/* * Copyright (c) 2021 Microchip Technology Inc. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT microchip_xec_qmspi_ldma #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include LOG_MODULE_REGISTER(spi_xec, CONFIG_SPI_LOG_LEVEL); #include "spi_context.h" /* #define MCHP_XEC_QMSPI_DEBUG 1 */ /* MEC172x QMSPI controller SPI Mode 3 signalling has an anomaly where * received data is shifted off the input line(s) improperly. Received * data bytes will be left shifted by 1. Work-around for SPI Mode 3 is * to sample input line(s) on same edge as output data is ready. */ #define XEC_QMSPI_SPI_MODE_3_ANOMALY 1 /* common clock control device node for all Microchip XEC chips */ #define MCHP_XEC_CLOCK_CONTROL_NODE DT_NODELABEL(pcr) /* spin loops waiting for HW to clear soft reset bit */ #define XEC_QMSPI_SRST_LOOPS 16 /* microseconds for busy wait and total wait interval */ #define XEC_QMSPI_WAIT_INTERVAL 8 #define XEC_QMSPI_WAIT_COUNT 64 /* QSPI transfer and DMA done */ #define XEC_QSPI_HW_XFR_DMA_DONE (MCHP_QMSPI_STS_DONE | MCHP_QMSPI_STS_DMA_DONE) /* QSPI hardware error status * Misprogrammed control or descriptors (software error) * Overflow TX FIFO * Underflow RX FIFO */ #define XEC_QSPI_HW_ERRORS (MCHP_QMSPI_STS_PROG_ERR | \ MCHP_QMSPI_STS_TXB_ERR | \ MCHP_QMSPI_STS_RXB_ERR) #define XEC_QSPI_HW_ERRORS_LDMA (MCHP_QMSPI_STS_LDMA_RX_ERR | \ MCHP_QMSPI_STS_LDMA_TX_ERR) #define XEC_QSPI_HW_ERRORS_ALL (XEC_QSPI_HW_ERRORS | \ XEC_QSPI_HW_ERRORS_LDMA) #define XEC_QSPI_TIMEOUT_US (100 * 1000) /* 100 ms */ /* Device constant configuration parameters */ struct spi_qmspi_config { struct qmspi_regs *regs; const struct device *clk_dev; struct mchp_xec_pcr_clk_ctrl clksrc; uint32_t clock_freq; uint32_t cs1_freq; uint32_t cs_timing; uint16_t taps_adj; uint8_t girq; uint8_t girq_pos; uint8_t girq_nvic_aggr; uint8_t girq_nvic_direct; uint8_t irq_pri; uint8_t chip_sel; uint8_t width; /* 0(half) 1(single), 2(dual), 4(quad) */ uint8_t unused[1]; const struct pinctrl_dev_config *pcfg; void (*irq_config_func)(void); }; #define XEC_QMSPI_XFR_FLAG_TX BIT(0) #define XEC_QMSPI_XFR_FLAG_RX BIT(1) /* Device run time data */ struct spi_qmspi_data { struct spi_context ctx; uint32_t base_freq_hz; uint32_t spi_freq_hz; uint32_t qstatus; uint8_t np; /* number of data pins: 1, 2, or 4 */ #ifdef CONFIG_SPI_ASYNC spi_callback_t cb; void *userdata; size_t xfr_len; #endif uint32_t tempbuf[2]; #ifdef MCHP_XEC_QMSPI_DEBUG uint32_t bufcnt_status; uint32_t rx_ldma_ctrl0; uint32_t tx_ldma_ctrl0; uint32_t qunits; uint32_t qxfru; uint32_t xfrlen; #endif }; static int xec_qmspi_spin_yield(int *counter, int max_count) { *counter = *counter + 1; if (*counter > max_count) { return -ETIMEDOUT; } k_busy_wait(XEC_QMSPI_WAIT_INTERVAL); return 0; } /* * reset QMSPI controller with save/restore of timing registers. * Some QMSPI timing register may be modified by the Boot-ROM OTP * values. */ static void qmspi_reset(struct qmspi_regs *regs) { uint32_t taps[3]; uint32_t malt1; uint32_t cstm; uint32_t mode; uint32_t cnt = XEC_QMSPI_SRST_LOOPS; taps[0] = regs->TM_TAPS; taps[1] = regs->TM_TAPS_ADJ; taps[2] = regs->TM_TAPS_CTRL; malt1 = regs->MODE_ALT1; cstm = regs->CSTM; mode = regs->MODE; regs->MODE = MCHP_QMSPI_M_SRST; while (regs->MODE & MCHP_QMSPI_M_SRST) { if (cnt == 0) { break; } cnt--; } regs->MODE = 0; regs->MODE = mode & ~MCHP_QMSPI_M_ACTIVATE; regs->CSTM = cstm; regs->MODE_ALT1 = malt1; regs->TM_TAPS = taps[0]; regs->TM_TAPS_ADJ = taps[1]; regs->TM_TAPS_CTRL = taps[2]; } static uint32_t qmspi_encoded_fdiv(const struct device *dev, uint32_t freq_hz) { struct spi_qmspi_data *qdata = dev->data; if (freq_hz == 0u) { return 0u; /* maximum frequency divider */ } return (qdata->base_freq_hz / freq_hz); } /* Program QMSPI frequency divider field in the mode register. * MEC172x QMSPI input clock source is the Fast Peripheral domain whose * clock is controlled by the PCR turbo clock. 