/* * Copyright 2022 TOKITA Hiroshi * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT arm_pl022 #include #include #include #include #include #include #include #include #include #if defined(CONFIG_PINCTRL) #include #endif #if defined(CONFIG_SPI_PL022_DMA) #include #endif #define LOG_LEVEL CONFIG_SPI_LOG_LEVEL #include #include LOG_MODULE_REGISTER(spi_pl022); #include "spi_context.h" #define SSP_MASK(regname, name) GENMASK(SSP_##regname##_##name##_MSB, SSP_##regname##_##name##_LSB) /* PL022 Register definitions */ /* * Macros to access SSP Registers with their offsets */ #define SSP_CR0(r) (r + 0x000) #define SSP_CR1(r) (r + 0x004) #define SSP_DR(r) (r + 0x008) #define SSP_SR(r) (r + 0x00C) #define SSP_CPSR(r) (r + 0x010) #define SSP_IMSC(r) (r + 0x014) #define SSP_RIS(r) (r + 0x018) #define SSP_MIS(r) (r + 0x01C) #define SSP_ICR(r) (r + 0x020) #define SSP_DMACR(r) (r + 0x024) /* * Control Register 0 */ #define SSP_CR0_SCR_MSB 15 #define SSP_CR0_SCR_LSB 8 #define SSP_CR0_SPH_MSB 7 #define SSP_CR0_SPH_LSB 7 #define SSP_CR0_SPO_MSB 6 #define SSP_CR0_SPO_LSB 6 #define SSP_CR0_FRF_MSB 5 #define SSP_CR0_FRF_LSB 4 #define SSP_CR0_DSS_MSB 3 #define SSP_CR0_DSS_LSB 0 /* Data size select */ #define SSP_CR0_MASK_DSS SSP_MASK(CR0, DSS) /* Frame format */ #define SSP_CR0_MASK_FRF SSP_MASK(CR0, FRF) /* Polarity */ #define SSP_CR0_MASK_SPO SSP_MASK(CR0, SPO) /* Phase */ #define SSP_CR0_MASK_SPH SSP_MASK(CR0, SPH) /* Serial Clock Rate */ #define SSP_CR0_MASK_SCR SSP_MASK(CR0, SCR) /* * Control Register 1 */ #define SSP_CR1_SOD_MSB 3 #define SSP_CR1_SOD_LSB 3 #define SSP_CR1_MS_MSB 2 #define SSP_CR1_MS_LSB 2 #define SSP_CR1_SSE_MSB 1 #define SSP_CR1_SSE_LSB 1 #define SSP_CR1_LBM_MSB 0 #define SSP_CR1_LBM_LSB 0 /* Loopback Mode */ #define SSP_CR1_MASK_LBM SSP_MASK(CR1, LBM) /* Port Enable */ #define SSP_CR1_MASK_SSE SSP_MASK(CR1, SSE) /* Controller/Peripheral (Master/Slave) select */ #define SSP_CR1_MASK_MS SSP_MASK(CR1, MS) /* Peripheral (Slave) mode output disabled */ #define SSP_CR1_MASK_SOD SSP_MASK(CR1, SOD) /* * Status Register */ #define SSP_SR_BSY_MSB 4 #define SSP_SR_BSY_LSB 4 #define SSP_SR_RFF_MSB 3 #define SSP_SR_RFF_LSB 3 #define SSP_SR_RNE_MSB 2 #define SSP_SR_RNE_LSB 2 #define SSP_SR_TNF_MSB 1 #define SSP_SR_TNF_LSB 1 #define SSP_SR_TFE_MSB 0 #define SSP_SR_TFE_LSB 0 /* TX FIFO empty */ #define SSP_SR_MASK_TFE SSP_MASK(SR, TFE) /* TX FIFO not full */ #define SSP_SR_MASK_TNF SSP_MASK(SR, TNF) /* RX FIFO not empty */ #define SSP_SR_MASK_RNE SSP_MASK(SR, RNE) /* RX FIFO full */ #define SSP_SR_MASK_RFF SSP_MASK(SR, RFF) /* Busy Flag */ #define SSP_SR_MASK_BSY SSP_MASK(SR, BSY) /* * Clock Prescale Register */ #define SSP_CPSR_CPSDVSR_MSB 7 #define SSP_CPSR_CPSDVSR_LSB 0 /* Clock prescale divider */ #define SSP_CPSR_MASK_CPSDVSR SSP_MASK(CPSR, CPSDVSR) /* * Interrupt Mask Set/Clear Register */ #define SSP_IMSC_TXIM_MSB 3 #define SSP_IMSC_TXIM_LSB 3 #define SSP_IMSC_RXIM_MSB 2 #define SSP_IMSC_RXIM_LSB 2 #define SSP_IMSC_RTIM_MSB 1 #define SSP_IMSC_RTIM_LSB 1 #define SSP_IMSC_RORIM_MSB 0 #define SSP_IMSC_RORIM_LSB 0 /* Receive Overrun Interrupt mask */ #define SSP_IMSC_MASK_RORIM SSP_MASK(IMSC, RORIM) /* Receive timeout Interrupt mask */ #define