/* * Copyright (c) 2017 Google LLC. * Copyright (c) 2018 qianfan Zhao. * Copyright (c) 2023 Gerson Fernando Budke. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT atmel_sam_spi #define LOG_LEVEL CONFIG_SPI_LOG_LEVEL #include LOG_MODULE_REGISTER(spi_sam); #include "spi_context.h" #include #include #include #include #include #include #include #include #include #include #include #include #define SAM_SPI_CHIP_SELECT_COUNT 4 /* Number of bytes in transfer before using DMA if available */ #define SAM_SPI_DMA_THRESHOLD 32 /* Device constant configuration parameters */ struct spi_sam_config { Spi *regs; const struct atmel_sam_pmc_config clock_cfg; const struct pinctrl_dev_config *pcfg; bool loopback; #ifdef CONFIG_SPI_SAM_DMA const struct device *dma_dev; const uint32_t dma_tx_channel; const uint32_t dma_tx_perid; const uint32_t dma_rx_channel; const uint32_t dma_rx_perid; #endif /* CONFIG_SPI_SAM_DMA */ }; /* Device run time data */ struct spi_sam_data { struct spi_context ctx; struct k_spinlock lock; #ifdef CONFIG_SPI_RTIO struct spi_rtio *rtio_ctx; #endif #ifdef CONFIG_SPI_SAM_DMA struct k_sem dma_sem; #endif /* CONFIG_SPI_SAM_DMA */ }; static inline k_spinlock_key_t spi_spin_lock(const struct device *dev) { struct spi_sam_data *data = dev->data; return k_spin_lock(&data->lock); } static inline void spi_spin_unlock(const struct device *dev, k_spinlock_key_t key) { struct spi_sam_data *data = dev->data; k_spin_unlock(&data->lock, key); } static int spi_slave_to_mr_pcs(int slave) { int pcs[SAM_SPI_CHIP_SELECT_COUNT] = {0x0, 0x1, 0x3, 0x7}; /* SPI worked in fixed peripheral mode(SPI_MR.PS = 0) and disabled chip * select decode(SPI_MR.PCSDEC = 0), based on Atmel | SMART ARM-based * Flash MCU DATASHEET 40.8.2 SPI Mode Register: * PCS = xxx0 NPCS[3:0] = 1110 * PCS = xx01 NPCS[3:0] = 1101 * PCS = x011 NPCS[3:0] = 1011 * PCS = 0111 NPCS[3:0] = 0111 */ return pcs[slave]; } static int spi_sam_configure(const struct device *dev, const struct spi_config *config) { const struct spi_sam_config *cfg = dev->config; struct spi_sam_data *data = dev->data; Spi *regs = cfg->regs; uint32_t spi_mr = 0U, spi_csr = 0U; uint16_t spi_csr_idx = spi_cs_is_gpio(config) ? 0 : config->slave; int div; if (spi_context_configured(&data->ctx, config)) { return 0; } if (config->operation & SPI_HALF_DUPLEX) { LOG_ERR("Half-duplex not supported"); return -ENOTSUP; } if (SPI_OP_MODE_GET(config->operation) != SPI_OP_MODE_MASTER) { /* Slave mode is not implemented. */ return -ENOTSUP; } if (config->slave > (SAM_SPI_CHIP_SELECT_COUNT - 1)) { LOG_ERR("Slave %d is greater than %d", config->slave, SAM_SPI_CHIP_SELECT_COUNT - 1); return -EINVAL; } /* Set master mode, disable mode fault detection, set fixed peripheral * select mode. */ spi_mr |= (SPI_MR_MSTR | SPI_MR_MODFDIS); spi_mr |= SPI_MR_PCS(spi_slave_to_mr_pcs(spi_csr_idx)); if (cfg->loopback) { spi_mr |= SPI_MR_LLB; } if ((config->operation & SPI_MODE_CPOL) != 0U) { spi_csr |= SPI_CSR_CPOL; } if ((config->operation & SPI_MODE_CPHA) == 0U) { spi_csr |= SPI_CSR_NCPHA; } if (SPI_WORD_SIZE_GET(config->operation) != 8) { return -ENOTSUP; } else { spi_csr |= SPI_CSR_BITS(SPI_CSR_BITS_8_BIT); } /* Use the requested or next highest possible frequency */ div = SOC_ATMEL_SAM_MCK_FREQ_HZ / config->frequency; div = CLAMP(div, 1, UINT8_MAX); spi_csr |= SPI_CSR_SCBR(div); regs->SPI_CR = SPI_CR_SPIDIS; /* Disable SPI */ regs->SPI_MR = spi_mr; regs->SPI_CSR[spi_csr_idx] = spi_csr; regs->SPI_CR = SPI_CR_SPIEN; /* Enable SPI */ data->ctx.config = config; return 0; } /* Finish any ongoing writes and drop any remaining read data */ static void spi_sam_finish(Spi *regs) { while ((regs->SPI_SR & SPI_SR_TXEMPTY) == 0) { } while (regs->SPI_SR & SPI_SR_RDRF) { (void)regs->SPI_RDR; } } /* Fast path that transmits a buf */ static void spi_sam_fast_tx(Spi *regs, const uint8_t *tx_buf, const uint32_t tx_buf_len) { const uint8_t *p = tx_buf; const uint8_t *pend = (uint8_t *)tx_buf + tx_buf_len; uint8_t ch; while (p != pend) { ch = *p++; while ((regs->SPI_SR & SPI_SR_TDRE) == 0) { } regs->SPI_TDR = SPI_TDR_TD(ch); } } /* Fast path that reads into a buf */ static void spi_sam_fast_rx(Spi *regs, uint8_t *rx_buf, const uint32_t rx_buf_len) { uint8_t *rx = rx_buf; int len = rx_buf_len; if (len <= 0) { return; } /* Write the first byte */ regs->SPI_TDR = SPI_TDR_TD(0); len--; while (len) { while ((regs->SPI_SR & SPI_SR_TDRE) == 0) { } /* Read byte N+0 from the receive register */ while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { } *rx = (uint8_t)regs->SPI_RDR; rx++; /* Load byte N+1 into the transmit register */ regs->SPI_TDR = SPI_TDR_TD(0); len--; } /* Read the final incoming byte */ while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { } *rx = (uint8_t)regs->SPI_RDR; } /* Fast path that writes and reads bufs of the same length */ static void spi_sam_fast_txrx(Spi *regs, const uint8_t *tx_buf, const uint8_t *rx_buf, const uint32_t len) { const uint8_t *tx = tx_buf; const uint8_t *txend = tx_buf + len; uint8_t *rx = (uint8_t *)rx_buf; if (len == 0) { return; } /* * The code below interleaves the transmit writes with the * receive reads to keep the bus fully utilised. The code is * equivalent to: * * Transmit byte 0 * Loop: * - Transmit byte n+1 * - Receive byte n * Receive the final byte */ /* Write the first byte */ regs->SPI_TDR = SPI_TDR_TD(*tx++); while (tx != txend) { while ((regs->SPI_SR & SPI_SR_TDRE) == 0) { } /* Load byte N+1 into the transmit register. TX is * single buffered and we have at most one byte in * flight so skip the DRE check. */ regs->SPI_TDR = SPI_TDR_TD(*tx++); /* Read byte N+0 from the receive register */ while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { } *rx++ = (uint8_t)regs->SPI_RDR; } /* Read the final incoming byte */ while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { } *rx = (uint8_t)regs->SPI_RDR; } #ifdef CONFIG_SPI_SAM_DMA static __aligned(4) uint32_t tx_dummy; static __aligned(4) uint32_t rx_dummy; #ifdef CONFIG_SPI_RTIO static void spi_sam_iodev_complete(const struct device *dev, int status); #endif static void dma_callback(const struct device *dma_dev, void *user_data, uint32_t channel, int status) { ARG_UNUSED(dma_dev); ARG_UNUSED(channel); ARG_UNUSED(status); const struct device *dev = user_data; struct spi_sam_data *drv_data = dev->data; #ifdef CONFIG_SPI_RTIO struct spi_rtio *rtio_ctx = drv_data->rtio_ctx; if (rtio_ctx->txn_head != NULL) { spi_sam_iodev_complete(dev, status); return; } #endif k_sem_give(&drv_data->dma_sem); } /* DMA transceive path */ static int spi_sam_dma_txrx(const struct device *dev, Spi *regs, const uint8_t *tx_buf, const uint8_t *rx_buf, const uint32_t