96 MHz if turbo mode * enabled else 48 MHz. Query the clock control driver to get clock * rate of fast peripheral domain. MEC172x QMSPI clock divider has * been expanded to a 16-bit field encoded as: * 0 = divide by 0x10000 * 1 to 0xffff = divide by this value. */ static int qmspi_set_frequency(struct spi_qmspi_data *qdata, struct qmspi_regs *regs, uint32_t freq_hz) { uint32_t clk = MCHP_QMSPI_INPUT_CLOCK_FREQ_HZ; uint32_t fdiv = 0u; /* maximum divider */ if (qdata->base_freq_hz) { clk = qdata->base_freq_hz; } if (freq_hz) { fdiv = 1u; if (freq_hz < clk) { fdiv = clk / freq_hz; } } regs->MODE = ((regs->MODE & ~(MCHP_QMSPI_M_FDIV_MASK)) | ((fdiv << MCHP_QMSPI_M_FDIV_POS) & MCHP_QMSPI_M_FDIV_MASK)); if (!fdiv) { fdiv = 0x10000u; } qdata->spi_freq_hz = clk / fdiv; return 0; } /* * SPI signalling mode: CPOL and CPHA * CPOL = 0 is clock idles low, 1 is clock idle high * CPHA = 0 Transmitter changes data on trailing of preceding clock cycle. * Receiver samples data on leading edge of clock cycle. * 1 Transmitter changes data on leading edge of current clock cycle. * Receiver samples data on the trailing edge of clock cycle. * SPI Mode nomenclature: * Mode CPOL CPHA * 0 0 0 * 1 0 1 * 2 1 0 * 3 1 1 * QMSPI has three controls, CPOL, CPHA for output and CPHA for input. * SPI frequency < 48MHz * Mode 0: CPOL=0 CHPA=0 (CHPA_MISO=0 and CHPA_MOSI=0) * Mode 3: CPOL=1 CHPA=1 (CHPA_MISO=1 and CHPA_MOSI=1) * Data sheet recommends when QMSPI set at max. SPI frequency (48MHz). * SPI frequency == 48MHz sample and change data on same edge. * Mode 0: CPOL=0 CHPA=0 (CHPA_MISO=1 and CHPA_MOSI=0) * Mode 3: CPOL=1 CHPA=1 (CHPA_MISO=0 and CHPA_MOSI=1) * * There is an anomaly in MEC172x for SPI signalling mode 3. We must * set CHPA_MISO=0 for SPI Mode 3 at all frequencies. */ const uint8_t smode_tbl[4] = { 0x00u, 0x06u, 0x01u, #ifdef XEC_QMSPI_SPI_MODE_3_ANOMALY 0x03u, /* CPOL=1, CPHA_MOSI=1, CPHA_MISO=0 */ #else 0x07u, /* CPOL=1, CPHA_MOSI=1, CPHA_MISO=1 */ #endif }; const uint8_t smode48_tbl[4] = { 0x04u, 0x02u, 0x05u, 0x03u }; static void qmspi_set_signalling_mode(struct spi_qmspi_data *qdata, struct qmspi_regs *regs, uint32_t smode) { const uint8_t *ptbl; uint32_t m; ptbl = smode_tbl; if (qdata->spi_freq_hz >= MHZ(48)) { ptbl = smode48_tbl; } m = (uint32_t)ptbl[smode & 0x03]; regs->MODE = (regs->MODE & ~(MCHP_QMSPI_M_SIG_MASK)) | (m << MCHP_QMSPI_M_SIG_POS); } #ifdef CONFIG_SPI_EXTENDED_MODES /* * QMSPI HW support single, dual, and quad. * Return QMSPI Control/Descriptor register encoded value. */ static uint32_t encode_lines(const struct spi_config *config) { uint32_t qlines; switch (config->operation & SPI_LINES_MASK) { case SPI_LINES_SINGLE: qlines = MCHP_QMSPI_C_IFM_1X; break; #if DT_INST_PROP(0, lines) > 1 case SPI_LINES_DUAL: qlines = MCHP_QMSPI_C_IFM_2X; break; #endif #if DT_INST_PROP(0, lines) > 2 case SPI_LINES_QUAD: qlines = MCHP_QMSPI_C_IFM_4X; break; #endif default: qlines = 0xffu; } return