/* * Copyright (c) 2020 Henrik Brix Andersen * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT xlnx_xps_spi_2_00_a #include #include #include #include #include #include #include LOG_MODULE_REGISTER(xlnx_quadspi, CONFIG_SPI_LOG_LEVEL); #include "spi_context.h" /* AXI Quad SPI v3.2 register offsets (See Xilinx PG153 for details) */ #define SRR_OFFSET 0x40 #define SPICR_OFFSET 0x60 #define SPISR_OFFSET 0x64 #define SPI_DTR_OFFSET 0x68 #define SPI_DRR_OFFSET 0x6c #define SPISSR_OFFSET 0x70 #define SPI_TX_FIFO_OCR_OFFSET 0x74 #define SPI_RX_FIFO_OCR_OFFSET 0x78 #define DGIER_OFFSET 0x1c #define IPISR_OFFSET 0x20 #define IPIER_OFFSET 0x28 /* SRR bit definitions */ #define SRR_SOFTRESET_MAGIC 0xa /* SPICR bit definitions */ #define SPICR_LOOP BIT(0) #define SPICR_SPE BIT(1) #define SPICR_MASTER BIT(2) #define SPICR_CPOL BIT(3) #define SPICR_CPHA BIT(4) #define SPICR_TX_FIFO_RESET BIT(5) #define SPICR_RX_FIFO_RESET BIT(6) #define SPICR_MANUAL_SS BIT(7) #define SPICR_MASTER_XFER_INH BIT(8) #define SPICR_LSB_FIRST BIT(9) /* SPISR bit definitions */ #define SPISR_RX_EMPTY BIT(0) #define SPISR_RX_FULL BIT(1) #define SPISR_TX_EMPTY BIT(2) #define SPISR_TX_FULL BIT(3) #define SPISR_MODF BIT(4) #define SPISR_SLAVE_MODE_SELECT BIT(5) #define SPISR_CPOL_CPHA_ERROR BIT(6) #define SPISR_SLAVE_MODE_ERROR BIT(7) #define SPISR_MSB_ERROR BIT(8) #define SPISR_LOOPBACK_ERROR BIT(9) #define SPISR_COMMAND_ERROR BIT(10) #define SPISR_ERROR_MASK (SPISR_COMMAND_ERROR | \ SPISR_LOOPBACK_ERROR | \ SPISR_MSB_ERROR | \ SPISR_SLAVE_MODE_ERROR | \ SPISR_CPOL_CPHA_ERROR) /* DGIER bit definitions */ #define DGIER_GIE BIT(31) /* IPISR and IPIER bit definitions */ #define IPIXR_MODF BIT(0) #define IPIXR_SLAVE_MODF BIT(1) #define IPIXR_DTR_EMPTY BIT(2) #define IPIXR_DTR_UNDERRUN BIT(3) #define IPIXR_DRR_FULL BIT(4) #define IPIXR_DRR_OVERRUN BIT(5) #define IPIXR_TX_FIFO_HALF_EMPTY BIT(6) #define IPIXR_SLAVE_MODE_SELECT BIT(7) #define IPIXR_DDR_NOT_EMPTY BIT(8) #define IPIXR_CPOL_CPHA_ERROR BIT(9) #define IPIXR_SLAVE_MODE_ERROR BIT(10) #define IPIXR_MSB_ERROR BIT(11) #define IPIXR_LOOPBACK_ERROR BIT(12) #define IPIXR_COMMAND_ERROR BIT(13) struct xlnx_quadspi_config { mm_reg_t base; void (*irq_config_func)(const struct device *dev); uint8_t num_ss_bits; uint8_t num_xfer_bytes; uint16_t fifo_size; #if DT_ANY_INST_HAS_PROP_STATUS_OKAY(xlnx_startup_block) bool startup_block; #endif }; struct xlnx_quadspi_data { struct spi_context ctx; struct k_event dtr_empty; }; static inline uint32_t xlnx_quadspi_read32(const struct device *dev, mm_reg_t offset) { const struct xlnx_quadspi_config *config = dev->config; return sys_read32(config->base + offset); } static inline void xlnx_quadspi_write32(const struct device *dev, uint32_t value, mm_reg_t offset) { const struct xlnx_quadspi_config *config = dev->config; sys_write32(value, config->base + offset); } static void xlnx_quadspi_cs_control(const struct device *dev, bool on) { const struct xlnx_quadspi_config *config = dev->config; struct xlnx_quadspi_data *data = dev->data; struct spi_context *ctx = &data->ctx; uint32_t spissr = BIT_MASK(config->num_ss_bits); if (IS_ENABLED(CONFIG_SPI_SLAVE) && spi_context_is_slave(ctx)) { /* Skip slave select assert/de-assert in slave