/* * Copyright (c) 2022 Microchip Technology Inc. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT microchip_mpfs_spi #include #include #include #include #include #include #include LOG_MODULE_REGISTER(mss_spi, CONFIG_SPI_LOG_LEVEL); #include "spi_context.h" /* MSS SPI Register offsets */ #define MSS_SPI_REG_CONTROL (0x00) #define MSS_SPI_REG_TXRXDF_SIZE (0x04) #define MSS_SPI_REG_STATUS (0x08) #define MSS_SPI_REG_INT_CLEAR (0x0c) #define MSS_SPI_REG_RX_DATA (0x10) #define MSS_SPI_REG_TX_DATA (0x14) #define MSS_SPI_REG_CLK_GEN (0x18) #define MSS_SPI_REG_SS (0x1c) #define MSS_SPI_REG_MIS (0x20) #define MSS_SPI_REG_RIS (0x24) #define MSS_SPI_REG_CONTROL2 (0x28) #define MSS_SPI_REG_COMMAND (0x2c) #define MSS_SPI_REG_PKTSIZE (0x30) #define MSS_SPI_REG_CMD_SIZE (0x34) #define MSS_SPI_REG_HWSTATUS (0x38) #define MSS_SPI_REG_FRAMESUP (0x50) /* SPICR bit definitions */ #define MSS_SPI_CONTROL_ENABLE BIT(0) #define MSS_SPI_CONTROL_MASTER BIT(1) #define MSS_SPI_CONTROL_PROTO_MSK BIT(2) #define MSS_SPI_CONTROL_PROTO_MOTO (0 << 2) #define MSS_SPI_CONTROL_RX_DATA_INT BIT(4) #define MSS_SPI_CONTROL_TX_DATA_INT BIT(5) #define MSS_SPI_CONTROL_RX_OVER_INT BIT(6) #define MSS_SPI_CONTROL_TX_UNDER_INT BIT(7) #define MSS_SPI_CONTROL_CNT_MSK (0xffff << 8) #define MSS_SPI_CONTROL_CNT_SHF (8) #define MSS_SPI_CONTROL_SPO BIT(24) #define MSS_SPI_CONTROL_SPH BIT(25) #define MSS_SPI_CONTROL_SPS BIT(26) #define MSS_SPI_CONTROL_FRAMEURUN BIT(27) #define MSS_SPI_CONTROL_CLKMODE BIT(28) #define MSS_SPI_CONTROL_BIGFIFO BIT(29) #define MSS_SPI_CONTROL_OENOFF BIT(30) #define MSS_SPI_CONTROL_RESET BIT(31) /* SPIFRAMESIZE bit definitions */ #define MSS_SPI_FRAMESIZE_DEFAULT (8) /* SPISS bit definitions */ #define MSS_SPI_SSEL_MASK (0xff) #define MSS_SPI_DIRECT (0x100) #define MSS_SPI_SSELOUT (0x200) #define MSS_SPI_MIN_SLAVE (0) #define MSS_SPI_MAX_SLAVE (7) /* SPIST bit definitions */ #define MSS_SPI_STATUS_ACTIVE BIT(14) #define MSS_SPI_STATUS_SSEL BIT(13) #define MSS_SPI_STATUS_FRAMESTART BIT(12) #define MSS_SPI_STATUS_TXFIFO_EMPTY_NEXT_READ BIT(11) #define MSS_SPI_STATUS_TXFIFO_EMPTY BIT(10) #define MSS_SPI_STATUS_TXFIFO_FULL_NEXT_WRITE BIT(9) #define MSS_SPI_STATUS_TXFIFO_FULL BIT(8) #define MSS_SPI_STATUS_RXFIFO_EMPTY_NEXT_READ BIT(7) #define MSS_SPI_STATUS_RXFIFO_EMPTY BIT(6) #define MSS_SPI_STATUS_RXFIFO_FULL_NEXT_WRITE BIT(5) #define MSS_SPI_STATUS_RXFIFO_FULL BIT(4) #define MSS_SPI_STATUS_TX_UNDERRUN BIT(3) #define MSS_SPI_STATUS_RX_OVERFLOW BIT(2) #define MSS_SPI_STATUS_RXDAT_RCED BIT(1) #define MSS_SPI_STATUS_TXDAT_SENT BIT(0) /* SPIINT register defines */ #define MSS_SPI_INT_TXDONE BIT(0) #define MSS_SPI_INT_RXRDY BIT(1) #define MSS_SPI_INT_RX_CH_OVRFLW BIT(2) #define MSS_SPI_INT_TX_CH_UNDRUN BIT(3) #define MSS_SPI_INT_CMD BIT(4) #define MSS_SPI_INT_SSEND BIT(5) /* SPICOMMAND bit definitions */ #define MSS_SPI_COMMAND_FIFO_MASK (0xC) /* SPIFRAMESUP bit definitions */ #define MSS_SPI_FRAMESUP_UP_BYTES_MSK (0xFFFF << 16) #define MSS_SPI_FRAMESUP_LO_BYTES_MSK (0xFFFF << 0) struct mss_spi_config { mm_reg_t base; uint8_t clk_gen; int clock_freq; }; struct mss_spi_transfer { uint32_t rx_len; uint32_t control; }; struct mss_spi_data { struct spi_context ctx; struct mss_spi_transfer xfer; }; static inline uint32_t mss_spi_read(const struct mss_spi_config *cfg, mm_reg_t offset) { return sys_read32(cfg->base + offset); } static inline void mss_spi_write(const struct mss_spi_config *cfg, mm_reg_t offset, uint32_t val) { sys_write32(val, cfg->base + offset); } static inline void mss_spi_hw_tfsz_set(const struct mss_spi_config *cfg, int len) { uint32_t control; mss_spi_write(cfg, MSS_SPI_REG_FRAMESUP, (len & MSS_SPI_FRAMESUP_UP_BYTES_MSK)); control = mss_spi_read(cfg, MSS_SPI_REG_CONTROL); control &= ~MSS_SPI_CONTROL_CNT_MSK; control |= ((len & MSS_SPI_FRAMESUP_LO_BYTES_MSK) << MSS_SPI_CONTROL_CNT_SHF); mss_spi_write(cfg, MSS_SPI_REG_CONTROL, control); } static inline void mss_spi_enable_controller(const struct mss_spi_config *cfg) { uint32_t control; control = mss_spi_read(cfg, MSS_SPI_REG_CONTROL); control |= MSS_SPI_CONTROL_ENABLE; mss_spi_write(cfg, MSS_SPI_REG_CONTROL, control); } static inline void mss_spi_disable_controller(const struct mss_spi_config *cfg) { uint32_t control; control = mss_spi_read(cfg, MSS_SPI_REG_CONTROL); control &= ~MSS_SPI_CONTROL_ENABLE; mss_spi_write(cfg, MSS_SPI_REG_CONTROL, control); } static void mss_spi_enable_ints(const struct mss_spi_config *cfg) { uint32_t control; uint32_t mask = MSS_SPI_CONTROL_RX_DATA_INT | MSS_SPI_CONTROL_TX_DATA_INT | MSS_SPI_CONTROL_RX_OVER_INT | MSS_SPI_CONTROL_TX_UNDER_INT; control = mss_spi_read(cfg, MSS_SPI_REG_CONTROL); control |= mask; mss_spi_write(cfg, MSS_SPI_REG_CONTROL, control); } static void mss_spi_disable_ints(const struct mss_spi_config *cfg) { uint32_t control; uint32_t mask = MSS_SPI_CONTROL_RX_DATA_INT | MSS_SPI_CONTROL_TX_DATA_INT | MSS_SPI_CONTROL_RX_OVER_INT | MSS_SPI_CONTROL_TX_UNDER_INT; mask = ~mask; control = mss_spi_read(cfg, MSS_SPI_REG_CONTROL); control &= ~mask; mss_spi_write(cfg, MSS_SPI_REG_CONTROL, control); } static inline void mss_spi_readwr_fifo(const struct device *dev) { const struct mss_spi_config *cfg = dev->config; struct mss_spi_data *data = dev->data; struct spi_context *ctx = &data->ctx; struct mss_spi_transfer *xfer = &data->xfer; uint32_t rx_raw = 0, rd_byte_size, tr_len; uint32_t data8, transfer_idx = 0; int count; tr_len = spi_context_longest_current_buf(ctx); count = spi_context_total_tx_len(ctx); if (ctx->rx_buf) { rd_byte_size = count - tr_len; } else { rd_byte_size = 0; } mss_spi_hw_tfsz_set(cfg, count); mss_spi_enable_ints(cfg); spi_context_update_rx(ctx, 1, xfer->rx_len); while (transfer_idx < count) { if (!(mss_spi_read(cfg, MSS_SPI_REG_STATUS) & MSS_SPI_STATUS_RXFIFO_EMPTY)) { rx_raw = mss_spi_read(cfg, MSS_SPI_REG_RX_DATA); if (transfer_idx >= tr_len) { if (spi_context_rx_buf_on(ctx)) { UNALIGNED_PUT(rx_raw, (uint8_t *)ctx->rx_buf); spi_context_update_rx(ctx, 1, 1); } } ++transfer_idx; } if (!