qlines; } static uint8_t npins_from_spi_config(const struct spi_config *config) { switch (config->operation & SPI_LINES_MASK) { case SPI_LINES_DUAL: return 2u; case SPI_LINES_QUAD: return 4u; default: return 1u; } } #endif /* CONFIG_SPI_EXTENDED_MODES */ static int spi_feature_support(const struct spi_config *config) { if (config->operation & (SPI_TRANSFER_LSB | SPI_OP_MODE_SLAVE | SPI_MODE_LOOP)) { LOG_ERR("Driver does not support LSB first, slave, or loop back"); return -ENOTSUP; } if (config->operation & SPI_CS_ACTIVE_HIGH) { LOG_ERR("CS active high not supported"); return -ENOTSUP; } if (config->operation & SPI_LOCK_ON) { LOG_ERR("Lock On not supported"); return -ENOTSUP; } if (SPI_WORD_SIZE_GET(config->operation) != 8) { LOG_ERR("Word size != 8 not supported"); return -ENOTSUP; } return 0; } /* Configure QMSPI. * NOTE: QMSPI Shared SPI port has two chip selects. * Private SPI and internal SPI ports support one chip select. * Hardware supports dual and quad I/O. Dual and quad are allowed * if SPI extended mode is enabled at build time. User must * provide pin configuration via DTS. */ static int qmspi_configure(const struct device *dev, const struct spi_config *config) { const struct spi_qmspi_config *cfg = dev->config; struct spi_qmspi_data *qdata = dev->data; struct qmspi_regs *regs = cfg->regs; uint32_t smode; int ret; if (!config) { return -EINVAL; } if (spi_context_configured(&qdata->ctx, config)) { return 0; } qmspi_set_frequency(qdata, regs, config->frequency); /* check new configuration */ ret = spi_feature_support(config); if (ret) { return ret; } #ifdef CONFIG_SPI_EXTENDED_MODES smode = encode_lines(config); if (smode == 0xff) { LOG_ERR("Requested lines mode not supported"); return -ENOTSUP; } qdata->np = npins_from_spi_config(config); #else smode = MCHP_QMSPI_C_IFM_1X; qdata->np = 1u; #endif regs->CTRL = smode; smode = 0; if ((config->operation & SPI_MODE_CPHA) != 0U) { smode |= BIT(0); } if ((config->operation & SPI_MODE_CPOL) != 0U) { smode |= BIT(1); } qmspi_set_signalling_mode(qdata, regs, smode); /* chip select */ smode = regs->MODE & ~(MCHP_QMSPI_M_CS_MASK); if (cfg->chip_sel == 0) { smode |= MCHP_QMSPI_M_CS0; } else { smode |= MCHP_QMSPI_M_CS1; } regs->MODE = smode; /* chip select timing and TAPS adjust */ regs->CSTM = cfg->cs_timing; regs->TM_TAPS_ADJ = cfg->taps_adj; /* CS1 alternate mode (frequency) */ regs->MODE_ALT1 = 0; if (cfg->cs1_freq) { uint32_t fdiv = qmspi_encoded_fdiv(dev, cfg->cs1_freq); regs->MODE_ALT1 = (fdiv << MCHP_QMSPI_MA1_CS1_CDIV_POS) & MCHP_QMSPI_MA1_CS1_CDIV_MSK; regs->MODE_ALT1 |= MCHP_QMSPI_MA1_CS1_CDIV_EN; } qdata->ctx.config = config; regs->MODE |= MCHP_QMSPI_M_ACTIVATE; return 0; } static uint32_t encode_npins(uint8_t npins) { if (npins == 4) { return MCHP_QMSPI_C_IFM_4X; } else if (npins == 2) { return MCHP_QMSPI_C_IFM_2X; } else { return MCHP_QMSPI_C_IFM_1X; } } /* Common controller transfer initialziation using Local-DMA. * Full-duplex: controller configured to transmit and receive simultaneouly. * Half-duplex(dual/quad): User may only specify TX or RX buffer sets. * Passing both buffers sets is reported as an error. */ static inline int qmspi_xfr_cm_init(const struct device *dev, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { const struct spi_qmspi_config *devcfg = dev->config; struct spi_qmspi_data *qdata = dev->data; struct qmspi_regs *regs = devcfg->regs; regs->IEN = 0; regs->EXE = MCHP_QMSPI_EXE_CLR_FIFOS; regs->LDMA_RX_DESCR_BM = 0; regs->LDMA_TX_DESCR_BM = 0; regs->MODE &= ~(MCHP_QMSPI_M_LDMA_TX_EN | MCHP_QMSPI_M_LDMA_RX_EN); regs->STS = 0xffffffffu; regs->CTRL = encode_npins(qdata->np); qdata->qstatus = 0; #ifdef CONFIG_SPI_EXTENDED_MODES if (qdata->np != 1) { if (tx_bufs && rx_bufs) { LOG_ERR("Cannot specify both TX and RX buffers in half-duplex(dual/quad)"); return -EPROTONOSUPPORT; } } #endif return 0; } /* QMSPI Local-DMA transfer configuration: * Support full and half(dual/quad) duplex transfers. * Requires caller to have checked that only one direction was setup * in the SPI context: TX or RX not both. (refer to qmspi_xfr_cm_init) * Supports spi_buf's where data pointer is NULL and length non-zero. * These buffers are used as TX tri-state I/O clock only generation or * RX data discard for certain SPI command protocols using dual/quad I/O. * 1. Get largest contiguous data size from SPI context. * 2. If the SPI TX context has a non-zero length configure Local-DMA TX * channel 1 for contiguous data size. If TX context has valid buffer * configure channel to use context buffer with address increment. * If the TX buffer pointer is NULL interpret byte length as the number * of clocks to generate with output line(s) tri-stated. NOTE: The controller * must be configured with TX disabled to not drive output line(s) during * clock generation. Also, no data should be written to TX FIFO. The unit * size can be set to bits. The number of units to transfer must be computed * based upon the number of output pins in the IOM field: full-duplex is one * bit per clock, dual is 2 bits per clock, and quad is 4 bits per clock. * For example, if I/O lines is 4 (quad) meaning 4 bits per clock and the * user wants 7 clocks then the number of bit units is 4 * 7 = 28. * 3. If instead, the SPI RX context has a non-zero length configure Local-DMA * RX channel 1 for the contiguous data size. If RX context has a valid * buffer configure channel to use buffer with address increment else * configure channel for driver data temporary buffer without address * increment. * 4. Update QMSPI Control register. */ static uint32_t qmspi_ldma_encode_unit_size(uint32_t maddr, size_t len) { uint8_t temp = (maddr | (uint32_t)len) & 0x3u; if (temp == 0) { return MCHP_QMSPI_LDC_ASZ_4; } else if (temp == 2) { return MCHP_QMSPI_LDC_ASZ_2; } else { return MCHP_QMSPI_LDC_ASZ_1; } } static uint32_t qmspi_unit_size(size_t xfrlen) { if ((xfrlen & 0xfu) == 0u) { return 16u; } else if ((xfrlen & 0x3u) == 0u) { return 4u; } else { return 1u; } } static uint32_t qmspi_encode_unit_size(uint32_t units_in_bytes) { if (units_in_bytes == 16u) { return MCHP_QMSPI_C_XFR_UNITS_16; } else if (units_in_bytes == 4u) { return MCHP_QMSPI_C_XFR_UNITS_4; } else { return MCHP_QMSPI_C_XFR_UNITS_1; } } static size_t q_ldma_cfg(const struct device *dev) { const struct spi_qmspi_config *devcfg = dev->config; struct spi_qmspi_data *qdata = dev->data; struct spi_context *ctx = &qdata->ctx; struct qmspi_regs *regs = devcfg->regs; size_t ctx_xfr_len = spi_context_max_continuous_chunk(ctx); uint32_t ctrl, ldctrl, mstart, qunits, qxfru, xfrlen; regs->EXE = MCHP_QMSPI_EXE_CLR_FIFOS; regs->MODE &= ~(MCHP_QMSPI_M_LDMA_RX_EN | MCHP_QMSPI_M_LDMA_TX_EN); regs->LDRX[0].CTRL = 0; regs->LDRX[0].MSTART = 0; regs->LDRX[0].LEN = 0; regs->LDTX[0].CTRL = 0; regs->LDTX[0].MSTART = 0; regs->LDTX[0].LEN = 0; if (ctx_xfr_len == 0) { return 0; } qunits = qmspi_unit_size(ctx_xfr_len); ctrl = qmspi_encode_unit_size(qunits); qxfru = ctx_xfr_len / qunits; if (qxfru > 0x7fffu) { qxfru = 0x7fffu; } ctrl |= (qxfru << MCHP_QMSPI_C_XFR_NUNITS_POS); xfrlen = qxfru * qunits; #ifdef MCHP_XEC_QMSPI_DEBUG qdata->qunits = qunits; qdata->qxfru = qxfru; qdata->xfrlen = xfrlen; #endif if (spi_context_tx_buf_on(ctx)) { mstart = (uint32_t)ctx->tx_buf; ctrl |= MCHP_QMSPI_C_TX_DATA | MCHP_QMSPI_C_TX_LDMA_CH0; ldctrl = qmspi_ldma_encode_unit_size(mstart, xfrlen); ldctrl |= MCHP_QMSPI_LDC_INCR_EN | MCHP_QMSPI_LDC_EN; regs->MODE |= MCHP_QMSPI_M_LDMA_TX_EN; regs->LDTX[0].LEN = xfrlen; regs->LDTX[0].MSTART = mstart; regs->LDTX[0].CTRL = ldctrl; } if (spi_context_rx_buf_on(ctx)) { mstart = (uint32_t)ctx->rx_buf; ctrl |= MCHP_QMSPI_C_RX_LDMA_CH0 | MCHP_QMSPI_C_RX_EN; ldctrl = MCHP_QMSPI_LDC_EN | MCHP_QMSPI_LDC_INCR_EN; ldctrl |= qmspi_ldma_encode_unit_size(mstart, xfrlen); regs->MODE |= MCHP_QMSPI_M_LDMA_RX_EN; regs->LDRX[0].LEN = xfrlen; regs->LDRX[0].MSTART = mstart; regs->LDRX[0].CTRL = ldctrl; } regs->CTRL = (regs->CTRL & 0x3u) | ctrl; return xfrlen; } /* Start and wait for QMSPI synchronous transfer(s) to complete. * Initialize QMSPI controller for Local-DMA operation. * Iterate over SPI context with non-zero TX or RX data lengths. * 1. Configure QMSPI Control register and Local-DMA channel(s) * 2. Clear QMSPI status * 3. Start QMSPI transfer * 4. Poll QMSPI status for transfer done and DMA done with timeout. * 5. Hardware anomaly work-around: Poll with timeout QMSPI Local-DMA * TX and RX channels until hardware clears both channel enables. * This indicates hardware is really done with transfer to/from memory. * 6. Update SPI context with amount of data transmitted and received. * If SPI configuration hold chip select on flag is not set then instruct * QMSPI to de-assert chip select. * Set SPI context as complete */ static int qmspi_xfr_sync(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { const struct spi_qmspi_config *devcfg = dev->config; struct spi_qmspi_data *qdata = dev->data; struct spi_context *ctx = &qdata->ctx; struct qmspi_regs *regs = devcfg->regs; size_t xfr_len; int ret = qmspi_xfr_cm_init(dev, tx_bufs, rx_bufs); if (ret) { return ret; } while (spi_context_tx_on(ctx) || spi_context_rx_on(ctx)) { xfr_len = q_ldma_cfg(dev); regs->STS = 0xffffffffu; regs->EXE = MCHP_QMSPI_EXE_START; #ifdef MCHP_XEC_QMSPI_DEBUG uint32_t temp = regs->STS; while (!(temp & MCHP_QMSPI_STS_DONE)) { temp = regs->STS; } qdata->qstatus = temp; qdata->bufcnt_status = regs->BCNT_STS; qdata->rx_ldma_ctrl0 = regs->LDRX[0].CTRL; qdata->tx_ldma_ctrl0 = regs->LDTX[0].CTRL; #else uint32_t wcnt = 0; qdata->qstatus = regs->STS; while (!(qdata->qstatus & MCHP_QMSPI_STS_DONE)) { k_busy_wait(1u); if (++wcnt > XEC_QSPI_TIMEOUT_US) { regs->EXE = MCHP_QMSPI_EXE_STOP; return -ETIMEDOUT; } qdata->qstatus = regs->STS; } #endif spi_context_update_tx(ctx, 1, xfr_len); spi_context_update_rx(ctx, 1, xfr_len); } if (!