len) { const struct spi_sam_config *drv_cfg = dev->config; struct spi_sam_data *drv_data = dev->data; #ifdef CONFIG_SPI_RTIO struct spi_rtio *rtio_ctx = drv_data->rtio_ctx; bool blocking = rtio_ctx->txn_head == NULL; #else bool blocking = true; #endif int res = 0; __ASSERT_NO_MSG(rx_buf != NULL || tx_buf != NULL); struct dma_config rx_dma_cfg = { .source_data_size = 1, .dest_data_size = 1, .block_count = 1, .dma_slot = drv_cfg->dma_rx_perid, .channel_direction = PERIPHERAL_TO_MEMORY, .source_burst_length = 1, .dest_burst_length = 1, .complete_callback_en = true, .dma_callback = NULL, .user_data = (void *)dev, }; uint32_t dest_address, dest_addr_adjust; if (rx_buf != NULL) { dest_address = (uint32_t)rx_buf; dest_addr_adjust = DMA_ADDR_ADJ_INCREMENT; } else { dest_address = (uint32_t)&rx_dummy; dest_addr_adjust = DMA_ADDR_ADJ_NO_CHANGE; } struct dma_block_config rx_block_cfg = { .dest_addr_adj = dest_addr_adjust, .block_size = len, .source_address = (uint32_t)®s->SPI_RDR, .dest_address = dest_address }; rx_dma_cfg.head_block = &rx_block_cfg; struct dma_config tx_dma_cfg = { .source_data_size = 1, .dest_data_size = 1, .block_count = 1, .dma_slot = drv_cfg->dma_tx_perid, .channel_direction = MEMORY_TO_PERIPHERAL, .source_burst_length = 1, .dest_burst_length = 1, .complete_callback_en = true, .dma_callback = dma_callback, .user_data = (void *)dev, }; uint32_t source_address, source_addr_adjust; if (tx_buf != NULL) { source_address = (uint32_t)tx_buf; source_addr_adjust = DMA_ADDR_ADJ_INCREMENT; } else { source_address = (uint32_t)&tx_dummy; source_addr_adjust = DMA_ADDR_ADJ_NO_CHANGE; } struct dma_block_config tx_block_cfg = { .source_addr_adj = source_addr_adjust, .block_size = len, .source_address = source_address, .dest_address = (uint32_t)®s->SPI_TDR }; tx_dma_cfg.head_block = &tx_block_cfg; res = dma_config(drv_cfg->dma_dev, drv_cfg->dma_rx_channel, &rx_dma_cfg); if (res != 0) { LOG_ERR("failed to configure SPI DMA RX"); goto out; } res = dma_config(drv_cfg->dma_dev, drv_cfg->dma_tx_channel, &tx_dma_cfg); if (res != 0) { LOG_ERR("failed to configure SPI DMA TX"); goto out; } /* Clocking begins on tx, so start rx first */ res = dma_start(drv_cfg->dma_dev, drv_cfg->dma_rx_channel); if (res != 0) { LOG_ERR("failed to start SPI DMA RX"); goto out; } res = dma_start(drv_cfg->dma_dev, drv_cfg->dma_tx_channel); if (res != 0) { LOG_ERR("failed to start SPI DMA TX"); dma_stop(drv_cfg->dma_dev, drv_cfg->dma_rx_channel); } /* Move up a level or wrap in branch when blocking */ if (blocking) { k_sem_take(&drv_data->dma_sem, K_FOREVER); spi_sam_finish(regs); } else { res = -EWOULDBLOCK; } out: return res; } #endif /* CONFIG_SPI_SAM_DMA */ static inline int spi_sam_rx(const struct device *dev, Spi *regs, uint8_t *rx_buf, uint32_t rx_buf_len) { k_spinlock_key_t key; #ifdef CONFIG_SPI_SAM_DMA const struct spi_sam_config *cfg = dev->config; if ((rx_buf_len < SAM_SPI_DMA_THRESHOLD || cfg->dma_dev == NULL) && !IS_ENABLED(CONFIG_SPI_RTIO)) { key = spi_spin_lock(dev); spi_sam_fast_rx(regs, rx_buf, rx_buf_len); } else { /* RTIO Transfers should always fall here */ return spi_sam_dma_txrx(dev, regs, NULL, rx_buf, rx_buf_len); } #else key = spi_spin_lock(dev); spi_sam_fast_rx(regs, rx_buf, rx_buf_len); #endif spi_sam_finish(regs); spi_spin_unlock(dev, key); return 0; } static inline int