mode */ return; } if (on) { /* SPISSR is one-hot, active-low */ spissr &= ~BIT(ctx->config->slave); } else if (ctx->config->operation & SPI_HOLD_ON_CS) { /* Skip slave select de-assert */ return; } xlnx_quadspi_write32(dev, spissr, SPISSR_OFFSET); spi_context_cs_control(ctx, on); } static int xlnx_quadspi_configure(const struct device *dev, const struct spi_config *spi_cfg) { const struct xlnx_quadspi_config *config = dev->config; struct xlnx_quadspi_data *data = dev->data; struct spi_context *ctx = &data->ctx; uint32_t word_size; uint32_t spicr; uint32_t spisr; if (spi_context_configured(ctx, spi_cfg)) { /* Configuration already active, just enable SPI IOs */ spicr = xlnx_quadspi_read32(dev, SPICR_OFFSET); spicr |= SPICR_SPE; xlnx_quadspi_write32(dev, spicr, SPICR_OFFSET); return 0; } if (spi_cfg->operation & SPI_HALF_DUPLEX) { LOG_ERR("Half-duplex not supported"); return -ENOTSUP; } if (spi_cfg->slave >= config->num_ss_bits) { LOG_ERR("unsupported slave %d, num_ss_bits %d", spi_cfg->slave, config->num_ss_bits); return -ENOTSUP; } if (spi_cfg->operation & SPI_CS_ACTIVE_HIGH) { LOG_ERR("unsupported CS polarity active high"); return -ENOTSUP; } if (!IS_ENABLED(CONFIG_SPI_SLAVE) && \ (spi_cfg->operation & SPI_OP_MODE_SLAVE)) { LOG_ERR("slave mode support not enabled"); return -ENOTSUP; } word_size = SPI_WORD_SIZE_GET(spi_cfg->operation); if (word_size != (config->num_xfer_bytes * 8)) { LOG_ERR("unsupported word size %d bits, num_xfer_bytes %d", word_size, config->num_xfer_bytes); return -ENOTSUP; } /* Reset FIFOs, SPI IOs enabled */ spicr = SPICR_TX_FIFO_RESET | SPICR_RX_FIFO_RESET | SPICR_SPE; /* Master mode, inhibit master transmit, manual slave select */ if (!IS_ENABLED(CONFIG_SPI_SLAVE) || (spi_cfg->operation & SPI_OP_MODE_SLAVE) == 0U) { spicr |= SPICR_MASTER | SPICR_MASTER_XFER_INH | SPICR_MANUAL_SS; } if (spi_cfg->operation & SPI_MODE_CPOL) { spicr |= SPICR_CPOL; } if (spi_cfg->operation & SPI_MODE_CPHA) { spicr |= SPICR_CPHA; } if (spi_cfg->operation & SPI_MODE_LOOP) { spicr |= SPICR_LOOP; } if (spi_cfg->operation & SPI_TRANSFER_LSB) { spicr |= SPICR_LSB_FIRST; } /* * Write configuration and verify it is compliant with the IP core * configuration. Tri-state SPI IOs on error. */ xlnx_quadspi_write32(dev, spicr, SPICR_OFFSET); spisr = xlnx_quadspi_read32(dev, SPISR_OFFSET); if (spisr & SPISR_ERROR_MASK) { LOG_ERR("unsupported configuration, spisr = 0x%08x", spisr); xlnx_quadspi_write32(dev, SPICR_MASTER_XFER_INH, SPICR_OFFSET); ctx->config = NULL; return -ENOTSUP; } ctx->config = spi_cfg; return 0; } static bool xlnx_quadspi_start_tx(const struct device *dev) { const struct xlnx_quadspi_config *config = dev->config; struct xlnx_quadspi_data *data = dev->data; struct spi_context *ctx = &data->ctx; size_t xfer_len; uint32_t spicr = 0U; uint32_t spisr; uint32_t dtr = 0U; uint32_t fifo_avail_words = config->fifo_size ? config->fifo_size : 1; bool complete = false; if (!spi_context_tx_on(ctx) && !spi_context_rx_on(ctx)) { /* All done, de-assert slave select */ xlnx_quadspi_cs_control(dev, false); if ((ctx->config->operation & SPI_HOLD_ON_CS) == 0U) { /* Tri-state SPI IOs */ spicr = xlnx_quadspi_read32(dev, SPICR_OFFSET); spicr &= ~(SPICR_SPE); xlnx_quadspi_write32(dev, spicr, SPICR_OFFSET); } spi_context_complete(ctx, dev, 0); complete = true; return complete; } if (!IS_ENABLED(CONFIG_SPI_SLAVE) || !spi_context_is_slave(ctx)) { /* Inhibit master transaction while writing TX data */ spicr = xlnx_quadspi_read32(dev, SPICR_OFFSET); spicr |= SPICR_MASTER_XFER_INH; xlnx_quadspi_write32(dev, spicr, SPICR_OFFSET); } /* We can only see as far as the current rx buffer */ xfer_len = spi_context_longest_current_buf(ctx); /* Write TX data */ while (xfer_len--) { if (spi_context_tx_buf_on(ctx)) { switch (config->num_xfer_bytes) { case 1: dtr = UNALIGNED_GET((uint8_t *)(ctx->tx_buf)); break; case 2: dtr = UNALIGNED_GET((uint16_t *)(ctx->tx_buf)); break; case 4: dtr = UNALIGNED_GET((uint32_t *)(ctx->tx_buf)); break; default: __ASSERT(0, "unsupported num_xfer_bytes"); } } else { /* No TX buffer. Use dummy TX data */ dtr = 0U; } xlnx_quadspi_write32(dev, dtr, SPI_DTR_OFFSET); spi_context_update_tx(ctx, config->num_xfer_bytes, 1); if (--fifo_avail_words == 0) { spisr = xlnx_quadspi_read32(dev, SPISR_OFFSET); if (spisr & SPISR_TX_FULL) { break; } if (!config->fifo_size) { fifo_avail_words = 1; } else if (spisr & SPISR_TX_EMPTY) { fifo_avail_words = config->fifo_size; } else { fifo_avail_words = config->fifo_size - xlnx_quadspi_read32(dev, SPI_TX_FIFO_OCR_OFFSET) - 1; } } } spisr = xlnx_quadspi_read32(dev, SPISR_OFFSET); if (spisr & SPISR_COMMAND_ERROR) { /* Command not supported by memory type configured in IP core */ LOG_ERR("unsupported command"); xlnx_quadspi_cs_control(dev, false); spicr = xlnx_quadspi_read32(dev, SPICR_OFFSET); if ((ctx->config->operation & SPI_HOLD_ON_CS) == 0U) { /* Tri-state SPI IOs */ spicr &= ~(SPICR_SPE); } xlnx_quadspi_write32(dev, spicr | SPICR_TX_FIFO_RESET, SPICR_OFFSET); spi_context_complete(ctx, dev, -ENOTSUP); complete = true; } if (!IS_ENABLED(CONFIG_SPI_SLAVE) || !spi_context_is_slave(ctx)) { /* Uninhibit master transaction */ spicr &= ~(SPICR_MASTER_XFER_INH); xlnx_quadspi_write32(dev, spicr, SPICR_OFFSET); } return complete; } static void xlnx_quadspi_read_fifo(const struct device *dev) { const struct xlnx_quadspi_config *config = dev->config; struct xlnx_quadspi_data *data = dev->data; struct spi_context *ctx = &data->ctx; uint32_t spisr = xlnx_quadspi_read32(dev, SPISR_OFFSET); /* RX FIFO occupancy register only exists if FIFO is implemented */ uint32_t rx_fifo_words = config->fifo_size ? xlnx_quadspi_read32(dev, SPI_RX_FIFO_OCR_OFFSET) + 1 : 1; /* Read RX data */ while (!(spisr & SPISR_RX_EMPTY)) { uint32_t drr = xlnx_quadspi_read32(dev, SPI_DRR_OFFSET); if (spi_context_rx_buf_on(ctx)) { switch (config->num_xfer_bytes) { case 1: UNALIGNED_PUT(drr, (uint8_t *)ctx->rx_buf); break; case 2: UNALIGNED_PUT(drr, (uint16_t *)ctx->rx_buf); break; case 4: UNALIGNED_PUT(drr, (uint32_t *)ctx->rx_buf); break; default: __ASSERT(0, "unsupported num_xfer_bytes"); } } spi_context_update_rx(ctx, config->num_xfer_bytes, 1); if (--rx_fifo_words == 0) { spisr = xlnx_quadspi_read32(dev, SPISR_OFFSET); rx_fifo_words = config->fifo_size ? xlnx_quadspi_read32(dev, SPI_RX_FIFO_OCR_OFFSET) + 1 : 1; } } } static int xlnx_quadspi_transceive(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool async, spi_callback_t cb, void *userdata) { const