SSP_IMSC_MASK_RTIM SSP_MASK(IMSC, RTIM) /* Receive FIFO Interrupt mask */ #define SSP_IMSC_MASK_RXIM SSP_MASK(IMSC, RXIM) /* Transmit FIFO Interrupt mask */ #define SSP_IMSC_MASK_TXIM SSP_MASK(IMSC, TXIM) /* * Raw Interrupt Status Register */ #define SSP_RIS_TXRIS_MSB 3 #define SSP_RIS_TXRIS_LSB 3 #define SSP_RIS_RXRIS_MSB 2 #define SSP_RIS_RXRIS_LSB 2 #define SSP_RIS_RTRIS_MSB 1 #define SSP_RIS_RTRIS_LSB 1 #define SSP_RIS_RORRIS_MSB 0 #define SSP_RIS_RORRIS_LSB 0 /* Receive Overrun Raw Interrupt status */ #define SSP_RIS_MASK_RORRIS SSP_MASK(RIS, RORRIS) /* Receive Timeout Raw Interrupt status */ #define SSP_RIS_MASK_RTRIS SSP_MASK(RIS, RTRIS) /* Receive FIFO Raw Interrupt status */ #define SSP_RIS_MASK_RXRIS SSP_MASK(RIS, RXRIS) /* Transmit FIFO Raw Interrupt status */ #define SSP_RIS_MASK_TXRIS SSP_MASK(RIS, TXRIS) /* * Masked Interrupt Status Register */ #define SSP_MIS_TXMIS_MSB 3 #define SSP_MIS_TXMIS_LSB 3 #define SSP_MIS_RXMIS_MSB 2 #define SSP_MIS_RXMIS_LSB 2 #define SSP_MIS_RTMIS_MSB 1 #define SSP_MIS_RTMIS_LSB 1 #define SSP_MIS_RORMIS_MSB 0 #define SSP_MIS_RORMIS_LSB 0 /* Receive Overrun Masked Interrupt status */ #define SSP_MIS_MASK_RORMIS SSP_MASK(MIS, RORMIS) /* Receive Timeout Masked Interrupt status */ #define SSP_MIS_MASK_RTMIS SSP_MASK(MIS, RTMIS) /* Receive FIFO Masked Interrupt status */ #define SSP_MIS_MASK_RXMIS SSP_MASK(MIS, RXMIS) /* Transmit FIFO Masked Interrupt status */ #define SSP_MIS_MASK_TXMIS SSP_MASK(MIS, TXMIS) /* * Interrupt Clear Register */ #define SSP_ICR_RTIC_MSB 1 #define SSP_ICR_RTIC_LSB 1 #define SSP_ICR_RORIC_MSB 0 #define SSP_ICR_RORIC_LSB 0 /* Receive Overrun Raw Clear Interrupt bit */ #define SSP_ICR_MASK_RORIC SSP_MASK(ICR, RORIC) /* Receive Timeout Clear Interrupt bit */ #define SSP_ICR_MASK_RTIC SSP_MASK(ICR, RTIC) /* * DMA Control Register */ #define SSP_DMACR_TXDMAE_MSB 1 #define SSP_DMACR_TXDMAE_LSB 1 #define SSP_DMACR_RXDMAE_MSB 0 #define SSP_DMACR_RXDMAE_LSB 0 /* Receive DMA Enable bit */ #define SSP_DMACR_MASK_RXDMAE SSP_MASK(DMACR, RXDMAE) /* Transmit DMA Enable bit */ #define SSP_DMACR_MASK_TXDMAE SSP_MASK(DMACR, TXDMAE) /* End register definitions */ /* * Clock Parameter ranges */ #define CPSDVR_MIN 0x02 #define CPSDVR_MAX 0xFE #define SCR_MIN 0x00 #define SCR_MAX 0xFF /* Fifo depth */ #define SSP_FIFO_DEPTH 8 /* * Register READ/WRITE macros */ #define SSP_READ_REG(reg) (*((volatile uint32_t *)reg)) #define SSP_WRITE_REG(reg, val) (*((volatile uint32_t *)reg) = val) #define SSP_CLEAR_REG(reg, val) (*((volatile uint32_t *)reg) &= ~(val)) /* * Status check macros */ #define SSP_BUSY(reg) (SSP_READ_REG(SSP_SR(reg)) & SSP_SR_MASK_BSY) #define SSP_RX_FIFO_NOT_EMPTY(reg) (SSP_READ_REG(SSP_SR(reg)) & SSP_SR_MASK_RNE) #define SSP_TX_FIFO_EMPTY(reg) (SSP_READ_REG(SSP_SR(reg)) & SSP_SR_MASK_TFE) #define SSP_TX_FIFO_NOT_FULL(reg) (SSP_READ_REG(SSP_SR(reg)) & SSP_SR_MASK_TNF) #if defined(CONFIG_SPI_PL022_DMA) enum spi_pl022_dma_direction { TX = 0, RX, NUM_OF_DIRECTION }; struct spi_pl022_dma_config { const struct device *dev; uint32_t channel; uint32_t channel_config; uint32_t slot; }; struct spi_pl022_dma_data { struct dma_config config; struct dma_block_config block; uint32_t count; bool callbacked; }; #endif /* * Max frequency */ #define MAX_FREQ_CONTROLLER_MODE(pclk) ((pclk) / 2) #define MAX_FREQ_PERIPHERAL_MODE(pclk) ((pclk) / 12) struct spi_pl022_cfg { const uint32_t reg; const uint32_t pclk; const bool dma_enabled; #if defined(CONFIG_CLOCK_CONTROL) const struct device *clk_dev; const clock_control_subsys_t clk_id; #endif #if defined(CONFIG_RESET) const struct reset_dt_spec reset; #endif #if defined(CONFIG_PINCTRL) const struct pinctrl_dev_config *pincfg; #endif #if defined(CONFIG_SPI_PL022_INTERRUPT) void (*irq_config)(const struct device *port); #endif #if defined(CONFIG_SPI_PL022_DMA) const struct spi_pl022_dma_config dma[NUM_OF_DIRECTION]; #endif }; struct spi_pl022_data { struct spi_context ctx; uint32_t tx_count; uint32_t rx_count; struct k_spinlock lock; #if defined(CONFIG_SPI_PL022_DMA) struct spi_pl022_dma_data dma[NUM_OF_DIRECTION]; #endif }; #if defined(CONFIG_SPI_PL022_DMA) static uint32_t dummy_tx; static uint32_t dummy_rx; #endif /* Helper Functions */ static inline uint32_t spi_pl022_calc_prescale(const uint32_t pclk, const uint32_t baud) { uint32_t prescale; /* prescale only can take even number */ for (prescale = CPSDVR_MIN; prescale < CPSDVR_MAX; prescale += 2) { if (pclk < (prescale + 2) * CPSDVR_MAX * baud) { break; } } return prescale; } static inline uint32_t spi_pl022_calc_postdiv(const uint32_t pclk, const uint32_t baud, const uint32_t prescale) { uint32_t postdiv; for (postdiv = SCR_MAX + 1; postdiv > SCR_MIN + 1; --postdiv) { if (pclk / (prescale * (postdiv - 1)) > baud) { break; } } return postdiv - 1; } static int spi_pl022_configure(const struct device *dev, const struct spi_config *spicfg) { const struct spi_pl022_cfg *cfg = dev->config; struct spi_pl022_data *data = dev->data; const uint16_t op = spicfg->operation; uint32_t prescale; uint32_t postdiv; uint32_t pclk = 0; uint32_t cr0; uint32_t cr1; int ret; if (spi_context_configured(&data->ctx, spicfg)) { return 0; } #if defined(CONFIG_CLOCK_CONTROL) ret = clock_control_get_rate(cfg->clk_dev, cfg->clk_id, &pclk); if (ret < 0 || pclk == 0) { return -EINVAL; } #endif if (spicfg->frequency > MAX_FREQ_CONTROLLER_MODE(pclk)) { LOG_ERR("Frequency is up to %u in controller mode.", MAX_FREQ_CONTROLLER_MODE(pclk)); return -ENOTSUP; } if (op & SPI_TRANSFER_LSB) { LOG_ERR("LSB-first not supported"); return -ENOTSUP; } /* Half-duplex mode has not been implemented */ if (op & SPI_HALF_DUPLEX) { LOG_ERR("Half-duplex not supported"); return -ENOTSUP; } /* Peripheral mode has not been implemented */ if (SPI_OP_MODE_GET(op) != SPI_OP_MODE_MASTER) { LOG_ERR("Peripheral mode is not supported"); return -ENOTSUP; } /* Word sizes other than 8 bits has not been implemented */ if (SPI_WORD_SIZE_GET(op) != 8) { LOG_ERR("Word sizes other than 8 bits are not supported"); return -ENOTSUP; } /* configure registers */ prescale = spi_pl022_calc_prescale(pclk, spicfg->frequency); postdiv = spi_pl022_calc_postdiv(pclk, spicfg->frequency, prescale); cr0 = 0; cr0 |= (postdiv << SSP_CR0_SCR_LSB); cr0 |= (SPI_WORD_SIZE_GET(op) - 1); cr0 |= (op & SPI_MODE_CPOL) ? SSP_CR0_MASK_SPO : 0; cr0 |= (op & SPI_MODE_CPHA) ? SSP_CR0_MASK_SPH : 0; cr1 = 0; cr1 |= SSP_CR1_MASK_SSE; /* Always enable SPI */ cr1 |= (op & SPI_MODE_LOOP) ? SSP_CR1_MASK_LBM : 0; SSP_WRITE_REG(SSP_CPSR(cfg->reg), prescale); SSP_WRITE_REG(SSP_CR0(cfg->reg), cr0); SSP_WRITE_REG(SSP_CR1(cfg->reg), cr1); #if defined(CONFIG_SPI_PL022_INTERRUPT) if (!cfg->dma_enabled) { SSP_WRITE_REG(SSP_IMSC(cfg->reg), SSP_IMSC_MASK_RORIM | SSP_IMSC_MASK_RTIM | SSP_IMSC_MASK_RXIM); } #endif data->ctx.config = spicfg; return 0; } static inline bool spi_pl022_transfer_ongoing(struct spi_pl022_data *data) { return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx); } #if defined(CONFIG_SPI_PL022_DMA) static void spi_pl022_dma_callback(const struct device *dma_dev, void *arg, uint32_t channel, int status); static size_t spi_pl022_dma_enabled_num(const struct device *dev) { const struct spi_pl022_cfg *cfg = dev->config; return cfg->dma_enabled ? 2 : 0; } static uint32_t spi_pl022_dma_setup(const struct device *dev, const uint32_t dir) { const struct spi_pl022_cfg *cfg = dev->config; struct spi_pl022_data *data = dev->data; struct dma_config *dma_cfg = &data->dma[dir].config; struct dma_block_config *block_cfg = &data->dma[dir].block; const struct spi_pl022_dma_config *dma = &cfg->dma[dir]; int ret; memset(dma_cfg, 0, sizeof(struct dma_config)); memset(block_cfg, 0, sizeof(struct dma_block_config)); dma_cfg->source_burst_length = 1; dma_cfg->dest_burst_length = 1; dma_cfg->user_data = (void *)dev; dma_cfg->block_count = 1U; dma_cfg->head_block = block_cfg; dma_cfg->dma_slot = cfg->dma[dir].slot; dma_cfg->channel_direction = dir == TX ? MEMORY_TO_PERIPHERAL : PERIPHERAL_TO_MEMORY; if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) { dma_cfg->source_data_size = 1; dma_cfg->dest_data_size = 1; } else { dma_cfg->source_data_size = 2; dma_cfg->dest_data_size = 2; } block_cfg->block_size = spi_context_max_continuous_chunk(&data->ctx); if (dir == TX) { dma_cfg->dma_callback = spi_pl022_dma_callback; block_cfg->dest_address = SSP_DR(cfg->reg); block_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; if (spi_context_tx_buf_on(&data->ctx)) { block_cfg->source_address = (uint32_t)data->ctx.tx_buf; block_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { block_cfg->source_address = (uint32_t)&dummy_tx; block_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } } if (dir == RX) { dma_cfg->dma_callback = spi_pl022_dma_callback; block_cfg->source_address = SSP_DR(cfg->reg); block_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; if (spi_context_rx_buf_on(&data->ctx)) { block_cfg->dest_address = (uint32_t)data->ctx.rx_buf; block_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { block_cfg->dest_address = (uint32_t)&dummy_rx; block_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } } ret = dma_config(dma->dev, dma->channel, dma_cfg); if (ret < 0) { LOG_ERR("dma_config %p failed %d\n", dma->dev, ret); return ret; } data->dma[dir].callbacked = false; ret = dma_start(dma->dev, dma->channel); if (ret < 0) { LOG_ERR("dma_start %p failed %d\n", dma->dev, ret); return ret; } return 0; } static int spi_pl022_start_dma_transceive(const struct device *dev) { const struct spi_pl022_cfg *cfg = dev->config; int ret = 0; SSP_CLEAR_REG(SSP_DMACR(cfg->reg), SSP_DMACR_MASK_RXDMAE | SSP_DMACR_MASK_TXDMAE); for (size_t