spi_sam_tx(const struct device *dev, Spi *regs, const uint8_t *tx_buf, uint32_t tx_buf_len) { k_spinlock_key_t key; #ifdef CONFIG_SPI_SAM_DMA const struct spi_sam_config *cfg = dev->config; if ((tx_buf_len < SAM_SPI_DMA_THRESHOLD || cfg->dma_dev == NULL) && !IS_ENABLED(CONFIG_SPI_RTIO)) { key = spi_spin_lock(dev); spi_sam_fast_tx(regs, tx_buf, tx_buf_len); } else { /* RTIO Transfers should always fall here */ return spi_sam_dma_txrx(dev, regs, tx_buf, NULL, tx_buf_len); } #else key = spi_spin_lock(dev); spi_sam_fast_tx(regs, tx_buf, tx_buf_len); #endif spi_sam_finish(regs); spi_spin_unlock(dev, key); return 0; } static inline int spi_sam_txrx(const struct device *dev, Spi *regs, const uint8_t *tx_buf, const uint8_t *rx_buf, uint32_t buf_len) { k_spinlock_key_t key; #ifdef CONFIG_SPI_SAM_DMA const struct spi_sam_config *cfg = dev->config; if ((buf_len < SAM_SPI_DMA_THRESHOLD || cfg->dma_dev == NULL) && !IS_ENABLED(CONFIG_SPI_RTIO)) { key = spi_spin_lock(dev); spi_sam_fast_txrx(regs, tx_buf, rx_buf, buf_len); } else { /* RTIO Transfers should always fall here */ return spi_sam_dma_txrx(dev, regs, tx_buf, rx_buf, buf_len); } #else key = spi_spin_lock(dev); spi_sam_fast_txrx(regs, tx_buf, rx_buf, buf_len); #endif spi_sam_finish(regs); spi_spin_unlock(dev, key); return 0; } #ifndef CONFIG_SPI_RTIO /* Fast path where every overlapping tx and rx buffer is the same length */ static void spi_sam_fast_transceive(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { const struct spi_sam_config *cfg = dev->config; size_t tx_count = 0; size_t rx_count = 0; Spi *regs = cfg->regs; const struct spi_buf *tx = NULL; const struct spi_buf *rx = NULL; if (tx_bufs) { tx = tx_bufs->buffers; tx_count = tx_bufs->count; } if (rx_bufs) { rx = rx_bufs->buffers; rx_count = rx_bufs->count; } while (tx_count != 0 && rx_count != 0) { if (tx->buf == NULL) { spi_sam_rx(dev, regs, rx->buf, rx->len); } else if (rx->buf == NULL) { spi_sam_tx(dev, regs, tx->buf, tx->len); } else if (rx->len == tx->len) { spi_sam_txrx(dev, regs, tx->buf, rx->buf, rx->len); } else { __ASSERT_NO_MSG("Invalid fast transceive configuration"); } tx++; tx_count--; rx++; rx_count--; } for (; tx_count != 0; tx_count--) { spi_sam_tx(dev, regs, tx->buf, tx->len); tx++; } for (; rx_count != 0; rx_count--) { spi_sam_rx(dev, regs, rx->buf, rx->len); rx++; } } static bool spi_sam_transfer_ongoing(struct spi_sam_data *data) { return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx); } static void spi_sam_shift_master(Spi *regs, struct spi_sam_data *data) { uint8_t tx; uint8_t rx; if (spi_context_tx_buf_on(&data->ctx)) { tx = *(uint8_t *)(data->ctx.tx_buf); } else { tx = 0U; } while ((regs->SPI_SR & SPI_SR_TDRE) == 0) { } regs->SPI_TDR = SPI_TDR_TD(tx); spi_context_update_tx(&data->ctx, 1, 1); while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { } rx = (uint8_t)regs->SPI_RDR; if (spi_context_rx_buf_on(&data->ctx)) { *data->ctx.rx_buf = rx; } spi_context_update_rx(&data->ctx, 1, 1); } /* Returns true if the request is suitable for the fast * path. Specifically, the bufs are a sequence of: * * - Zero or more RX and TX buf pairs where each is the same length. * - Zero or more trailing RX only bufs * - Zero or more trailing TX only bufs */ static bool spi_sam_is_regular(const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { const struct