/* * Copyright (c) 2024 Analog Devices, Inc. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT adi_max32_spi #include #include #if CONFIG_SPI_MAX32_DMA #include #endif #include #include #include #include #include #include #include #include #include #include #include LOG_MODULE_REGISTER(spi_max32, CONFIG_SPI_LOG_LEVEL); #include "spi_context.h" #ifdef CONFIG_SPI_MAX32_DMA struct max32_spi_dma_config { const struct device *dev; const uint32_t channel; const uint32_t slot; }; #endif /* CONFIG_SPI_MAX32_DMA */ struct max32_spi_config { mxc_spi_regs_t *regs; const struct pinctrl_dev_config *pctrl; const struct device *clock; struct max32_perclk perclk; #ifdef CONFIG_SPI_MAX32_INTERRUPT void (*irq_config_func)(const struct device *dev); #endif /* CONFIG_SPI_MAX32_INTERRUPT */ #ifdef CONFIG_SPI_MAX32_DMA struct max32_spi_dma_config tx_dma; struct max32_spi_dma_config rx_dma; #endif /* CONFIG_SPI_MAX32_DMA */ }; /* Device run time data */ struct max32_spi_data { struct spi_context ctx; const struct device *dev; mxc_spi_req_t req; uint8_t dummy[2]; #ifdef CONFIG_SPI_MAX32_DMA volatile uint8_t dma_stat; #endif /* CONFIG_SPI_MAX32_DMA */ #ifdef CONFIG_SPI_ASYNC struct k_work async_work; #endif /* CONFIG_SPI_ASYNC */ #ifdef CONFIG_SPI_RTIO struct spi_rtio *rtio_ctx; #endif }; #ifdef CONFIG_SPI_MAX32_DMA #define SPI_MAX32_DMA_ERROR_FLAG 0x01U #define SPI_MAX32_DMA_RX_DONE_FLAG 0x02U #define SPI_MAX32_DMA_TX_DONE_FLAG 0x04U #define SPI_MAX32_DMA_DONE_FLAG (SPI_MAX32_DMA_RX_DONE_FLAG | SPI_MAX32_DMA_TX_DONE_FLAG) #endif /* CONFIG_SPI_MAX32_DMA */ #ifdef CONFIG_SPI_MAX32_INTERRUPT static void spi_max32_callback(mxc_spi_req_t *req, int error); #endif /* CONFIG_SPI_MAX32_INTERRUPT */ static int spi_configure(const struct device *dev, const struct spi_config *config) { int ret = 0; const struct max32_spi_config *cfg = dev->config; mxc_spi_regs_t *regs = cfg->regs; struct max32_spi_data *data = dev->data; if (spi_context_configured(&data->ctx, config)) { return 0; } if (SPI_OP_MODE_GET(config->operation) & SPI_OP_MODE_SLAVE) { return -ENOTSUP; } int master_mode = 1; int quad_mode = 0; int num_slaves = 1; int ss_polarity = (config->operation & SPI_CS_ACTIVE_HIGH) ? 1 : 0; unsigned int spi_speed = (unsigned int)config->frequency; ret = Wrap_MXC_SPI_Init(regs, master_mode, quad_mode, num_slaves, ss_polarity, spi_speed); if (ret) { return ret; } int cpol = (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) ? 1 : 0; int cpha = (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) ? 