM; } k_sem_init(&entry->wait, 0, 1); entry->key = key; sp_key = k_spin_lock(&data->notif_lock); /* * If notif bit was set then SEND command was already received. * Skipping wait. */ rc = sys_bitarray_test_and_clear_bit(data->notif_bitmap, key, &prev_val); if (rc || prev_val) { goto out; } /* * If key is already registred, then skip. */ if (key_is_pending(data, key)) { rc = -EBUSY; goto out; } sys_dlist_append(&data->notif, &entry->node); k_spin_unlock(&data->notif_lock, sp_key); k_sem_take(&entry->wait, K_FOREVER); sp_key = k_spin_lock(&data->notif_lock); sys_dlist_remove(&entry->node); out: k_spin_unlock(&data->notif_lock, sp_key); k_free(entry); return rc; } static void handle_cmd_notify(const struct device *dev, struct optee_msg_arg *arg) { if (!check_param_input(arg)) { arg->ret = TEEC_ERROR_BAD_PARAMETERS; return; } switch (arg->params[0].u.value.a) { case OPTEE_RPC_NOTIFICATION_SEND: if (optee_notif_send(dev, arg->params[0].u.value.b)) { goto err; } break; case OPTEE_RPC_NOTIFICATION_WAIT: if (optee_notif_wait(dev, arg->params[0].u.value.b)) { goto err; } break; default: goto err; } arg->ret = TEEC_SUCCESS; return; err: arg->ret = TEEC_ERROR_BAD_PARAMETERS; } static void handle_cmd_wait(const struct device *dev, struct optee_msg_arg *arg) { if (!check_param_input(arg)) { arg->ret = TEEC_ERROR_BAD_PARAMETERS; return; } k_sleep(K_MSEC(arg->params[0].u.value.a)); arg->ret = TEEC_SUCCESS; } static void free_shm_pages(void **pages) { /* * Clean allocated pages if needed. Some function calls requires pages * allocation which should be freed after processing new request. * It is safe to free this list when another SHM op (e,g. another alloc * or free) was received. */ if (*pages) { k_free(*pages); *pages = NULL; } } static void handle_rpc_supp_cmd(const struct device *dev, struct optee_msg_arg *arg) { struct tee_param *params; int ret; arg->ret_origin = TEEC_ORIGIN_COMMS; params = k_malloc(sizeof(*params) * arg->num_params); if (!params) { arg->ret = TEEC_ERROR_OUT_OF_MEMORY; return; } ret = msg_param_to_param(params, arg->num_params, arg->params); if (ret) { arg->ret = TEEC_ERROR_BAD_PARAMETERS; arg->ret_origin = TEEC_ORIGIN_COMMS; goto out; } arg->ret = optee_call_supp(dev, arg->cmd, arg->num_params, params); ret = param_to_msg_param(params, arg->num_params, arg->params); if (ret) { arg->ret = TEEC_ERROR_GENERIC; arg->ret_origin = TEEC_ORIGIN_COMMS; } out: k_free(params); } static uint32_t handle_func_rpc_call(const struct device *dev, struct tee_shm *shm, void **pages) { struct optee_msg_arg *arg = shm->addr; switch (arg->cmd) { case OPTEE_RPC_CMD_SHM_ALLOC: free_shm_pages(pages); handle_cmd_alloc(dev, arg, pages); break; case OPTEE_RPC_CMD_SHM_FREE: handle_cmd_free(dev, arg); break; case OPTEE_RPC_CMD_GET_TIME: handle_cmd_get_time(dev, arg); break; case OPTEE_RPC_CMD_NOTIFICATION: handle_cmd_notify(dev, arg); break; case OPTEE_RPC_CMD_SUSPEND: handle_cmd_wait(dev, arg); break; case OPTEE_RPC_CMD_I2C_TRANSFER: /* TODO: i2c transfer case is not implemented right now */ return TEEC_ERROR_NOT_IMPLEMENTED; default: handle_rpc_supp_cmd(dev, arg); break; } return OPTEE_SMC_CALL_RETURN_FROM_RPC; } static void handle_rpc_call(const struct device *dev, struct optee_rpc_param *param, void **pages) { struct tee_shm *shm = NULL; uint32_t res = OPTEE_SMC_CALL_RETURN_FROM_RPC; switch (OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)) { case OPTEE_SMC_RPC_FUNC_ALLOC: if (!tee_add_shm(dev, NULL, OPTEE_MSG_NONCONTIG_PAGE_SIZE, param->a1, TEE_SHM_ALLOC, &shm)) { u64_to_regs((uint64_t)k_mem_phys_addr(shm->addr), ¶m->a1, ¶m->a2); u64_to_regs((uint64_t)shm, ¶m->a4, ¶m->a5); } else { param->a1 = 0; param->a2 = 0; param->a4 = 0; param->a5 = 0; } break; case OPTEE_SMC_RPC_FUNC_FREE: shm = (struct tee_shm *)regs_to_u64(param->a1, param->a2); tee_rm_shm(dev, shm); break; case OPTEE_SMC_RPC_FUNC_FOREIGN_INTR: /* Foreign interrupt was raised */ break; case OPTEE_SMC_RPC_FUNC_CMD: shm = (struct tee_shm *)regs_to_u64(param->a1, param->a2); res = handle_func_rpc_call(dev, shm, pages); break; default: break; } param->a0 = res; } static int optee_call(const struct device *dev, struct optee_msg_arg *arg) { struct optee_driver_data *data = (struct optee_driver_data *)dev->data; struct optee_rpc_param param = { .a0 = OPTEE_SMC_CALL_WITH_ARG }; void *pages = NULL; u64_to_regs((uint64_t)k_mem_phys_addr(arg), ¶m.a1, ¶m.a2); k_sem_take(&data->call_sem, K_FOREVER); while (true) { struct arm_smccc_res res; data->smc_call(param.a0, param.a1, param.a2, param.a3, param.a4, param.a5, param.a6, param.a7, &res); if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) { param.a0 = res.a0; param.a1 = res.a1; param.a2 = res.a2; param.a3 = res.a3; handle_rpc_call(dev, ¶m, &pages); } else { free_shm_pages(&pages); k_sem_give(&data->call_sem); return res.a0 == OPTEE_SMC_RETURN_OK ? TEEC_SUCCESS : TEEC_ERROR_BAD_PARAMETERS; } } } static int optee_get_version(const struct device *dev, struct tee_version_info *info) { if (!info) { return -EINVAL; } /* * TODO Version and capabilities should be requested from * OP-TEE OS. */ info->impl_id = TEE_IMPL_ID_OPTEE; info->impl_caps = TEE_OPTEE_CAP_TZ; info->gen_caps = TEE_GEN_CAP_GP | TEE_GEN_CAP_REG_MEM; return 0; } static int optee_close_session(const struct device *dev, uint32_t session_id) { int rc; struct tee_shm *shm; struct optee_msg_arg *marg; rc = tee_add_shm(dev, NULL, OPTEE_MSG_NONCONTIG_PAGE_SIZE, OPTEE_MSG_GET_ARG_SIZE(0), TEE_SHM_ALLOC, &shm); if (rc) { LOG_ERR("Unable to get shared memory, rc = %d", rc); return rc; } marg = shm->addr; marg->num_params = 0; marg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION; marg->session = session_id; rc = optee_call(dev, marg); if (tee_rm_shm(dev, shm)) { LOG_ERR("Unable to free shared memory"); } return rc; } static int optee_open_session(const struct device *dev, struct tee_open_session_arg *arg, unsigned int num_param, struct tee_param *param, uint32_t *session_id) { int rc, ret; struct tee_shm *shm; struct optee_msg_arg *marg; if (!arg || !session_id) { return -EINVAL; } rc = tee_add_shm(dev, NULL, OPTEE_MSG_NONCONTIG_PAGE_SIZE, OPTEE_MSG_GET_ARG_SIZE(num_param + 2), TEE_SHM_ALLOC, &shm); if (rc) { LOG_ERR("Unable to get shared memory, rc = %d", rc); return rc; } marg = shm->addr; memset(marg, 0, OPTEE_MSG_GET_ARG_SIZE(num_param + 2)); marg->num_params = num_param + 2; marg->cmd = OPTEE_MSG_CMD_OPEN_SESSION; marg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT | OPTEE_MSG_ATTR_META; marg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT | OPTEE_MSG_ATTR_META; memcpy(&marg->params[0].u.value, arg->uuid, sizeof(arg->uuid)); memcpy(&marg->params[1].u.value, arg->uuid, sizeof(arg->clnt_uuid)); marg->params[1].u.value.c = arg->clnt_login; rc = param_to_msg_param(param, num_param, marg->params + 2); if (rc) { goto out; } arg->ret = optee_call(dev, marg); if (arg->ret) { arg->ret_origin = TEEC_ORIGIN_COMMS; goto out; } rc = msg_param_to_param(param, num_param, marg->params); if (rc) { arg->ret = TEEC_ERROR_COMMUNICATION; arg->ret_origin = TEEC_ORIGIN_COMMS; /* * Ret is needed here only to print an error. Param conversion error * should be returned from the function. */ ret = optee_close_session(dev, marg->session); if (ret) { LOG_ERR("Unable to close session: %d", ret); } goto out; } *session_id = marg->session; arg->ret = marg->ret; arg->ret_origin = marg->ret_origin; out: ret = tee_rm_shm(dev, shm); if (ret) { LOG_ERR("Unable to free shared memory"); } return (rc) ? rc : ret; } static int optee_cancel(const struct device *dev, uint32_t session_id, uint32_t cancel_id) { int rc; struct tee_shm *shm; struct optee_msg_arg *marg; rc = tee_add_shm(dev, NULL, OPTEE_MSG_NONCONTIG_PAGE_SIZE, OPTEE_MSG_GET_ARG_SIZE(0), TEE_SHM_ALLOC, &shm); if (rc) { LOG_ERR("Unable to get shared memory, rc = %d", rc); return rc; } marg = shm->addr; marg->num_params = 0; marg->cmd = OPTEE_MSG_CMD_CANCEL; marg->cancel_id = cancel_id; marg->session = session_id; rc = optee_call(dev, marg); if (tee_rm_shm(dev, shm)) { LOG_ERR("Unable to free shared memory"); } return rc; } static int optee_invoke_func(const struct device *dev, struct tee_invoke_func_arg *arg, unsigned int num_param, struct tee_param *param) { int rc, ret; struct tee_shm *shm; struct optee_msg_arg *marg; if (!arg) { return -EINVAL; } rc = tee_add_shm(dev, NULL, OPTEE_MSG_NONCONTIG_PAGE_SIZE, OPTEE_MSG_GET_ARG_SIZE(num_param), TEE_SHM_ALLOC, &shm); if (rc) { LOG_ERR("Unable to get shared memory, rc = %d", rc); return rc; } marg = shm->addr; memset(marg, 0, OPTEE_MSG_GET_ARG_SIZE(num_param)); marg->num_params = num_param; marg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND; marg->func = arg->func; marg->session = arg->session; rc = param_to_msg_param(param, num_param, marg->params); if (rc) { goto out; } arg->ret = optee_call(dev, marg); if (arg->ret) { arg->ret_origin = TEEC_ORIGIN_COMMS; goto out; } rc = msg_param_to_param(param, num_param, marg->params); if (rc) { arg->ret = TEEC_ERROR_COMMUNICATION; arg->ret_origin = TEEC_ORIGIN_COMMS; goto out; } arg->ret = marg->ret; arg->ret_origin = marg->ret_origin; out: ret = tee_rm_shm(dev, shm); if (ret) { LOG_ERR("Unable to free shared memory"); } return (rc) ? rc : ret; } static void *optee_construct_page_list(void *buf, uint32_t len, uint64_t *phys_buf) { const size_t page_size = OPTEE_MSG_NONCONTIG_PAGE_SIZE; const size_t num_pages_in_pl = OPTEE_NUMBER_OF_ADDR_PER_PAGE - 1; uint32_t page_offset = (uintptr_t)buf & (page_size - 1); uint8_t *buf_page; uint32_t num_pages; uint32_t list_size; /* see description of OPTEE_MSG_ATTR_NONCONTIG */ struct { uint64_t pages[OPTEE_NUMBER_OF_ADDR_PER_PAGE - 1]; uint64_t next_page; } *pl; BUILD_ASSERT(sizeof(*pl) == OPTEE_MSG_NONCONTIG_PAGE_SIZE); num_pages = ROUND_UP(page_offset + len, page_size) / page_size; list_size = DIV_ROUND_UP(num_pages, num_pages_in_pl) * page_size; pl = k_aligned_alloc(page_size, list_size); if (!pl) { return NULL; } memset(pl, 0, list_size); buf_page = (uint8_t *)ROUND_DOWN((uintptr_t)buf, page_size); for (uint32_t pl_idx = 0; pl_idx < list_size / page_size; pl_idx++) { for (uint32_t page_idx = 0; num_pages && page_idx < num_pages_in_pl; page_idx++) { pl[pl_idx].pages[page_idx] = k_mem_phys_addr(buf_page); buf_page += page_size; num_pages--; } if (!num_pages) { break; } pl[pl_idx].next_page = k_mem_phys_addr(pl + 1); } /* 12 least significant bits of optee_msg_param.u.tmem.buf_ptr should hold page offset * of user buffer */ *phys_buf = k_mem_phys_addr(pl) | page_offset; return pl; } static int optee_shm_register(const struct device *dev, struct tee_shm *shm) { struct tee_shm *shm_arg; struct optee_msg_arg *msg_arg; void *pl; uint64_t pl_phys_and_offset; int rc; rc = tee_add_shm(dev, NULL, OPTEE_MSG_NONCONTIG_PAGE_SIZE, OPTEE_MSG_GET_ARG_SIZE(1), TEE_SHM_ALLOC, &shm_arg); if (rc) { return rc; } msg_arg = shm_arg->addr; memset(msg_arg, 0, OPTEE_MSG_GET_ARG_SIZE(1)); pl = optee_construct_page_list(shm->addr, shm->size, &pl_phys_and_offset); if (!pl) { rc = -ENOMEM; goto out; } /* for this command op-tee os should support CFG_CORE_DYN_SHM */ msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM; /* op-tee OS ingnore this cmd in case when TYPE_TMEM_OUTPUT and NONCONTIG aren't set */ msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | OPTEE_MSG_ATTR_NONCONTIG; msg_arg->num_params = 1; msg_arg->params->u.tmem.buf_ptr = pl_phys_and_offset; msg_arg->params->u.tmem.shm_ref = (uint64_t)shm; msg_arg->params->u.tmem.size = shm->size; if (optee_call(dev, msg_arg)) { rc = -EINVAL; } k_free(pl); out: tee_rm_shm(dev, shm_arg); return rc; } static int optee_shm_unregister(const struct device *dev, struct tee_shm *shm) { struct tee_shm *shm_arg; struct optee_msg_arg *msg_arg; int rc; rc = tee_add_shm(dev, NULL, OPTEE_MSG_NONCONTIG_PAGE_SIZE, OPTEE_MSG_GET_ARG_SIZE(1), TEE_SHM_ALLOC, &shm_arg); if (rc) { return rc; } msg_arg = shm_arg->addr; memset(msg_arg, 0, OPTEE_MSG_GET_ARG_SIZE(1)); msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM; msg_arg->num_params = 1; msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; msg_arg->params[0].u.rmem.shm_ref = (uint64_t)shm; if (optee_call(dev, msg_arg)) { rc = -EINVAL; } tee_rm_shm(dev, shm_arg); return rc; } static int optee_suppl_recv(const struct device *dev, uint32_t *func, unsigned int *num_params, struct tee_param *param) { struct