(spi_cfg->operation & SPI_HOLD_ON_CS)) { regs->EXE = MCHP_QMSPI_EXE_STOP; } spi_context_complete(ctx, dev, 0); return 0; } #ifdef CONFIG_SPI_ASYNC /* Configure QMSPI such that QMSPI transfer FSM and LDMA FSM are synchronized. * Transfer length must be programmed into control/descriptor register(s) and * LDMA register(s). LDMA override length bit must NOT be set. */ static int qmspi_xfr_start_async(const struct device *dev, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { const struct spi_qmspi_config *devcfg = dev->config; struct spi_qmspi_data *qdata = dev->data; struct qmspi_regs *regs = devcfg->regs; int ret; ret = qmspi_xfr_cm_init(dev, tx_bufs, rx_bufs); if (ret) { return ret; } qdata->xfr_len = q_ldma_cfg(dev); if (!qdata->xfr_len) { return 0; /* nothing to do */ } regs->STS = 0xffffffffu; regs->EXE = MCHP_QMSPI_EXE_START; regs->IEN = MCHP_QMSPI_IEN_XFR_DONE | MCHP_QMSPI_IEN_PROG_ERR | MCHP_QMSPI_IEN_LDMA_RX_ERR | MCHP_QMSPI_IEN_LDMA_TX_ERR; return 0; } /* Wrapper to start asynchronous (interrupts enabled) SPI transaction */ static int qmspi_xfr_async(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { struct spi_qmspi_data *qdata = dev->data; int err = 0; qdata->qstatus = 0; qdata->xfr_len = 0; err = qmspi_xfr_start_async(dev, tx_bufs, rx_bufs); return err; } #endif /* CONFIG_SPI_ASYNC */ /* Start (a)synchronous transaction using QMSPI Local-DMA */ static int qmspi_transceive(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool asynchronous, spi_callback_t cb, void *user_data) { struct spi_qmspi_data *qdata = dev->data; struct spi_context *ctx = &qdata->ctx; int err = 0; if (!config) { return -EINVAL; } if (!tx_bufs && !rx_bufs) { return 0; } spi_context_lock(&qdata->ctx, asynchronous, cb, user_data, config); err = qmspi_configure(dev, config); if (err != 0) { spi_context_release(ctx, err); return err; } spi_context_cs_control(ctx, true); spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1); #ifdef CONFIG_SPI_ASYNC if (asynchronous) { qdata->cb = cb; qdata->userdata = user_data; err = qmspi_xfr_async(dev, config, tx_bufs, rx_bufs); } else { err = qmspi_xfr_sync(dev, config, tx_bufs, rx_bufs); } #else err = qmspi_xfr_sync(dev, config, tx_bufs, rx_bufs); #endif if (err) { /* de-assert CS# and give semaphore */ spi_context_unlock_unconditionally(ctx); return err; } if (asynchronous) { return err; } err = spi_context_wait_for_completion(ctx); if (!(config->operation & SPI_HOLD_ON_CS)) { spi_context_cs_control(ctx, false); } spi_context_release(ctx, err); return err; } static int qmspi_transceive_sync(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return qmspi_transceive(dev, config, tx_bufs, rx_bufs, false, NULL, NULL); } #ifdef CONFIG_SPI_ASYNC static int qmspi_transceive_async(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { return qmspi_transceive(dev, config, tx_bufs, rx_bufs, true, cb, userdata); } #endif /* CONFIG_SPI_ASYNC */ static int qmspi_release(const struct device *dev, const struct spi_config *config) { struct spi_qmspi_data *data = dev->data; const struct spi_qmspi_config *cfg = dev->config; struct qmspi_regs *regs = cfg->regs; int ret = 0; int counter = 0; if (regs->STS & MCHP_QMSPI_STS_ACTIVE_RO) { /* Force CS# to de-assert on next unit boundary */ regs->EXE = MCHP_QMSPI_EXE_STOP; while (regs->STS & MCHP_QMSPI_STS_ACTIVE_RO) { ret = xec_qmspi_spin_yield(&counter, XEC_QMSPI_WAIT_COUNT); if (ret != 0) { break; } } } spi_context_unlock_unconditionally(&data->ctx); return ret; } /* QMSPI interrupt handler called by Zephyr ISR * All transfers use QMSPI Local-DMA specified by the Control register. * QMSPI descriptor mode not used. * Full-duplex always uses LDMA TX channel 0 and RX channel 0 * Half-duplex(dual/quad) use one of TX channel 0 or RX channel 0 */ void qmspi_xec_isr(const struct device *dev) { const struct