struct xlnx_quadspi_config *config = dev->config; struct xlnx_quadspi_data *data = dev->data; struct spi_context *ctx = &data->ctx; int ret; spi_context_lock(ctx, async, cb, userdata, spi_cfg); ret = xlnx_quadspi_configure(dev, spi_cfg); if (ret) { goto out; } spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, config->num_xfer_bytes); xlnx_quadspi_cs_control(dev, true); while (true) { k_event_clear(&data->dtr_empty, 1); bool complete = xlnx_quadspi_start_tx(dev); if (complete || async) { break; } /** * 20ms should be long enough for 256 byte FIFO at any * reasonable clock speed. */ if (!k_event_wait(&data->dtr_empty, 1, false, K_MSEC(20 + CONFIG_SPI_COMPLETION_TIMEOUT_TOLERANCE))) { /* Timeout */ LOG_ERR("DTR empty timeout"); spi_context_complete(ctx, dev, -ETIMEDOUT); break; } xlnx_quadspi_read_fifo(dev); } ret = spi_context_wait_for_completion(ctx); out: spi_context_release(ctx, ret); return ret; } static int xlnx_quadspi_transceive_blocking(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return xlnx_quadspi_transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL); } #ifdef CONFIG_SPI_ASYNC static int xlnx_quadspi_transceive_async(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { return xlnx_quadspi_transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata); } #endif /* CONFIG_SPI_ASYNC */ static int xlnx_quadspi_release(const struct device *dev, const struct spi_config *spi_cfg) { const struct xlnx_quadspi_config *config = dev->config; struct xlnx_quadspi_data *data = dev->data; uint32_t spicr; /* Force slave select de-assert */ xlnx_quadspi_write32(dev, BIT_MASK(config->num_ss_bits), SPISSR_OFFSET); /* Tri-state SPI IOs */ spicr = xlnx_quadspi_read32(dev, SPICR_OFFSET); spicr &= ~(SPICR_SPE); xlnx_quadspi_write32(dev, spicr, SPICR_OFFSET); spi_context_unlock_unconditionally(&data->ctx); return 0; } static void xlnx_quadspi_isr(const struct device *dev) { struct xlnx_quadspi_data *data = dev->data; uint32_t ipisr; /* Acknowledge interrupt */ ipisr = xlnx_quadspi_read32(dev, IPISR_OFFSET); xlnx_quadspi_write32(dev, ipisr, IPISR_OFFSET); if (ipisr & IPIXR_DTR_EMPTY) { /** * For async mode, we need to read the RX FIFO and refill the TX FIFO * if needed here. * For sync mode, we do this in the caller's context to avoid doing too much * work in the ISR, so just post the event. */ #ifdef CONFIG_SPI_ASYNC struct spi_context *ctx = &data->ctx; if (ctx->asynchronous) { xlnx_quadspi_read_fifo(dev); xlnx_quadspi_start_tx(dev); return; } #endif k_event_post(&data->dtr_empty, 1); } else { LOG_WRN("unhandled interrupt, ipisr = 0x%08x", ipisr); } } #if DT_ANY_INST_HAS_PROP_STATUS_OKAY(xlnx_startup_block) static int xlnx_quadspi_startup_block_workaround(const struct device *dev) { const struct xlnx_quadspi_config *config = dev->config; uint32_t spissr = BIT_MASK(config->num_ss_bits); uint32_t spicr; /** * See https://support.xilinx.com/s/article/52626?language=en_US * Up to 3 clock cycles must be issued before the output clock signal * is passed to the output CCLK pin from the SPI core. * Use JEDEC READ ID as dummy command to chip select 0. */ spissr &= ~BIT(0); xlnx_quadspi_write32(dev, spissr, SPISSR_OFFSET); xlnx_quadspi_write32(dev, 