optee_driver_data *data = (struct optee_driver_data *)dev->data; struct optee_supp *supp = &data->supp; struct optee_supp_req *req = NULL; while (true) { k_mutex_lock(&supp->mutex, K_FOREVER); req = (struct optee_supp_req *)sys_dlist_peek_head(&supp->reqs); if (req) { if (supp->current) { LOG_ERR("Concurrent supp_recv calls are not supported"); k_mutex_unlock(&supp->mutex); return -EBUSY; } if (*num_params < req->num_params) { LOG_ERR("Not enough space for params, need at least %lu", req->num_params); k_mutex_unlock(&supp->mutex); return -EINVAL; } supp->current = req; sys_dlist_remove(&req->link); } k_mutex_unlock(&supp->mutex); if (req) { break; } k_sem_take(&supp->reqs_c, K_FOREVER); } *func = req->func; *num_params = req->num_params; memcpy(param, req->param, sizeof(struct tee_param) * req->num_params); return 0; } static int optee_suppl_send(const struct device *dev, unsigned int ret, unsigned int num_params, struct tee_param *param) { struct optee_driver_data *data = (struct optee_driver_data *)dev->data; struct optee_supp *supp = &data->supp; struct optee_supp_req *req = NULL; size_t n; k_mutex_lock(&supp->mutex, K_FOREVER); if (supp->current && num_params >= supp->current->num_params) { req = supp->current; supp->current = NULL; } else { LOG_ERR("Invalid number of parameters, expected %lu got %u", req->num_params, num_params); } k_mutex_unlock(&supp->mutex); if (!req) { return -EINVAL; } /* Update out and in/out parameters */ for (n = 0; n < req->num_params; n++) { struct tee_param *p = req->param + n; switch (p->attr & TEE_PARAM_ATTR_TYPE_MASK) { case TEE_PARAM_ATTR_TYPE_VALUE_OUTPUT: case TEE_PARAM_ATTR_TYPE_VALUE_INOUT: p->a = param[n].a; p->b = param[n].b; p->c = param[n].c; break; case TEE_PARAM_ATTR_TYPE_MEMREF_OUTPUT: case TEE_PARAM_ATTR_TYPE_MEMREF_INOUT: LOG_WRN("Memref params are not fully tested"); p->a = param[n].a; p->b = param[n].b; p->c = param[n].c; break; default: break; } } req->ret = ret; /* Let the requesting thread continue */ k_mutex_lock(&supp->mutex, K_FOREVER); supp->current = NULL; k_mutex_unlock(&supp->mutex); k_sem_give(&req->complete); return 0; } static int set_optee_method(const struct device *dev) { const struct optee_driver_config *conf = dev->config; struct optee_driver_data *data = dev->data; if (!strcmp("hvc", conf->method)) { data->smc_call = optee_smccc_hvc; } else if (!strcmp("smc", conf->method)) { data->smc_call = optee_smccc_smc; } else { LOG_ERR("Invalid smc_call method"); return -EINVAL; } return 0; } static bool optee_check_uid(const struct device *dev) { struct arm_smccc_res res; struct optee_driver_data *data = (struct optee_driver_data *)dev->data; data->smc_call(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res); if (res.a0 == OPTEE_MSG_UID_0 && res.a1 == OPTEE_MSG_UID_1 && res.a2 == OPTEE_MSG_UID_2 && res.a3 == OPTEE_MSG_UID_3) { return true; } return false; } static void optee_get_revision(const struct device *dev) { struct optee_driver_data *data = (struct optee_driver_data *)dev->data; struct arm_smccc_res res = { 0 }; data->smc_call(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0, &res); if (res.a2) { LOG_INF("OPTEE revision %lu.