1 : 0; if (cpol && cpha) { ret = MXC_SPI_SetMode(regs, SPI_MODE_3); } else if (cpha) { ret = MXC_SPI_SetMode(regs, SPI_MODE_2); } else if (cpol) { ret = MXC_SPI_SetMode(regs, SPI_MODE_1); } else { ret = MXC_SPI_SetMode(regs, SPI_MODE_0); } if (ret) { return ret; } ret = MXC_SPI_SetDataSize(regs, SPI_WORD_SIZE_GET(config->operation)); if (ret) { return ret; } #if defined(CONFIG_SPI_EXTENDED_MODES) switch (config->operation & SPI_LINES_MASK) { case SPI_LINES_QUAD: ret = MXC_SPI_SetWidth(regs, SPI_WIDTH_QUAD); break; case SPI_LINES_DUAL: ret = MXC_SPI_SetWidth(regs, SPI_WIDTH_DUAL); break; case SPI_LINES_OCTAL: ret = -ENOTSUP; break; case SPI_LINES_SINGLE: default: ret = MXC_SPI_SetWidth(regs, SPI_WIDTH_STANDARD); break; } if (ret) { return ret; } #endif data->ctx.config = config; return ret; } static inline int spi_max32_get_dfs_shift(const struct spi_context *ctx) { if (SPI_WORD_SIZE_GET(ctx->config->operation) < 9) { return 0; } return 1; } static void spi_max32_setup(mxc_spi_regs_t *spi, mxc_spi_req_t *req) { req->rxCnt = 0; req->txCnt = 0; if (spi->ctrl0 & ADI_MAX32_SPI_CTRL_MASTER_MODE) { MXC_SPI_SetSlave(spi, req->ssIdx); } if (req->rxData && req->rxLen) { MXC_SETFIELD(spi->ctrl1, MXC_F_SPI_CTRL1_RX_NUM_CHAR, req->rxLen << MXC_F_SPI_CTRL1_RX_NUM_CHAR_POS); spi->dma |= MXC_F_SPI_DMA_RX_FIFO_EN; } else { spi->ctrl1 &= ~MXC_F_SPI_CTRL1_RX_NUM_CHAR; spi->dma &= ~MXC_F_SPI_DMA_RX_FIFO_EN; } if (req->txLen) { MXC_SETFIELD(spi->ctrl1, MXC_F_SPI_CTRL1_TX_NUM_CHAR, req->txLen << MXC_F_SPI_CTRL1_TX_NUM_CHAR_POS); spi->dma |= MXC_F_SPI_DMA_TX_FIFO_EN; } else { spi->ctrl1 &= ~MXC_F_SPI_CTRL1_TX_NUM_CHAR; spi->dma &= ~MXC_F_SPI_DMA_TX_FIFO_EN; } spi->dma |= (ADI_MAX32_SPI_DMA_TX_FIFO_CLEAR | ADI_MAX32_SPI_DMA_RX_FIFO_CLEAR); spi->ctrl0 |= MXC_F_SPI_CTRL0_EN; MXC_SPI_ClearFlags(spi); } #ifndef CONFIG_SPI_MAX32_INTERRUPT static int spi_max32_transceive_sync(mxc_spi_regs_t *spi, struct max32_spi_data *data, uint8_t dfs_shift) { int ret = 0; mxc_spi_req_t *req = &data->req; uint32_t remain, flags, tx_len, rx_len; MXC_SPI_ClearTXFIFO(spi); MXC_SPI_ClearRXFIFO(spi); tx_len = req->txLen << dfs_shift; rx_len = req->rxLen << dfs_shift; do { remain = tx_len - req->txCnt; if (remain > 0) { if (!data->req.txData) { req->txCnt += MXC_SPI_WriteTXFIFO(spi, data->dummy, MIN(remain, sizeof(data->dummy))); } else { req->txCnt += MXC_SPI_WriteTXFIFO(spi, &req->txData[req->txCnt], remain); } if (!(spi->ctrl0 & MXC_F_SPI_CTRL0_START)) { spi->ctrl0 |= MXC_F_SPI_CTRL0_START; } } if (req->rxCnt < rx_len) { req->rxCnt += MXC_SPI_ReadRXFIFO(spi, &req->rxData[req->rxCnt], rx_len - req->rxCnt); } } while ((req->txCnt < tx_len) || (req->rxCnt < rx_len)); do { flags = MXC_SPI_GetFlags(spi); } while (!(flags & ADI_MAX32_SPI_INT_FL_MST_DONE)); MXC_SPI_ClearFlags(spi); return ret; } #endif /* CONFIG_SPI_MAX32_INTERRUPT */ static int spi_max32_transceive(const struct device *dev) { int ret = 0; const struct max32_spi_config *cfg = dev->config; struct max32_spi_data *data = dev->data; struct spi_context *ctx = &data->ctx; #ifdef CONFIG_SPI_RTIO struct spi_rtio *rtio_ctx = data->rtio_ctx; struct rtio_sqe *sqe = &rtio_ctx->txn_curr->sqe; #endif uint32_t len; uint8_t dfs_shift; MXC_SPI_ClearTXFIFO(cfg->regs); dfs_shift = spi_max32_get_dfs_shift(ctx); len = spi_context_max_continuous_chunk(ctx); #ifdef CONFIG_SPI_RTIO switch (sqe->op) { case RTIO_OP_RX: len = sqe->rx.buf_len; data->req.rxData = sqe->rx.buf; data->req.rxLen = sqe->rx.buf_len; data->req.txData = NULL; data->req.txLen = len >> dfs_shift; break; case RTIO_OP_TX: len = sqe->tx.buf_len; data->req.rxLen = 0; data->req.rxData = data->dummy; data->req.txData = (uint8_t *)sqe->tx.buf; data->req.txLen = len >> dfs_shift; break; case RTIO_OP_TINY_TX: len = sqe->tiny_tx.buf_len; data->req.txData = (uint8_t *)sqe->tiny_tx.buf; data->req.rxData = data->dummy; data->req.txLen = len >> dfs_shift; data->req.rxLen = 0; break; case RTIO_OP_TXRX: len = sqe->txrx.buf_len; data->req.txData = (uint8_t *)sqe->txrx.tx_buf; data->req.rxData = sqe->txrx.rx_buf; data->req.txLen = len >> dfs_shift; data->req.rxLen = len >> dfs_shift; break; default: break; } #else data->req.txLen = len >> dfs_shift; data->req.txData = (uint8_t *)ctx->tx_buf; data->req.rxLen = len >> dfs_shift; data->req.rxData = ctx->rx_buf; data->req.rxData = ctx->rx_buf; data->req.rxLen = len >> dfs_shift; if (!data->req.rxData) { /* Pass a dummy buffer to HAL if receive buffer is NULL, otherwise * corrupt data is read during subsequent transactions. */ data->req.rxData = data->dummy; data->req.rxLen = 0; } #endif data->req.spi = cfg->regs; data->req.ssIdx = ctx->config->slave; data->req.ssDeassert = 0; data->req.txCnt = 0; data->req.rxCnt = 0; spi_max32_setup(cfg->regs, &data->req); #ifdef CONFIG_SPI_MAX32_INTERRUPT MXC_SPI_SetTXThreshold(cfg->regs, 1); if (data->req.rxLen) { MXC_SPI_SetRXThreshold(cfg->regs, 2); MXC_SPI_EnableInt(cfg->regs, ADI_MAX32_SPI_INT_EN_RX_THD); } MXC_SPI_EnableInt(cfg->regs, ADI_MAX32_SPI_INT_EN_TX_THD | ADI_MAX32_SPI_INT_EN_MST_DONE); if (!data->req.txData) { data->req.txCnt = MXC_SPI_WriteTXFIFO(cfg->regs, data->dummy, MIN(len, sizeof(data->dummy))); } else { data->req.txCnt = MXC_SPI_WriteTXFIFO(cfg->regs, data->req.txData, len); } MXC_SPI_StartTransmission(cfg->regs); #else ret = spi_max32_transceive_sync(cfg->regs, data, dfs_shift); if (ret) { ret = -EIO; } else { spi_context_update_tx(ctx, 1, len); spi_context_update_rx(ctx, 1, len); } #endif return ret; } static int transceive(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool async, spi_callback_t cb, void *userdata) { int ret = 0; struct max32_spi_data *data = dev->data; struct spi_context *ctx = &data->ctx; #ifndef CONFIG_SPI_RTIO const struct max32_spi_config *cfg = dev->config; bool hw_cs_ctrl = true; #endif #ifndef CONFIG_SPI_MAX32_INTERRUPT if (async) { return -ENOTSUP; } #endif spi_context_lock(ctx, async, cb, userdata, config); #ifndef CONFIG_SPI_RTIO ret = spi_configure(dev, config); if (ret != 0) { spi_context_release(ctx, ret); return -EIO; } spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1); /* Check if CS GPIO exists */ if (spi_cs_is_gpio(config)) { hw_cs_ctrl = false; } MXC_SPI_HWSSControl(cfg->regs, hw_cs_ctrl); /* Assert the CS line if HW control disabled */ if (!hw_cs_ctrl) { spi_context_cs_control(ctx, true); } else { cfg->regs->ctrl0 = (cfg->regs->ctrl0 & ~MXC_F_SPI_CTRL0_START) | MXC_F_SPI_CTRL0_SS_CTRL; } #ifdef CONFIG_SPI_MAX32_INTERRUPT do { ret = spi_max32_transceive(dev); if (!ret) { ret = spi_context_wait_for_completion(ctx); if (ret || async) { break; } } else { break; } } while ((spi_context_tx_on(ctx) || spi_context_rx_on(ctx))); #else do { ret = spi_max32_transceive(dev); if (ret) { break; } } while (spi_context_tx_on(ctx) || spi_context_rx_on(ctx)); #endif /* CONFIG_SPI_MAX32_INTERRUPT */ /* Deassert the CS line if hw control disabled */ if (!async) { if (!hw_cs_ctrl) { spi_context_cs_control(ctx, false); } else { cfg->regs->ctrl0 &= ~(MXC_F_SPI_CTRL0_START | MXC_F_SPI_CTRL0_SS_CTRL | MXC_F_SPI_CTRL0_EN); cfg->regs->ctrl0 |= MXC_F_SPI_CTRL0_EN; } } #else struct spi_rtio *rtio_ctx = data->rtio_ctx; ret = spi_rtio_transceive(rtio_ctx, config, tx_bufs, rx_bufs); #endif spi_context_release(ctx, ret); return ret; } #ifdef CONFIG_SPI_MAX32_DMA static void spi_max32_dma_callback(const struct device *dev, void *arg, uint32_t channel, int status) { struct max32_spi_data *data = arg; const struct device *spi_dev = data->dev; const struct max32_spi_config *config = spi_dev->config; uint32_t len; if (status < 0) { LOG_ERR("DMA callback error with channel %d.", channel); } else { /* identify the origin of this callback */ if (channel == config->tx_dma.channel) { data->dma_stat |= SPI_MAX32_DMA_TX_DONE_FLAG; } else if (channel == config->rx_dma.channel) { data->dma_stat |= SPI_MAX32_DMA_RX_DONE_FLAG; } } if ((data->dma_stat & SPI_MAX32_DMA_DONE_FLAG) == SPI_MAX32_DMA_DONE_FLAG) { len = spi_context_max_continuous_chunk(&data->ctx); spi_context_update_tx(&data->ctx, 1, len); spi_context_update_rx(&data->ctx, 1, len); spi_context_complete(&data->ctx, spi_dev, status == 0 ? 0 : -EIO); } } static int spi_max32_tx_dma_load(const struct device *dev, const uint8_t *buf, uint32_t len, uint8_t word_shift) { int ret; const struct max32_spi_config *config = dev->config; struct max32_spi_data *data = dev->data; struct dma_config dma_cfg = {0}; struct dma_block_config dma_blk = {0}; dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL; dma_cfg.dma_callback = spi_max32_dma_callback; dma_cfg.user_data = (void *)data; dma_cfg.dma_slot = config->tx_dma.slot; dma_cfg.block_count = 1; dma_cfg.source_data_size = 1U << word_shift; dma_cfg.source_burst_length = 1U; dma_cfg.dest_data_size = 1U << word_shift; dma_cfg.head_block = &dma_blk; dma_blk.block_size = len; if (buf) { dma_blk.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; dma_blk.source_address = (uint32_t)buf; } else { dma_blk.