spi_qmspi_config *cfg = dev->config; struct spi_qmspi_data *data = dev->data; struct qmspi_regs *regs = cfg->regs; uint32_t qstatus = regs->STS; #ifdef CONFIG_SPI_ASYNC struct spi_context *ctx = &data->ctx; int xstatus = 0; #endif regs->IEN = 0; data->qstatus = qstatus; regs->STS = MCHP_QMSPI_STS_RW1C_MASK; mchp_xec_ecia_girq_src_clr(cfg->girq, cfg->girq_pos); #ifdef CONFIG_SPI_ASYNC if (qstatus & XEC_QSPI_HW_ERRORS_ALL) { xstatus = -EIO; data->qstatus |= BIT(7); regs->EXE = MCHP_QMSPI_EXE_STOP; spi_context_cs_control(ctx, false); spi_context_complete(ctx, dev, xstatus); if (data->cb) { data->cb(dev, xstatus, data->userdata); } return; } /* Clear Local-DMA enables in Mode and Control registers */ regs->MODE &= ~(MCHP_QMSPI_M_LDMA_RX_EN | MCHP_QMSPI_M_LDMA_TX_EN); regs->CTRL &= MCHP_QMSPI_C_IFM_MASK; spi_context_update_tx(ctx, 1, data->xfr_len); spi_context_update_rx(ctx, 1, data->xfr_len); data->xfr_len = q_ldma_cfg(dev); if (data->xfr_len) { regs->STS = 0xffffffffu; regs->EXE = MCHP_QMSPI_EXE_START; regs->IEN = MCHP_QMSPI_IEN_XFR_DONE | MCHP_QMSPI_IEN_PROG_ERR | MCHP_QMSPI_IEN_LDMA_RX_ERR | MCHP_QMSPI_IEN_LDMA_TX_ERR; return; } if (!(ctx->owner->operation & SPI_HOLD_ON_CS)) { regs->EXE = MCHP_QMSPI_EXE_STOP; spi_context_cs_control(&data->ctx, false); } spi_context_complete(&data->ctx, dev, xstatus); if (data->cb) { data->cb(dev, xstatus, data->userdata); } #endif /* CONFIG_SPI_ASYNC */ } #ifdef CONFIG_PM_DEVICE /* If the application wants the QMSPI pins to be disabled in suspend it must * define pinctr-1 values for each pin in the app/project DT overlay. */ static int qmspi_xec_pm_action(const struct device *dev, enum pm_device_action action) { const struct spi_qmspi_config *devcfg = dev->config; int ret; switch (action) { case PM_DEVICE_ACTION_RESUME: ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT); break; case PM_DEVICE_ACTION_SUSPEND: ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_SLEEP); if (ret == -ENOENT) { /* pinctrl-1 does not exist */ ret = 0; } break; default: ret = -ENOTSUP; } return ret; } #endif /* CONFIG_PM_DEVICE */ /* * Called for each QMSPI controller instance * Initialize QMSPI controller. * Disable sleep control. * Disable and clear interrupt status. * Initialize SPI context. * QMSPI will be fully configured and enabled when the transceive API * is called. */ static int qmspi_xec_init(const struct device *dev) { const struct spi_qmspi_config *cfg = dev->config; struct spi_qmspi_data *qdata = dev->data; struct qmspi_regs *regs = cfg->regs; clock_control_subsys_t clkss = (clock_control_subsys_t)MCHP_XEC_PCR_CLK_PERIPH_FAST; int ret = 0; qdata->base_freq_hz = 0u; qdata->qstatus = 0; qdata->np = cfg->width; #ifdef CONFIG_SPI_ASYNC qdata->xfr_len = 0; #endif if (!cfg->clk_dev) { LOG_ERR("XEC QMSPI-LDMA clock device not configured"); return -EINVAL; } ret = clock_control_on(cfg->clk_dev, (clock_control_subsys_t)&cfg->clksrc); if (ret < 0) { LOG_ERR("XEC QMSPI-LDMA enable clock source error %d", ret); return ret; } ret = clock_control_get_rate(cfg->clk_dev, clkss, &qdata->base_freq_hz); if (ret) { LOG_ERR("XEC QMSPI-LDMA clock get rate error %d", ret); return ret; } /* controller in known state before enabling pins */ qmspi_reset(regs); mchp_xec_ecia_girq_src_clr(cfg->girq, cfg->girq_pos); ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); if (ret != 0) { LOG_ERR("XEC QMSPI-LDMA pinctrl setup failed (%d)", ret); return