i = 0; i < spi_pl022_dma_enabled_num(dev); i++) { ret = spi_pl022_dma_setup(dev, i); if (ret < 0) { goto on_error; } } SSP_WRITE_REG(SSP_DMACR(cfg->reg), SSP_DMACR_MASK_RXDMAE | SSP_DMACR_MASK_TXDMAE); on_error: if (ret < 0) { for (size_t i = 0; i < spi_pl022_dma_enabled_num(dev); i++) { dma_stop(cfg->dma[i].dev, cfg->dma[i].channel); } } return ret; } static bool spi_pl022_chunk_transfer_finished(const struct device *dev) { struct spi_pl022_data *data = dev->data; struct spi_pl022_dma_data *dma = data->dma; const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx); return (MIN(dma[TX].count, dma[RX].count) >= chunk_len); } static void spi_pl022_complete(const struct device *dev, int status) { struct spi_pl022_data *data = dev->data; const struct spi_pl022_cfg *cfg = dev->config; for (size_t i = 0; i < spi_pl022_dma_enabled_num(dev); i++) { dma_stop(cfg->dma[i].dev, cfg->dma[i].channel); } spi_context_complete(&data->ctx, dev, status); } static void spi_pl022_dma_callback(const struct device *dma_dev, void *arg, uint32_t channel, int status) { const struct device *dev = (const struct device *)arg; const struct spi_pl022_cfg *cfg = dev->config; struct spi_pl022_data *data = dev->data; bool complete = false; k_spinlock_key_t key; size_t chunk_len; int err = 0; if (status < 0) { key = k_spin_lock(&data->lock); LOG_ERR("dma:%p ch:%d callback gets error: %d", dma_dev, channel, status); spi_pl022_complete(dev, status); k_spin_unlock(&data->lock, key); return; } key = k_spin_lock(&data->lock); chunk_len = spi_context_max_continuous_chunk(&data->ctx); for (size_t i = 0; i < ARRAY_SIZE(cfg->dma); i++) { if (dma_dev == cfg->dma[i].dev && channel == cfg->dma[i].channel) { data->dma[i].count += chunk_len; data->dma[i].callbacked = true; } } /* Check transfer finished. * The transmission of this chunk is complete if both the dma[TX].count * and the dma[RX].count reach greater than or equal to the chunk_len. * chunk_len is zero here means the transfer is already complete. */ if (spi_pl022_chunk_transfer_finished(dev)) { if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) { spi_context_update_tx(&data->ctx, 1, chunk_len); spi_context_update_rx(&data->ctx, 1, chunk_len); } else { spi_context_update_tx(&data->ctx, 2, chunk_len); spi_context_update_rx(&data->ctx, 2, chunk_len); } if (spi_pl022_transfer_ongoing(data)) { /* Next chunk is available, reset the count and * continue processing */ data->dma[TX].count = 0; data->dma[RX].count = 0; } else { /* All data is processed, complete the process */ complete = true; } } if (!complete && data->dma[TX].callbacked && data->dma[RX].callbacked) { err = spi_pl022_start_dma_transceive(dev); if (err) { complete = true; } } if (complete) { spi_pl022_complete(dev, err); } k_spin_unlock(&data->lock, key); } #endif /* DMA */ #if defined(CONFIG_SPI_PL022_INTERRUPT) static void spi_pl022_async_xfer(const struct device *dev) { const struct spi_pl022_cfg *cfg = dev->config; struct spi_pl022_data *data = dev->data; struct spi_context *ctx = &data->ctx; /* Process by per chunk */ size_t chunk_len = spi_context_max_continuous_chunk(ctx); uint32_t txrx; /* Read RX FIFO */ while (SSP_RX_FIFO_NOT_EMPTY(cfg->reg) && (data->rx_count < chunk_len)) { txrx = SSP_READ_REG(SSP_DR(cfg->reg)); /* Discard received data if rx buffer not assigned */ if (ctx->rx_buf) { *(((uint8_t *)ctx->rx_buf) + data->rx_count) = (uint8_t)txrx; } data->rx_count++; } /* Check transfer finished. * The transmission of this chunk is complete if both the tx_count * and the rx_count reach greater than or equal to the chunk_len. * chunk_len is zero here means the transfer is already complete. */ if (MIN(data->tx_count, data->rx_count) >= chunk_len && chunk_len > 0) { spi_context_update_tx(ctx, 1, chunk_len); spi_context_update_rx(ctx, 1, chunk_len); if (spi_pl022_transfer_ongoing(data)) { /* Next chunk is available, reset the count and continue processing */ data->tx_count = 0; data->rx_count = 0; chunk_len = spi_context_max_continuous_chunk(ctx); } else { /* All data is processed, complete the process */ spi_context_complete(ctx, dev, 0); return; } } /* Fill up TX FIFO */ for (uint32_t i = 0; i < SSP_FIFO_DEPTH; i++) { if ((data->tx_count < chunk_len) && SSP_TX_FIFO_NOT_FULL(cfg->reg)) { /* Send 0 in the case of read only operation */ txrx = 0; if (ctx->tx_buf) { txrx = *(((uint8_t *)ctx->tx_buf) + data->tx_count); } SSP_WRITE_REG(SSP_DR(cfg->reg), txrx); data->tx_count++; } else { break; } } } static void spi_pl022_start_async_xfer(const struct device *dev) { const struct spi_pl022_cfg *cfg = dev->config; struct spi_pl022_data *data = dev->data; /* Ensure writable */ while (!SSP_TX_FIFO_EMPTY(cfg->reg)) { ; } /* Drain RX FIFO */ while (SSP_RX_FIFO_NOT_EMPTY(cfg->reg)) { SSP_READ_REG(SSP_DR(cfg->reg)); } data->tx_count = 0; data->rx_count = 0; SSP_WRITE_REG(SSP_ICR(cfg->reg), SSP_ICR_MASK_RORIC | SSP_ICR_MASK_RTIC); spi_pl022_async_xfer(dev); } static void spi_pl022_isr(const struct device *dev) { const struct spi_pl022_cfg *cfg = dev->config; struct spi_pl022_data *data = dev->data; struct spi_context *ctx = &data->ctx; uint32_t mis = SSP_READ_REG(SSP_MIS(cfg->reg)); if (mis & SSP_MIS_MASK_RORMIS) { SSP_WRITE_REG(SSP_IMSC(cfg->reg), 0); spi_context_complete(ctx, dev, -EIO); } else { spi_pl022_async_xfer(dev); } SSP_WRITE_REG(SSP_ICR(cfg->reg), SSP_ICR_MASK_RORIC | SSP_ICR_MASK_RTIC); } #else static void spi_pl022_xfer(const struct device *dev) { const struct spi_pl022_cfg *cfg = dev->config; struct spi_pl022_data *data = dev->data; const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx); const void *txbuf = data->ctx.tx_buf; void *rxbuf = data->ctx.rx_buf; uint32_t txrx; size_t fifo_cnt = 0; data->tx_count = 0; data->rx_count = 0; /* Ensure writable */ while (!SSP_TX_FIFO_EMPTY(cfg->reg)) { ; } /* Drain RX FIFO */ while (SSP_RX_FIFO_NOT_EMPTY(cfg->reg)) { SSP_READ_REG(SSP_DR(cfg->reg)); } while (data->rx_count < chunk_len || data->tx_count < chunk_len) { /* Fill up fifo with available TX data */ while (SSP_TX_FIFO_NOT_FULL(cfg->reg) && data->tx_count < chunk_len && fifo_cnt < SSP_FIFO_DEPTH) { /* Send 0 in the case of read only operation */ txrx = 0; if (txbuf) { txrx = ((uint8_t *)txbuf)[data->tx_count]; } SSP_WRITE_REG(SSP_DR(cfg->reg), txrx); data->tx_count++; fifo_cnt++; } while (data->rx_count < chunk_len && fifo_cnt > 0) { if (!SSP_RX_FIFO_NOT_EMPTY(cfg->reg)) { continue; } txrx = SSP_READ_REG(SSP_DR(cfg->reg)); /* Discard received data if rx buffer not assigned */ if (rxbuf) { ((uint8_t *)rxbuf)[data->rx_count] = (uint8_t)txrx; } data->rx_count++; fifo_cnt--; } } } #endif static int spi_pl022_transceive_impl(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { const struct spi_pl022_cfg *cfg = dev->config; struct spi_pl022_data *data = dev->data; struct spi_context *ctx = &data->ctx; int ret; spi_context_lock(&data->ctx, (cb ? true : false), cb, userdata, config); ret = spi_pl022_configure(dev, config); if (ret < 0) { goto error; } spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1); spi_context_cs_control(ctx, true); if (cfg->dma_enabled) { #if defined(CONFIG_SPI_PL022_DMA) for (size_t i = 0; i < ARRAY_SIZE(data->dma); i++) { struct dma_status stat = {.busy = true}; dma_stop(cfg->dma[i].dev, cfg->dma[i].channel); while (stat.busy) { dma_get_status(cfg->dma[i].dev, cfg->dma[i].channel, &stat); } data->dma[i].count = 0; } ret = spi_pl022_start_dma_transceive(dev); if (ret < 0) { spi_context_cs_control(ctx, false); goto error; } ret = spi_context_wait_for_completion(ctx); #endif } else #if defined(CONFIG_SPI_PL022_INTERRUPT) { spi_pl022_start_async_xfer(dev); ret = spi_context_wait_for_completion(ctx); } #else { do { spi_pl022_xfer(dev); spi_context_update_tx(ctx, 1, data->tx_count); spi_context_update_rx(ctx, 1, data->rx_count); } while (spi_pl022_transfer_ongoing(data)); #if defined(CONFIG_SPI_ASYNC) spi_context_complete(&data->ctx, dev, ret); #endif } #endif spi_context_cs_control(ctx, false); error: spi_context_release(&data->ctx, ret); return ret; } /* API Functions */ static int spi_pl022_transceive(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return spi_pl022_transceive_impl(dev, config, tx_bufs, rx_bufs, NULL, NULL); } #if defined(CONFIG_SPI_ASYNC) static int spi_pl022_transceive_async(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { return spi_pl022_transceive_impl(dev, config, tx_bufs, rx_bufs, cb, userdata); } #endif static int spi_pl022_release(const struct device *dev, const struct spi_config *config) { struct spi_pl022_data *data = dev->data; spi_context_unlock_unconditionally(&data->ctx); return 0; } static DEVICE_API(spi, spi_pl022_api) = { .transceive = spi_pl022_transceive, #if defined(CONFIG_SPI_ASYNC) .transceive_async = spi_pl022_transceive_async, #endif #ifdef CONFIG_SPI_RTIO .iodev_submit = spi_rtio_iodev_default_submit, #endif .release = spi_pl022_release }; static int spi_pl022_init(const struct device *dev) { /* Initialize with lowest frequency */ const struct spi_config spicfg = { .frequency = 0, .operation = SPI_WORD_SET(8), .slave = 0, }; const struct spi_pl022_cfg *cfg = dev->config; struct spi_pl022_data *data = dev->data; int ret; #if defined(CONFIG_CLOCK_CONTROL) if (cfg->clk_dev) { ret = clock_control_on(cfg->clk_dev, cfg->clk_id); if (ret < 0) { LOG_ERR("Failed to enable the clock"); return ret; } } #endif #if defined(CONFIG_RESET) if (cfg->reset.dev) { ret = reset_line_toggle_dt(&cfg->reset); if (ret < 0) { return ret; } } #endif #if defined(CONFIG_PINCTRL) ret = pinctrl_apply_state(cfg->pincfg, PINCTRL_STATE_DEFAULT); if (ret < 0) { LOG_ERR("Failed to apply pinctrl state"); return