(mss_spi_read(cfg, MSS_SPI_REG_STATUS) & MSS_SPI_STATUS_TXFIFO_FULL)) { if (spi_context_tx_buf_on(ctx)) { data8 = ctx->tx_buf[0]; mss_spi_write(cfg, MSS_SPI_REG_TX_DATA, data8); spi_context_update_tx(ctx, 1, 1); } else { mss_spi_write(cfg, MSS_SPI_REG_TX_DATA, 0x0); } } } } static inline int mss_spi_select_slave(const struct mss_spi_config *cfg, int cs) { uint32_t slave; uint32_t reg = mss_spi_read(cfg, MSS_SPI_REG_SS); slave = (cs >= MSS_SPI_MIN_SLAVE && cs <= MSS_SPI_MAX_SLAVE) ? (1 << cs) : 0; reg &= ~MSS_SPI_SSEL_MASK; reg |= slave; mss_spi_write(cfg, MSS_SPI_REG_SS, reg); return 0; } static inline void mss_spi_activate_cs(struct mss_spi_config *cfg) { uint32_t reg = mss_spi_read(cfg, MSS_SPI_REG_SS); reg |= MSS_SPI_SSELOUT; mss_spi_write(cfg, MSS_SPI_REG_SS, reg); } static inline void mss_spi_deactivate_cs(const struct mss_spi_config *cfg) { uint32_t reg = mss_spi_read(cfg, MSS_SPI_REG_SS); reg &= ~MSS_SPI_SSELOUT; mss_spi_write(cfg, MSS_SPI_REG_SS, reg); } static inline int mss_spi_clk_gen_set(const struct mss_spi_config *cfg, const struct spi_config *spi_cfg) { uint32_t idx, clkrate, val = 0, speed; if (spi_cfg->frequency > cfg->clock_freq) { speed = cfg->clock_freq / 2; } for (idx = 1; idx < 16; idx++) { clkrate = cfg->clock_freq / (2 * idx); if (clkrate <= spi_cfg->frequency) { val = idx; break; } } mss_spi_write(cfg, MSS_SPI_REG_CLK_GEN, val); return 0; } static inline int mss_spi_hw_mode_set(const struct mss_spi_config *cfg, unsigned int mode) { uint32_t control = mss_spi_read(cfg, MSS_SPI_REG_CONTROL); /* set the mode */ if (mode & SPI_MODE_CPHA) { control |= MSS_SPI_CONTROL_SPH; } else { control &= ~MSS_SPI_CONTROL_SPH; } if (mode & SPI_MODE_CPOL) { control |= MSS_SPI_CONTROL_SPO; } else { control &= ~MSS_SPI_CONTROL_SPO; } mss_spi_write(cfg, MSS_SPI_REG_CONTROL, control); return 0; } static void mss_spi_interrupt(const struct device *dev) { const struct mss_spi_config *cfg = dev->config; struct mss_spi_data *data = dev->data; struct spi_context *ctx = &data->ctx; int intfield = mss_spi_read(cfg, MSS_SPI_REG_MIS) & 0xf; if (intfield == 0) { return; } mss_spi_write(cfg, MSS_SPI_REG_INT_CLEAR, intfield); spi_context_complete(ctx, dev, 0); } static int mss_spi_release(const struct device *dev, const struct spi_config *config) { const struct mss_spi_config *cfg = dev->config; struct mss_spi_data *data = dev->data; mss_spi_disable_ints(cfg); /* release kernel resources */ spi_context_unlock_unconditionally(&data->ctx); mss_spi_disable_controller(cfg); return 0; } static int mss_spi_configure(const struct device *dev, const struct spi_config *spi_cfg) { const struct mss_spi_config *cfg = dev->config; struct mss_spi_data *data = dev->data; struct spi_context *ctx = &data->ctx; struct mss_spi_transfer *xfer = &data->xfer; uint32_t control; if (spi_cfg->operation & (SPI_TRANSFER_LSB | SPI_OP_MODE_SLAVE | SPI_MODE_LOOP)) { LOG_WRN("not supported operation\n\r"); return -ENOTSUP; } if (SPI_WORD_SIZE_GET(spi_cfg->operation) != MSS_SPI_FRAMESIZE_DEFAULT) { return -ENOTSUP; } ctx->config = spi_cfg; mss_spi_select_slave(cfg, spi_cfg->slave); control = mss_spi_read(cfg, MSS_SPI_REG_CONTROL); /* * Fill up the default values * Slave select behaviour set * Fifo depth greater than 4 frames * Methodology to calculate SPI Clock: * 0: SPICLK = 1 / (2 CLK_GEN + 1) , CLK_GEN is from 0 to 15 * 1: SPICLK = 1 / (2 * (CLK_GEN + 1)) , CLK_GEN is from 0 to 255 */ mss_spi_write(cfg, MSS_SPI_REG_CONTROL, xfer->control); if (mss_spi_clk_gen_set(cfg, spi_cfg)) { LOG_ERR("can't