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; dma_blk.source_address = (uint32_t)data->dummy; } ret = dma_config(config->tx_dma.dev, config->tx_dma.channel, &dma_cfg); if (ret < 0) { LOG_ERR("Error configuring Tx DMA (%d)", ret); } return dma_start(config->tx_dma.dev, config->tx_dma.channel); } static int spi_max32_rx_dma_load(const struct device *dev, const uint8_t *buf, uint32_t len, uint8_t word_shift) { int ret; const struct max32_spi_config *config = dev->config; struct max32_spi_data *data = dev->data; struct dma_config dma_cfg = {0}; struct dma_block_config dma_blk = {0}; dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY; dma_cfg.dma_callback = spi_max32_dma_callback; dma_cfg.user_data = (void *)data; dma_cfg.dma_slot = config->rx_dma.slot; dma_cfg.block_count = 1; dma_cfg.source_data_size = 1U << word_shift; dma_cfg.source_burst_length = 1U; dma_cfg.dest_data_size = 1U << word_shift; dma_cfg.head_block = &dma_blk; dma_blk.block_size = len; if (buf) { dma_blk.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; dma_blk.dest_address = (uint32_t)buf; } else { dma_blk.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; dma_blk.dest_address = (uint32_t)data->dummy; } ret = dma_config(config->rx_dma.dev, config->rx_dma.channel, &dma_cfg); if (ret < 0) { LOG_ERR("Error configuring Rx DMA (%d)", ret); } return dma_start(config->rx_dma.dev, config->rx_dma.channel); } static int transceive_dma(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool async, spi_callback_t cb, void *userdata) { int ret = 0; const struct max32_spi_config *cfg = dev->config; struct max32_spi_data *data = dev->data; struct spi_context *ctx = &data->ctx; mxc_spi_regs_t *spi = cfg->regs; struct dma_status status; uint32_t len, word_count; uint8_t dfs_shift; bool hw_cs_ctrl = true; spi_context_lock(ctx, async, cb, userdata, config); ret = dma_get_status(cfg->tx_dma.dev, cfg->tx_dma.channel, &status); if (ret < 0 || status.busy) { ret = ret < 0 ? ret : -EBUSY; goto unlock; } ret = dma_get_status(cfg->rx_dma.dev, cfg->rx_dma.channel, &status); if (ret < 0 || status.busy) { ret = ret < 0 ? ret : -EBUSY; goto unlock; } ret = spi_configure(dev, config); if (ret != 0) { ret = -EIO; goto unlock; } spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1); /* Check if CS GPIO exists */ if (spi_cs_is_gpio(config)) { hw_cs_ctrl = false; } MXC_SPI_HWSSControl(cfg->regs, hw_cs_ctrl); /* Assert the CS line if HW control disabled */ if (!hw_cs_ctrl) { spi_context_cs_control(ctx, true); } MXC_SPI_SetSlave(cfg->regs, ctx->config->slave); do { spi->ctrl0 &= ~(MXC_F_SPI_CTRL0_EN); len = spi_context_max_continuous_chunk(ctx); dfs_shift = spi_max32_get_dfs_shift(ctx); word_count = len >> dfs_shift; MXC_SETFIELD(spi->ctrl1, MXC_F_SPI_CTRL1_RX_NUM_CHAR, word_count << MXC_F_SPI_CTRL1_RX_NUM_CHAR_POS); spi->dma |= ADI_MAX32_SPI_DMA_RX_FIFO_CLEAR; spi->dma |= MXC_F_SPI_DMA_RX_FIFO_EN; spi->dma |= ADI_MAX32_SPI_DMA_RX_DMA_EN; MXC_SPI_SetRXThreshold(spi, 0); ret = spi_max32_rx_dma_load(dev, ctx->rx_buf, len, dfs_shift); if (ret < 0) { goto unlock; } MXC_SETFIELD(spi->ctrl1, MXC_F_SPI_CTRL1_TX_NUM_CHAR, word_count << MXC_F_SPI_CTRL1_TX_NUM_CHAR_POS); spi->dma |= ADI_MAX32_SPI_DMA_TX_FIFO_CLEAR; spi->dma |= MXC_F_SPI_DMA_TX_FIFO_EN; spi->dma |= ADI_MAX32_SPI_DMA_TX_DMA_EN; MXC_SPI_SetTXThreshold(spi, 1); ret = spi_max32_tx_dma_load(dev, ctx->tx_buf, len, dfs_shift); if (ret < 0) { goto unlock; } spi->ctrl0 |= MXC_F_SPI_CTRL0_EN; data->dma_stat = 0; MXC_SPI_StartTransmission(spi); ret = spi_context_wait_for_completion(ctx); } while (!ret && (spi_context_tx_on(ctx) || spi_context_rx_on(ctx))); unlock: /* Deassert the CS line if hw control disabled */ if (!hw_cs_ctrl) { spi_context_cs_control(ctx, false); } spi_context_release(ctx, ret); return ret; } #endif /* CONFIG_SPI_MAX32_DMA */ #ifdef CONFIG_SPI_RTIO static void spi_max32_iodev_complete(const struct device *dev, int status); static void spi_max32_iodev_start(const struct device *dev) { struct max32_spi_data *data = dev->data; struct spi_rtio *rtio_ctx = data->rtio_ctx; struct rtio_sqe *sqe = &rtio_ctx->txn_curr->sqe; int ret = 0; switch (sqe->op) { case RTIO_OP_RX: case RTIO_OP_TX: case RTIO_OP_TINY_TX: case RTIO_OP_TXRX: ret = spi_max32_transceive(dev); break; default: spi_max32_iodev_complete(dev, -EINVAL); break; } if (ret != 0) { spi_max32_iodev_complete(dev, -EIO); } } static inline void spi_max32_iodev_prepare_start(const struct device *dev) { struct max32_spi_data *data = dev->data; struct spi_rtio *rtio_ctx = data->rtio_ctx; struct spi_dt_spec *spi_dt_spec = rtio_ctx->txn_curr->sqe.iodev->data; struct spi_config *spi_config = &spi_dt_spec->config; struct max32_spi_config *cfg = (struct max32_spi_config *)dev->config; int ret; bool hw_cs_ctrl = true; ret = spi_configure(dev, spi_config); __ASSERT(!ret, "%d", ret); /* Check if CS GPIO exists */ if (spi_cs_is_gpio(spi_config)) { hw_cs_ctrl = false; } MXC_SPI_HWSSControl(cfg->regs, hw_cs_ctrl); /* Assert the CS line if HW control disabled */ if (!hw_cs_ctrl) { spi_context_cs_control(&data->ctx, true); } else { cfg->regs->ctrl0 = (cfg->regs->ctrl0 & ~MXC_F_SPI_CTRL0_START) | MXC_F_SPI_CTRL0_SS_CTRL; }; } static void spi_max32_iodev_complete(const struct device *dev, int status) { struct max32_spi_data *data = dev->data; struct spi_rtio *rtio_ctx = data->rtio_ctx; if (!status && rtio_ctx->txn_curr->sqe.flags & RTIO_SQE_TRANSACTION) { rtio_ctx->txn_curr = rtio_txn_next(rtio_ctx->txn_curr); spi_max32_iodev_start(dev); } else { struct max32_spi_config *cfg = (struct max32_spi_config *)dev->config; bool hw_cs_ctrl = true; if (!hw_cs_ctrl) { spi_context_cs_control(&data->ctx, false); } else { cfg->regs->ctrl0 &= ~(MXC_F_SPI_CTRL0_START | MXC_F_SPI_CTRL0_SS_CTRL | MXC_F_SPI_CTRL0_EN); cfg->regs->ctrl0 |= MXC_F_SPI_CTRL0_EN; } if (spi_rtio_complete(rtio_ctx, status)) { spi_max32_iodev_prepare_start(dev); spi_max32_iodev_start(dev); } } } static