spi_buf *tx = NULL; const struct spi_buf *rx = NULL; size_t tx_count = 0; size_t rx_count = 0; if (tx_bufs) { tx = tx_bufs->buffers; tx_count = tx_bufs->count; } if (rx_bufs) { rx = rx_bufs->buffers; rx_count = rx_bufs->count; } if (!tx || !rx) { return true; } while (tx_count != 0 && rx_count != 0) { if (tx->len != rx->len) { return false; } tx++; tx_count--; rx++; rx_count--; } return true; } #else static void spi_sam_iodev_complete(const struct device *dev, int status); static void spi_sam_iodev_start(const struct device *dev) { const struct spi_sam_config *cfg = dev->config; struct spi_sam_data *data = dev->data; struct spi_rtio *rtio_ctx = data->rtio_ctx; struct rtio_sqe *sqe = &rtio_ctx->txn_curr->sqe; int ret = 0; switch (sqe->op) { case RTIO_OP_RX: ret = spi_sam_rx(dev, cfg->regs, sqe->rx.buf, sqe->rx.buf_len); break; case RTIO_OP_TX: ret = spi_sam_tx(dev, cfg->regs, sqe->tx.buf, sqe->tx.buf_len); break; case RTIO_OP_TINY_TX: ret = spi_sam_tx(dev, cfg->regs, sqe->tiny_tx.buf, sqe->tiny_tx.buf_len); break; case RTIO_OP_TXRX: ret = spi_sam_txrx(dev, cfg->regs, sqe->txrx.tx_buf, sqe->txrx.rx_buf, sqe->txrx.buf_len); break; default: LOG_ERR("Invalid op code %d for submission %p\n", sqe->op, (void *)sqe); spi_sam_iodev_complete(dev, -EINVAL); return; } /** Completion of the RTIO transfer should come through the DMA * callback when successful, otherwise complete it here as an error. */ if (ret != 0 && ret != -EWOULDBLOCK) { spi_sam_iodev_complete(dev, ret); } } static inline void spi_sam_iodev_prepare_start(const struct device *dev) { struct spi_sam_data *data = dev->data; struct spi_rtio *rtio_ctx = data->rtio_ctx; struct spi_dt_spec *spi_dt_spec = rtio_ctx->txn_curr->sqe.iodev->data; struct spi_config *spi_config = &spi_dt_spec->config; int err; err = spi_sam_configure(dev, spi_config); __ASSERT(!err, "%d", err); spi_context_cs_control(&data->ctx, true); } static void spi_sam_iodev_complete(const struct device *dev, int status) { struct spi_sam_data *data = dev->data; struct spi_rtio *rtio_ctx = data->rtio_ctx; if (!status && rtio_ctx->txn_curr->sqe.flags & RTIO_SQE_TRANSACTION) { rtio_ctx->txn_curr = rtio_txn_next(rtio_ctx->txn_curr); spi_sam_iodev_start(dev); } else { /** De-assert CS-line to space from next transaction */ spi_context_cs_control(&data->ctx, false); if (spi_rtio_complete(rtio_ctx, status)) { spi_sam_iodev_prepare_start(dev); spi_sam_iodev_start(dev); } } } static void spi_sam_iodev_submit(const struct device *dev, struct rtio_iodev_sqe *iodev_sqe) { struct spi_sam_data *data = dev->data; struct spi_rtio *rtio_ctx = data->rtio_ctx; if (spi_rtio_submit(rtio_ctx, iodev_sqe)) { spi_sam_iodev_prepare_start(dev); spi_sam_iodev_start(dev); } } #endif static int spi_sam_transceive(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { struct spi_sam_data *data = dev->data; int err = 0; spi_context_lock(&data->ctx, false, NULL, NULL, config); #if CONFIG_SPI_RTIO struct spi_rtio *rtio_ctx = data->rtio_ctx; err = spi_rtio_transceive(rtio_ctx, config, tx_bufs, rx_bufs); #else const struct spi_sam_config *cfg = dev->config; err = spi_sam_configure(dev, config); if (err != 0) { goto done; } spi_context_cs_control(&data->ctx, true); if (spi_sam_is_regular(tx_bufs, rx_bufs)) { spi_sam_fast_transceive(dev, config, tx_bufs, rx_bufs); } else { spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); do { spi_sam_shift_master(cfg->regs, data); } while (spi_sam_transfer_ongoing(data)); } spi_context_cs_control(&data->ctx, false); done: #endif spi_context_release(&data->ctx, err); return err; } static int spi_sam_transceive_sync(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return spi_sam_transceive(dev, config, tx_bufs, rx_bufs); } #ifdef CONFIG_SPI_ASYNC static int spi_sam_transceive_async(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { /* TODO: implement async transceive */ return -ENOTSUP; } #endif /* CONFIG_SPI_ASYNC */ static int spi_sam_release(const struct device *dev, const struct spi_config *config) { struct spi_sam_data *data = dev->data; spi_context_unlock_unconditionally(&data->ctx); return 0; } static int spi_sam_init(const struct device *dev) { int err; const struct spi_sam_config *cfg = dev->config; struct spi_sam_data *data = dev->data; /* Enable SPI clock in PMC */ (void)clock_control_on(SAM_DT_PMC_CONTROLLER, (clock_control_subsys_t)&cfg->clock_cfg); err = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); if (err < 0) { return err; } err = spi_context_cs_configure_all(&data->ctx); if (err < 0) { return err; } #ifdef CONFIG_SPI_SAM_DMA k_sem_init(&data->dma_sem, 0, K_SEM_MAX_LIMIT); #endif #ifdef CONFIG_SPI_RTIO spi_rtio_init(data->rtio_ctx, dev); #endif spi_context_unlock_unconditionally(&data->ctx); /* The device will be configured and enabled when transceive * is called. */ return 0; } static DEVICE_API(spi, spi_sam_driver_api) = { .transceive = spi_sam_transceive_sync, #ifdef CONFIG_SPI_ASYNC .transceive_async = spi_sam_transceive_async, #endif #ifdef CONFIG_SPI_RTIO .iodev_submit = spi_sam_iodev_submit, #endif .release = spi_sam_release, }; #define SPI_DMA_INIT(n) \ .dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, tx)), \ .dma_tx_channel = DT_INST_DMAS_CELL_BY_NAME(n, tx, channel), \ .dma_tx_perid = DT_INST_DMAS_CELL_BY_NAME(n, tx, perid), \ .dma_rx_channel = DT_INST_DMAS_CELL_BY_NAME(n, rx, channel), \ .dma_rx_perid = DT_INST_DMAS_CELL_BY_NAME(n, rx, perid), #ifdef CONFIG_SPI_SAM_DMA #define SPI_SAM_USE_DMA(n) DT_INST_DMAS_HAS_NAME(n, tx) #else #define SPI_SAM_USE_DMA(n) 0 #endif #define SPI_SAM_DEFINE_CONFIG(n) \ static const struct spi_sam_config spi_sam_config_##n = { \ .regs = (Spi *)DT_INST_REG_ADDR(n), \ .clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(n), \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \ .loopback = DT_INST_PROP(n, loopback), \ COND_CODE_1(SPI_SAM_USE_DMA(n), (SPI_DMA_INIT(n)), ()) \ } #define SPI_SAM_RTIO_DEFINE(n) SPI_RTIO_DEFINE(spi_sam_rtio_##n, \ CONFIG_SPI_SAM_RTIO_SQ_SIZE, \ CONFIG_SPI_SAM_RTIO_SQ_SIZE) #define SPI_SAM_DEVICE_INIT(n) \ PINCTRL_DT_INST_DEFINE(n); \ SPI_SAM_DEFINE_CONFIG(n); \ COND_CODE_1(CONFIG_SPI_RTIO, (SPI_SAM_RTIO_DEFINE(n)), ()); \ static struct spi_sam_data spi_sam_dev_data_##n = { \ SPI_CONTEXT_INIT_LOCK(spi_sam_dev_data_##n, ctx), \ SPI_CONTEXT_INIT_SYNC(spi_sam_dev_data_##n, ctx), \ SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \ IF_ENABLED(CONFIG_SPI_RTIO, (.rtio_ctx = &spi_sam_rtio_##n)) \ }; \ SPI_DEVICE_DT_INST_DEFINE(n, &spi_sam_init, NULL, \ &spi_sam_dev_data_##n, \ &spi_sam_config_##n, POST_KERNEL, \ CONFIG_SPI_INIT_PRIORITY, &spi_sam_driver_api); DT_INST_FOREACH_STATUS_OKAY(SPI_SAM_DEVICE_INIT)