set clk divider\n"); return -EINVAL; } mss_spi_hw_mode_set(cfg, spi_cfg->operation); mss_spi_write(cfg, MSS_SPI_REG_TXRXDF_SIZE, MSS_SPI_FRAMESIZE_DEFAULT); mss_spi_enable_controller(cfg); mss_spi_write(cfg, MSS_SPI_REG_COMMAND, MSS_SPI_COMMAND_FIFO_MASK); return 0; } static int mss_spi_transceive(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool async, spi_callback_t cb, void *userdata) { const struct mss_spi_config *config = dev->config; struct mss_spi_data *data = dev->data; struct spi_context *ctx = &data->ctx; struct mss_spi_transfer *xfer = &data->xfer; int ret = 0; spi_context_lock(ctx, async, cb, userdata, spi_cfg); ret = mss_spi_configure(dev, spi_cfg); if (ret) { LOG_ERR("Fail to configure\n\r"); goto out; } spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1); xfer->rx_len = ctx->rx_len; mss_spi_readwr_fifo(dev); ret = spi_context_wait_for_completion(ctx); out: spi_context_release(ctx, ret); mss_spi_disable_ints(config); mss_spi_disable_controller(config); return ret; } static int mss_spi_transceive_blocking(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return mss_spi_transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL); } #ifdef CONFIG_SPI_ASYNC static int mss_spi_transceive_async(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { return mss_spi_transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata); } #endif /* CONFIG_SPI_ASYNC */ static int mss_spi_init(const struct device *dev) { const struct mss_spi_config *cfg = dev->config; struct mss_spi_data *data = dev->data; struct mss_spi_transfer *xfer = &data->xfer; int ret = 0; uint32_t control = 0; /* Remove SPI from Reset */ control = mss_spi_read(cfg, MSS_SPI_REG_CONTROL); control &= ~MSS_SPI_CONTROL_RESET; mss_spi_write(cfg, MSS_SPI_REG_CONTROL, control); /* Set master mode */ mss_spi_disable_controller(cfg); xfer->control = (MSS_SPI_CONTROL_SPS | MSS_SPI_CONTROL_BIGFIFO | MSS_SPI_CONTROL_MASTER | MSS_SPI_CONTROL_CLKMODE); spi_context_unlock_unconditionally(&data->ctx); return ret; } #define MICROCHIP_SPI_PM_OPS (NULL) static DEVICE_API(spi, mss_spi_driver_api) = { .transceive = mss_spi_transceive_blocking, #ifdef CONFIG_SPI_ASYNC .transceive_async = mss_spi_transceive_async, #endif /* CONFIG_SPI_ASYNC */ #ifdef CONFIG_SPI_RTIO .iodev_submit = spi_rtio_iodev_default_submit, #endif .release = mss_spi_release, }; #define MSS_SPI_INIT(n) \ static int mss_spi_init_##n(const struct device *dev) \ { \ mss_spi_init(dev); \ \ IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), mss_spi_interrupt, \ DEVICE_DT_INST_GET(n), 0); \ \ irq_enable(DT_INST_IRQN(n)); \ \ return 0; \ } \ \ static const struct mss_spi_config mss_spi_config_##n = { \ .base = DT_INST_REG_ADDR(n), \ .clock_freq = DT_INST_PROP(n, clock_frequency), \ }; \ \ static struct mss_spi_data mss_spi_data_##n = { \ SPI_CONTEXT_INIT_LOCK(mss_spi_data_##n, ctx), \ SPI_CONTEXT_INIT_SYNC(mss_spi_data_##n, ctx), \ }; \ \ SPI_DEVICE_DT_INST_DEFINE(n, mss_spi_init_##n, NULL, &mss_spi_data_##n, \ &mss_spi_config_##n, POST_KERNEL, \ CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &mss_spi_driver_api); DT_INST_FOREACH_STATUS_OKAY(MSS_SPI_INIT)