ret; } #endif if (cfg->dma_enabled) { #if defined(CONFIG_SPI_PL022_DMA) for (size_t i = 0; i < spi_pl022_dma_enabled_num(dev); i++) { uint32_t ch_filter = BIT(cfg->dma[i].channel); if (!device_is_ready(cfg->dma[i].dev)) { LOG_ERR("DMA %s not ready", cfg->dma[i].dev->name); return -ENODEV; } ret = dma_request_channel(cfg->dma[i].dev, &ch_filter); if (ret < 0) { LOG_ERR("dma_request_channel failed %d", ret); return ret; } } #endif } else { #if defined(CONFIG_SPI_PL022_INTERRUPT) cfg->irq_config(dev); #endif } ret = spi_pl022_configure(dev, &spicfg); if (ret < 0) { LOG_ERR("Failed to configure spi"); return ret; } ret = spi_context_cs_configure_all(&data->ctx); if (ret < 0) { LOG_ERR("Failed to spi_context configure"); return ret; } /* Make sure the context is unlocked */ spi_context_unlock_unconditionally(&data->ctx); return 0; } #define DMA_INITIALIZER(idx, dir) \ { \ .dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(idx, dir)), \ .channel = DT_INST_DMAS_CELL_BY_NAME(idx, dir, channel), \ .slot = DT_INST_DMAS_CELL_BY_NAME(idx, dir, slot), \ .channel_config = DT_INST_DMAS_CELL_BY_NAME(idx, dir, channel_config), \ } #define DMAS_DECL(idx) \ { \ COND_CODE_1(DT_INST_DMAS_HAS_NAME(idx, tx), (DMA_INITIALIZER(idx, tx)), ({0})), \ COND_CODE_1(DT_INST_DMAS_HAS_NAME(idx, rx), (DMA_INITIALIZER(idx, rx)), ({0})), \ } #define DMAS_ENABLED(idx) (DT_INST_DMAS_HAS_NAME(idx, tx) && DT_INST_DMAS_HAS_NAME(idx, rx)) #define CLOCK_ID_DECL(idx) \ IF_ENABLED(DT_INST_NODE_HAS_PROP(0, clocks), \ (static const clock_control_subsys_t pl022_clk_id##idx = \ (clock_control_subsys_t)DT_INST_PHA_BY_IDX(idx, clocks, 0, clk_id);)) \ #define SPI_PL022_INIT(idx) \ IF_ENABLED(CONFIG_PINCTRL, (PINCTRL_DT_INST_DEFINE(idx);)) \ IF_ENABLED(CONFIG_SPI_PL022_INTERRUPT, \ (static void spi_pl022_irq_config_##idx(const struct device *dev) \ { \ IRQ_CONNECT(DT_INST_IRQN(idx), DT_INST_IRQ(idx, priority), \ spi_pl022_isr, DEVICE_DT_INST_GET(idx), 0); \ irq_enable(DT_INST_IRQN(idx)); \ })) \ IF_ENABLED(CONFIG_CLOCK_CONTROL, (CLOCK_ID_DECL(idx))) \ static struct spi_pl022_data spi_pl022_data_##idx = { \ SPI_CONTEXT_INIT_LOCK(spi_pl022_data_##idx, ctx), \ SPI_CONTEXT_INIT_SYNC(spi_pl022_data_##idx, ctx), \ SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(idx), ctx)}; \ static struct spi_pl022_cfg spi_pl022_cfg_##idx = { \ .reg = DT_INST_REG_ADDR(idx), \ IF_ENABLED(CONFIG_CLOCK_CONTROL, (IF_ENABLED(DT_INST_NODE_HAS_PROP(0, clocks), \ (.clk_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)), \ .clk_id = pl022_clk_id##idx,)))) \ IF_ENABLED(CONFIG_RESET, (IF_ENABLED(DT_INST_NODE_HAS_PROP(0, resets), \ (.reset = RESET_DT_SPEC_INST_GET(idx),)))) \ IF_ENABLED(CONFIG_PINCTRL, (.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx),)) \ IF_ENABLED(CONFIG_SPI_PL022_DMA, (.dma = DMAS_DECL(idx),)) COND_CODE_1( \ CONFIG_SPI_PL022_DMA, (.dma_enabled = DMAS_ENABLED(idx),), \ (.dma_enabled = false,)) \ IF_ENABLED(CONFIG_SPI_PL022_INTERRUPT, \ (.irq_config = spi_pl022_irq_config_##idx,))}; \ SPI_DEVICE_DT_INST_DEFINE(idx, spi_pl022_init, NULL, &spi_pl022_data_##idx, \ &spi_pl022_cfg_##idx, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \ &spi_pl022_api); DT_INST_FOREACH_STATUS_OKAY(SPI_PL022_INIT)