0x9F, SPI_DTR_OFFSET); xlnx_quadspi_write32(dev, 0, SPI_DTR_OFFSET); xlnx_quadspi_write32(dev, 0, SPI_DTR_OFFSET); spicr = SPICR_MANUAL_SS | SPICR_MASTER | SPICR_SPE; xlnx_quadspi_write32(dev, spicr, SPICR_OFFSET); for (int i = 0; i < 10 && (xlnx_quadspi_read32(dev, SPISR_OFFSET) & SPISR_TX_EMPTY) == 0; i++) { k_msleep(1); } if ((xlnx_quadspi_read32(dev, SPISR_OFFSET) & SPISR_TX_EMPTY) == 0) { LOG_ERR("timeout waiting for TX_EMPTY"); return -EIO; } spicr |= SPICR_MASTER_XFER_INH; xlnx_quadspi_write32(dev, spicr, SPICR_OFFSET); while ((xlnx_quadspi_read32(dev, SPISR_OFFSET) & SPISR_RX_EMPTY) == 0) { xlnx_quadspi_read32(dev, SPI_DRR_OFFSET); } spissr = BIT_MASK(config->num_ss_bits); xlnx_quadspi_write32(dev, spissr, SPISSR_OFFSET); /* Reset controller to clean up */ xlnx_quadspi_write32(dev, SRR_SOFTRESET_MAGIC, SRR_OFFSET); return 0; } #endif static int xlnx_quadspi_init(const struct device *dev) { int err; const struct xlnx_quadspi_config *config = dev->config; struct xlnx_quadspi_data *data = dev->data; k_event_init(&data->dtr_empty); /* Reset controller */ xlnx_quadspi_write32(dev, SRR_SOFTRESET_MAGIC, SRR_OFFSET); config->irq_config_func(dev); err = spi_context_cs_configure_all(&data->ctx); if (err < 0) { return err; } spi_context_unlock_unconditionally(&data->ctx); #if DT_ANY_INST_HAS_PROP_STATUS_OKAY(xlnx_startup_block) if (config->startup_block) { err = xlnx_quadspi_startup_block_workaround(dev); if (err < 0) { return err; } } #endif /* Enable DTR Empty interrupt */ xlnx_quadspi_write32(dev, IPIXR_DTR_EMPTY, IPIER_OFFSET); xlnx_quadspi_write32(dev, DGIER_GIE, DGIER_OFFSET); return 0; } static DEVICE_API(spi, xlnx_quadspi_driver_api) = { .transceive = xlnx_quadspi_transceive_blocking, #ifdef CONFIG_SPI_ASYNC .transceive_async = xlnx_quadspi_transceive_async, #endif /* CONFIG_SPI_ASYNC */ #ifdef CONFIG_SPI_RTIO .iodev_submit = spi_rtio_iodev_default_submit, #endif .release = xlnx_quadspi_release, }; #if DT_ANY_INST_HAS_PROP_STATUS_OKAY(xlnx_startup_block) #define STARTUP_BLOCK_INIT(n) .startup_block = DT_INST_PROP(n, xlnx_startup_block), #else #define STARTUP_BLOCK_INIT(n) #endif #define XLNX_QUADSPI_INIT(n) \ static void xlnx_quadspi_config_func_##n(const struct device *dev); \ \ static const struct xlnx_quadspi_config xlnx_quadspi_config_##n = { \ .base = DT_INST_REG_ADDR(n), \ .irq_config_func = xlnx_quadspi_config_func_##n, \ .num_ss_bits = DT_INST_PROP(n, xlnx_num_ss_bits), \ .num_xfer_bytes = DT_INST_PROP(n, xlnx_num_transfer_bits) / 8, \ .fifo_size = DT_INST_PROP_OR(n, fifo_size, 0), \ STARTUP_BLOCK_INIT(n)}; \ \ static struct xlnx_quadspi_data xlnx_quadspi_data_##n = { \ SPI_CONTEXT_INIT_LOCK(xlnx_quadspi_data_##n, ctx), \ SPI_CONTEXT_INIT_SYNC(xlnx_quadspi_data_##n, ctx), \ SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx)}; \ \ SPI_DEVICE_DT_INST_DEFINE(n, &xlnx_quadspi_init, NULL, &xlnx_quadspi_data_##n, \ &xlnx_quadspi_config_##n, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \ &xlnx_quadspi_driver_api); \ \ static void xlnx_quadspi_config_func_##n(const struct device *dev) \ { \ IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), xlnx_quadspi_isr, \ DEVICE_DT_INST_GET(n), 0); \ irq_enable(DT_INST_IRQN(n)); \ } DT_INST_FOREACH_STATUS_OKAY(XLNX_QUADSPI_INIT)