ret; } /* default SPI Mode 0 signalling */ const struct spi_config spi_cfg = { .frequency = cfg->clock_freq, .operation = SPI_LINES_SINGLE | SPI_WORD_SET(8), }; ret = qmspi_configure(dev, &spi_cfg); if (ret) { LOG_ERR("XEC QMSPI-LDMA init configure failed (%d)", ret); return ret; } #ifdef CONFIG_SPI_ASYNC cfg->irq_config_func(); mchp_xec_ecia_enable(cfg->girq, cfg->girq_pos); #endif spi_context_unlock_unconditionally(&qdata->ctx); return 0; } static DEVICE_API(spi, spi_qmspi_xec_driver_api) = { .transceive = qmspi_transceive_sync, #ifdef CONFIG_SPI_ASYNC .transceive_async = qmspi_transceive_async, #endif #ifdef CONFIG_SPI_RTIO .iodev_submit = spi_rtio_iodev_default_submit, #endif .release = qmspi_release, }; #define XEC_QMSPI_CS_TIMING_VAL(a, b, c, d) (((a) & 0xFu) \ | (((b) & 0xFu) << 8) \ | (((c) & 0xFu) << 16) \ | (((d) & 0xFu) << 24)) #define XEC_QMSPI_TAPS_ADJ_VAL(a, b) (((a) & 0xffu) | (((b) & 0xffu) << 8)) #define XEC_QMSPI_CS_TIMING(i) XEC_QMSPI_CS_TIMING_VAL( \ DT_INST_PROP_OR(i, dcsckon, 6), \ DT_INST_PROP_OR(i, dckcsoff, 4), \ DT_INST_PROP_OR(i, dldh, 6), \ DT_INST_PROP_OR(i, dcsda, 6)) #define XEC_QMSPI_TAPS_ADJ(i) XEC_QMSPI_TAPS_ADJ_VAL( \ DT_INST_PROP_OR(i, tctradj, 0), \ DT_INST_PROP_OR(i, tsckadj, 0)) #define XEC_QMSPI_GIRQ(i) \ MCHP_XEC_ECIA_GIRQ(DT_INST_PROP_BY_IDX(i, girqs, 0)) #define XEC_QMSPI_GIRQ_POS(i) \ MCHP_XEC_ECIA_GIRQ_POS(DT_INST_PROP_BY_IDX(i, girqs, 0)) #define XEC_QMSPI_NVIC_AGGR(i) \ MCHP_XEC_ECIA_NVIC_AGGR(DT_INST_PROP_BY_IDX(i, girqs, 0)) #define XEC_QMSPI_NVIC_DIRECT(i) \ MCHP_XEC_ECIA_NVIC_DIRECT(DT_INST_PROP_BY_IDX(i, girqs, 0)) #define XEC_QMSPI_PCR_INFO(i) \ MCHP_XEC_PCR_SCR_ENCODE(DT_INST_CLOCKS_CELL(i, regidx), \ DT_INST_CLOCKS_CELL(i, bitpos), \ DT_INST_CLOCKS_CELL(i, domain)) /* * The instance number, i is not related to block ID's rather the * order the DT tools process all DT files in a build. */ #define QMSPI_XEC_DEVICE(i) \ \ PINCTRL_DT_INST_DEFINE(i); \ \ static void qmspi_xec_irq_config_func_##i(void) \ { \ IRQ_CONNECT(DT_INST_IRQN(i), \ DT_INST_IRQ(i, priority), \ qmspi_xec_isr, \ DEVICE_DT_INST_GET(i), 0); \ irq_enable(DT_INST_IRQN(i)); \ } \ \ static struct spi_qmspi_data qmspi_xec_data_##i = { \ SPI_CONTEXT_INIT_LOCK(qmspi_xec_data_##i, ctx), \ SPI_CONTEXT_INIT_SYNC(qmspi_xec_data_##i, ctx), \ }; \ static const struct spi_qmspi_config qmspi_xec_config_##i = { \ .regs = (struct qmspi_regs *) DT_INST_REG_ADDR(i), \ .clk_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(i)), \ .clksrc = { .pcr_info = XEC_QMSPI_PCR_INFO(i), }, \ .clock_freq = DT_INST_PROP_OR(i, clock_frequency, MHZ(12)), \ .cs1_freq = DT_INST_PROP_OR(i, cs1_freq, 0), \ .cs_timing = XEC_QMSPI_CS_TIMING(i), \ .taps_adj = XEC_QMSPI_TAPS_ADJ(i), \ .girq = XEC_QMSPI_GIRQ(i), \ .girq_pos = XEC_QMSPI_GIRQ_POS(i), \ .girq_nvic_aggr = XEC_QMSPI_NVIC_AGGR(i), \ .girq_nvic_direct = XEC_QMSPI_NVIC_DIRECT(i), \ .irq_pri = DT_INST_IRQ(i, priority), \ .chip_sel = DT_INST_PROP_OR(i, chip_select, 0), \ .width = DT_INST_PROP_OR(0, lines, 1), \ .irq_config_func = qmspi_xec_irq_config_func_##i, \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(i), \ }; \ PM_DEVICE_DT_INST_DEFINE(i, qmspi_xec_pm_action); \ SPI_DEVICE_DT_INST_DEFINE(i, qmspi_xec_init, \ PM_DEVICE_DT_INST_GET(i), \ &qmspi_xec_data_##i, &qmspi_xec_config_##i, \ POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \ &spi_qmspi_xec_driver_api); DT_INST_FOREACH_STATUS_OKAY(QMSPI_XEC_DEVICE)