%lu (%08lx)", res.a0, res.a1, res.a2); } else { LOG_INF("OPTEE revision %lu.%lu", res.a0, res.a1); } } static bool optee_exchange_caps(const struct device *dev, unsigned long *sec_caps) { struct optee_driver_data *data = (struct optee_driver_data *)dev->data; struct arm_smccc_res res = { 0 }; unsigned long a1 = 0; if (!IS_ENABLED(CONFIG_SMP) || arch_num_cpus() == 1) { a1 |= OPTEE_SMC_NSEC_CAP_UNIPROCESSOR; } data->smc_call(OPTEE_SMC_EXCHANGE_CAPABILITIES, a1, 0, 0, 0, 0, 0, 0, &res); if (res.a0 != OPTEE_SMC_RETURN_OK) { return false; } *sec_caps = res.a1; return true; } static unsigned long optee_get_thread_count(const struct device *dev, unsigned long *thread_count) { struct optee_driver_data *data = (struct optee_driver_data *)dev->data; struct arm_smccc_res res = { 0 }; unsigned long a1 = 0; data->smc_call(OPTEE_SMC_GET_THREAD_COUNT, a1, 0, 0, 0, 0, 0, 0, &res); if (res.a0 != OPTEE_SMC_RETURN_OK) { return false; } *thread_count = res.a1; return true; } static int optee_init(const struct device *dev) { struct optee_driver_data *data = dev->data; unsigned long thread_count; if (set_optee_method(dev)) { return -ENOTSUP; } sys_dlist_init(&data->notif); k_mutex_init(&data->supp.mutex); k_sem_init(&data->supp.reqs_c, 0, 1); sys_dlist_init(&data->supp.reqs); if (!optee_check_uid(dev)) { LOG_ERR("OPTEE API UID mismatch"); return -EINVAL; } optee_get_revision(dev); if (!optee_exchange_caps(dev, &data->sec_caps)) { LOG_ERR("OPTEE capabilities exchange failed\n"); return -EINVAL; } if (!(data->sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)) { LOG_ERR("OPTEE does not support dynamic shared memory"); return -ENOTSUP; } if (!optee_get_thread_count(dev, &thread_count)) { LOG_ERR("OPTEE unable to get maximum thread count"); return -ENOTSUP; } k_sem_init(&data->call_sem, thread_count, thread_count); return 0; } static DEVICE_API(tee, optee_driver_api) = { .get_version = optee_get_version, .open_session = optee_open_session, .close_session = optee_close_session, .cancel = optee_cancel, .invoke_func = optee_invoke_func, .shm_register = optee_shm_register, .shm_unregister = optee_shm_unregister, .suppl_recv = optee_suppl_recv, .suppl_send = optee_suppl_send, }; /* * Bitmap of the ongoing notificatons, received from OP-TEE. Maximum number is * CONFIG_OPTEE_MAX_NOTIF. This bitmap is needed to handle case when SEND command * was received before WAIT command from OP-TEE. In this case WAIT will not create * locks. */ #define OPTEE_DT_DEVICE_INIT(inst) \ SYS_BITARRAY_DEFINE_STATIC(notif_bitmap_##inst, CONFIG_OPTEE_MAX_NOTIF); \ \ static struct optee_driver_config optee_config_##inst = { \ .method = DT_INST_PROP(inst, method) \ }; \ \ static struct optee_driver_data optee_data_##inst = { \ .notif_bitmap = ¬if_bitmap_##inst \ }; \ \ DEVICE_DT_INST_DEFINE(inst, optee_init, NULL, &optee_data_##inst, \ &optee_config_##inst, POST_KERNEL, \ CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \ &optee_driver_api); \ DT_INST_FOREACH_STATUS_OKAY(OPTEE_DT_DEVICE_INIT)