/* * Copyright (c) 2024 Nuvoton Technology Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT nuvoton_npcx_spip #include #include #include #include #include #include LOG_MODULE_REGISTER(spi_npcx_spip, CONFIG_SPI_LOG_LEVEL); #include "spi_context.h" /* Transfer this NOP value when tx buf is null */ #define SPI_NPCX_SPIP_TX_NOP 0x00 #define SPI_NPCX_SPIP_WAIT_STATUS_TIMEOUT_US 1000 /* The max allowed prescaler divider */ #define SPI_NPCX_MAX_PRESCALER_DIV INT8_MAX struct spi_npcx_spip_data { struct spi_context ctx; uint32_t src_clock_freq; uint8_t bytes_per_frame; }; struct spi_npcx_spip_cfg { struct spip_reg *reg_base; struct npcx_clk_cfg clk_cfg; #ifdef CONFIG_SPI_NPCX_SPIP_INTERRUPT /* routine for configuring SPIP ISR */ void (*irq_cfg_func)(const struct device *dev); #endif const struct pinctrl_dev_config *pcfg; }; static int spi_npcx_spip_configure(const struct device *dev, const struct spi_config *spi_cfg) { uint8_t prescaler_divider; const struct spi_npcx_spip_cfg *const config = dev->config; struct spi_npcx_spip_data *const data = dev->data; struct spip_reg *const reg_base = config->reg_base; spi_operation_t operation = spi_cfg->operation; uint8_t frame_size; if (spi_context_configured(&data->ctx, spi_cfg)) { /* This configuration is already in use */ return 0; } if (operation & SPI_HALF_DUPLEX) { LOG_ERR("Half duplex mode is not supported"); return -ENOTSUP; } if (SPI_OP_MODE_GET(operation) != SPI_OP_MODE_MASTER) { LOG_ERR("Only SPI controller mode is supported"); return -ENOTSUP; } if (operation & SPI_MODE_LOOP) { LOG_ERR("Loopback mode is not supported"); return -ENOTSUP; } /* * If the GPIO CS configuration is not present, return error because the hardware CS is * not supported. */ if (!spi_cs_is_gpio(spi_cfg)) { LOG_ERR("Only GPIO CS is supported"); return -ENOTSUP; } /* Get the frame length */ frame_size = SPI_WORD_SIZE_GET(operation); if (frame_size == 8) { data->bytes_per_frame = 1; reg_base->SPIP_CTL1 &= ~BIT(NPCX_SPIP_CTL1_MOD); } else if (frame_size == 16) { reg_base->SPIP_CTL1 |= BIT(NPCX_SPIP_CTL1_MOD); data->bytes_per_frame = 2; } else { LOG_ERR("Only support word sizes either 8 or 16 bits"); return -ENOTSUP; } if (IS_ENABLED(CONFIG_SPI_EXTENDED_MODES) && (operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) { LOG_ERR("Only single line mode is supported"); return -ENOTSUP; } /* Set the endianness */ if (operation & SPI_TRANSFER_LSB) { LOG_ERR("Shift out with LSB is not supported"); return -ENOTSUP; } /* * Set CPOL and CPHA. * The following is how to map npcx spip control register to CPOL and CPHA * CPOL CPHA | SCIDL SCM * ----------------------------- * 0 0 | 0 0 * 0 1 | 0 1 * 1 0 | 1 1 * 1 1 | 1 0 */ if (operation & SPI_MODE_CPOL) { reg_base->SPIP_CTL1 |= BIT(NPCX_SPIP_CTL1_SCIDL); } else { reg_base->SPIP_CTL1 &= ~BIT(NPCX_SPIP_CTL1_SCIDL); } if (((operation & SPI_MODE_CPOL) == SPI_MODE_CPOL) != ((operation & SPI_MODE_CPHA) == SPI_MODE_CPHA)) { reg_base->SPIP_CTL1 |= BIT(NPCX_SPIP_CTL1_SCM); } else { reg_base->SPIP_CTL1 &= ~BIT(NPCX_SPIP_CTL1_SCM); } /* Set the SPI frequency */ prescaler_divider = data->src_clock_freq / 2 / spi_cfg->frequency; if (prescaler_divider >= 1) { prescaler_divider -= 1; } if (prescaler_divider >= SPI_NPCX_MAX_PRESCALER_DIV) { LOG_ERR("SPI divider %d exceeds the max allowed value %d.", prescaler_divider, SPI_NPCX_MAX_PRESCALER_DIV); return -ENOTSUP; } SET_FIELD(reg_base->SPIP_CTL1, NPCX_SPIP_CTL1_SCDV, prescaler_divider); data->ctx.config = spi_cfg; return 0; } static void spi_npcx_spip_process_tx_buf(struct spi_npcx_spip_data *const data, uint16_t *tx_frame) { /* Get the tx_frame from tx_buf only when tx_buf != NULL */ if (spi_context_tx_buf_on(&data->ctx)) { if (data->bytes_per_frame == 1) { *tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf)); } else { *tx_frame = UNALIGNED_GET((uint16_t *)(data->ctx.tx_buf)); } } /* * The update is ignored if TX is off (tx_len == 0). * Note: if tx_buf == NULL && tx_len != 0, the update still counts. */ spi_context_update_tx(&data->ctx, data->bytes_per_frame, 1); } static void spi_npcx_spip_process_rx_buf(struct spi_npcx_spip_data *const data, uint16_t rx_frame) { if (spi_context_rx_buf_on(&data->ctx)) { if (data->bytes_per_frame == 1) { UNALIGNED_PUT(rx_frame, (uint8_t *)data->ctx.rx_buf); } else { UNALIGNED_PUT(rx_frame, (uint16_t *)data->ctx.rx_buf); } } spi_context_update_rx(&data->ctx, data->bytes_per_frame, 1); } #ifndef CONFIG_SPI_NPCX_SPIP_INTERRUPT static int spi_npcx_spip_xfer_frame(const struct device *dev) { const struct spi_npcx_spip_cfg *const config = dev->config; struct spip_reg *const reg_base = config->reg_base; struct spi_npcx_spip_data *const data = dev->data; uint16_t tx_frame = SPI_NPCX_SPIP_TX_NOP; uint16_t rx_frame; spi_npcx_spip_process_tx_buf(data, &tx_frame); if (WAIT_FOR(!IS_BIT_SET(reg_base->SPIP_STAT, NPCX_SPIP_STAT_BSY), SPI_NPCX_SPIP_WAIT_STATUS_TIMEOUT_US, NULL) == false) { LOG_ERR("Check Status BSY Timeout"); return -ETIMEDOUT; } reg_base->SPIP_DATA = tx_frame; if (WAIT_FOR(IS_BIT_SET(reg_base->SPIP_STAT, NPCX_SPIP_STAT_RBF), SPI_NPCX_SPIP_WAIT_STATUS_TIMEOUT_US, NULL) == false) { LOG_ERR("Check Status RBF Timeout"); return -ETIMEDOUT; } rx_frame = reg_base->SPIP_DATA; spi_npcx_spip_process_rx_buf(data, rx_frame); return 0; } #endif static bool spi_npcx_spip_transfer_ongoing(struct spi_npcx_spip_data *data) { return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx); } #ifdef CONFIG_SPI_NPCX_SPIP_INTERRUPT static void spi_npcx_spip_isr(const struct device *dev) { const struct spi_npcx_spip_cfg *const config = dev->config; struct spip_reg *const reg_base = config->reg_base; struct spi_npcx_spip_data *const data = dev->data; struct spi_context *ctx = &data->ctx; uint16_t tx_frame = SPI_NPCX_SPIP_TX_NOP; uint16_t rx_frame; uint8_t status; status = reg_base->SPIP_STAT; if (!IS_BIT_SET(status, NPCX_SPIP_STAT_BSY) && !IS_BIT_SET(status, NPCX_SPIP_STAT_RBF)) { reg_base->SPIP_CTL1 &= ~BIT(NPCX_SPIP_CTL1_EIW); spi_npcx_spip_process_tx_buf(data, &tx_frame); reg_base->SPIP_DATA = tx_frame; } else if (IS_BIT_SET(status, NPCX_SPIP_STAT_RBF)) { rx_frame = reg_base->SPIP_DATA; spi_npcx_spip_process_rx_buf(data, rx_frame); if (!spi_npcx_spip_transfer_ongoing(data)) { reg_base->SPIP_CTL1 &= ~BIT(NPCX_SPIP_CTL1_EIR); /* * The CS might not de-assert if SPI_HOLD_ON_CS is configured. * In this case, CS de-assertion reles on the caller to explicitly call * spi_release() API. */ spi_context_cs_control(ctx, false); spi_context_complete(ctx, dev, 0); } else { spi_npcx_spip_process_tx_buf(data, &tx_frame); reg_base->SPIP_DATA = tx_frame; } } } #endif static int transceive(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool asynchronous, spi_callback_t cb, void *userdata) { const struct spi_npcx_spip_cfg *const config = dev->config; struct spip_reg *const reg_base = config->reg_base; struct spi_npcx_spip_data *const data = dev->data; struct spi_context *ctx = &data->ctx; int rc; if (!tx_bufs && !rx_bufs) { return 0; } #ifndef CONFIG_SPI_NPCX_SPIP_INTERRUPT if (asynchronous) { return -ENOTSUP; } #endif /* Lock the SPI Context */ spi_context_lock(ctx, asynchronous, cb, userdata, spi_cfg); rc = spi_npcx_spip_configure(dev, spi_cfg); if (rc < 0) { spi_context_release(ctx, rc); return rc; } spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, data->bytes_per_frame); if (!spi_npcx_spip_transfer_ongoing(data)) { spi_context_release(ctx, 0); return 0; } /* Enable SPIP module */ reg_base->SPIP_CTL1 |= BIT(NPCX_SPIP_CTL1_SPIEN); /* Cleaning junk data in the buffer */ while (IS_BIT_SET(reg_base->SPIP_STAT, NPCX_SPIP_STAT_RBF)) { uint8_t unused __attribute__((unused)); unused = reg_base->SPIP_DATA; } /* Assert the CS line */ spi_context_cs_control(ctx, true); #ifdef CONFIG_SPI_NPCX_SPIP_INTERRUPT reg_base->SPIP_CTL1 |= BIT(NPCX_SPIP_CTL1_EIR) | BIT(NPCX_SPIP_CTL1_EIW); rc = spi_context_wait_for_completion(&data->ctx); #else do { rc = spi_npcx_spip_xfer_frame(dev); if (rc < 0) { break; } } while (spi_npcx_spip_transfer_ongoing(data)); /* * The CS might not de-assert if SPI_HOLD_ON_CS is configured. * In this case, CS de-assertion reles on the caller to explicitly call spi_release() API. */ spi_context_cs_control(ctx, false); #endif spi_context_release(ctx, rc); return rc; } static int spi_npcx_spip_transceive(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL); } #ifdef CONFIG_SPI_ASYNC static int spi_npcx_spip_transceive_async(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata); } #endif static int spi_npcx_spip_release(const struct device *dev, const struct spi_config *spi_cfg) { struct spi_npcx_spip_data *const data = dev->data; struct spi_context *ctx = &data->ctx; if (!spi_context_configured(ctx, spi_cfg)) { return -EINVAL; } spi_context_unlock_unconditionally(ctx); return 0; } static int spi_npcx_spip_init(const struct device *dev) { int ret; struct spi_npcx_spip_data *const data = dev->data; const struct spi_npcx_spip_cfg *const config = dev->config; struct spip_reg *const reg_base = config->reg_base; const struct device *const clk_dev = DEVICE_DT_GET(NPCX_CLK_CTRL_NODE); if (!device_is_ready(clk_dev)) { LOG_ERR("clock control device not ready"); return -ENODEV; } ret = clock_control_on(clk_dev, (clock_control_subsys_t)&config->clk_cfg); if (ret < 0) { LOG_ERR("Turn on SPIP clock fail %d", ret); return ret; } ret = clock_control_get_rate(clk_dev, (clock_control_subsys_t)&config->clk_cfg, &data->src_clock_freq); if (ret < 0) { LOG_ERR("Get SPIP clock source rate error %d", ret); return ret; } ret = spi_context_cs_configure_all(&data->ctx); if (ret < 0) { return ret; } ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); if (ret < 0) { return ret; } /* Make sure the context is unlocked */ spi_context_unlock_unconditionally(&data->ctx); #ifdef CONFIG_SPI_NPCX_SPIP_INTERRUPT config->irq_cfg_func(dev); #endif /* Enable SPIP module */ reg_base->SPIP_CTL1 |= BIT(NPCX_SPIP_CTL1_SPIEN); return 0; } static DEVICE_API(spi, spi_npcx_spip_api) = { .transceive = spi_npcx_spip_transceive, .release = spi_npcx_spip_release, #ifdef CONFIG_SPI_ASYNC .transceive_async = spi_npcx_spip_transceive_async, #endif #ifdef CONFIG_SPI_RTIO .iodev_submit = spi_rtio_iodev_default_submit, #endif }; #ifdef CONFIG_SPI_NPCX_SPIP_INTERRUPT #define NPCX_SPIP_IRQ_HANDLER(n) \ static void spi_npcx_spip_irq_cfg_func_##n(const struct device *dev) \ { \ IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), spi_npcx_spip_isr, \ DEVICE_DT_INST_GET(n), 0); \ irq_enable(DT_INST_IRQN(n)); \ } #define NPCX_SPIP_IRQ_HANDLER_FUNC(n) .irq_cfg_func = spi_npcx_spip_irq_cfg_func_##n, #else #define NPCX_SPIP_IRQ_HANDLER_FUNC(n) #define NPCX_SPIP_IRQ_HANDLER(n) #endif #define NPCX_SPI_INIT(n) \ PINCTRL_DT_INST_DEFINE(n); \ NPCX_SPIP_IRQ_HANDLER(n) \ \ static struct spi_npcx_spip_data spi_npcx_spip_data_##n = { \ SPI_CONTEXT_INIT_LOCK(spi_npcx_spip_data_##n, ctx), \ SPI_CONTEXT_INIT_SYNC(spi_npcx_spip_data_##n, ctx), \ SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx)}; \ \ static struct spi_npcx_spip_cfg spi_npcx_spip_cfg_##n = { \ .reg_base = (struct spip_reg *)DT_INST_REG_ADDR(n), \ .clk_cfg = NPCX_DT_CLK_CFG_ITEM(n), \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \ NPCX_SPIP_IRQ_HANDLER_FUNC(n)}; \ \ SPI_DEVICE_DT_INST_DEFINE(n, spi_npcx_spip_init, NULL, &spi_npcx_spip_data_##n, \ &spi_npcx_spip_cfg_##n, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \ &spi_npcx_spip_api); DT_INST_FOREACH_STATUS_OKAY(NPCX_SPI_INIT)