void api_iodev_submit(const struct device *dev, struct rtio_iodev_sqe *iodev_sqe) { struct max32_spi_data *data = dev->data; struct spi_rtio *rtio_ctx = data->rtio_ctx; if (spi_rtio_submit(rtio_ctx, iodev_sqe)) { spi_max32_iodev_prepare_start(dev); spi_max32_iodev_start(dev); } } #endif static int api_transceive(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { #ifdef CONFIG_SPI_MAX32_DMA const struct max32_spi_config *cfg = dev->config; if (cfg->tx_dma.channel != 0xFF && cfg->rx_dma.channel != 0xFF) { return transceive_dma(dev, config, tx_bufs, rx_bufs, false, NULL, NULL); } #endif /* CONFIG_SPI_MAX32_DMA */ return transceive(dev, config, tx_bufs, rx_bufs, false, NULL, NULL); } #ifdef CONFIG_SPI_ASYNC static int api_transceive_async(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { return transceive(dev, config, tx_bufs, rx_bufs, true, cb, userdata); } #endif /* CONFIG_SPI_ASYNC */ #ifdef CONFIG_SPI_MAX32_INTERRUPT static void spi_max32_callback(mxc_spi_req_t *req, int error) { struct max32_spi_data *data = CONTAINER_OF(req, struct max32_spi_data, req); struct spi_context *ctx = &data->ctx; const struct device *dev = data->dev; uint32_t len; #ifdef CONFIG_SPI_RTIO struct spi_rtio *rtio_ctx = data->rtio_ctx; if (rtio_ctx->txn_head != NULL) { spi_max32_iodev_complete(data->dev, 0); } #endif len = spi_context_max_continuous_chunk(ctx); spi_context_update_tx(ctx, 1, len); spi_context_update_rx(ctx, 1, len); #ifdef CONFIG_SPI_ASYNC if (ctx->asynchronous && ((spi_context_tx_on(ctx) || spi_context_rx_on(ctx)))) { k_work_submit(&data->async_work); } else { if (spi_cs_is_gpio(ctx->config)) { spi_context_cs_control(ctx, false); } else { req->spi->ctrl0 &= ~(MXC_F_SPI_CTRL0_START | MXC_F_SPI_CTRL0_SS_CTRL | MXC_F_SPI_CTRL0_EN); req->spi->ctrl0 |= MXC_F_SPI_CTRL0_EN; } spi_context_complete(ctx, dev, error == E_NO_ERROR ? 0 : -EIO); } #else spi_context_complete(ctx, dev, error == E_NO_ERROR ? 0 : -EIO); #endif } #ifdef CONFIG_SPI_ASYNC void spi_max32_async_work_handler(struct k_work *work) { struct max32_spi_data *data = CONTAINER_OF(work, struct max32_spi_data, async_work); const struct device *dev = data->dev; int ret; ret = spi_max32_transceive(dev); if (ret) { spi_context_complete(&data->ctx, dev, -EIO); } } #endif /* CONFIG_SPI_ASYNC */ static void spi_max32_isr(const struct device *dev) { const struct max32_spi_config *cfg = dev->config; struct max32_spi_data *data = dev->data; mxc_spi_req_t *req = &data->req; mxc_spi_regs_t *spi = cfg->regs; uint32_t flags, remain; uint8_t dfs_shift = spi_max32_get_dfs_shift(&data->ctx); flags = MXC_SPI_GetFlags(spi); MXC_SPI_ClearFlags(spi); remain = (req->txLen << dfs_shift) - req->txCnt; if (flags & ADI_MAX32_SPI_INT_FL_TX_THD) { if (remain) { if (!data->req.txData) { req->txCnt += MXC_SPI_WriteTXFIFO(cfg->regs, data->dummy, MIN(remain, sizeof(data->dummy))); } else { req->txCnt += MXC_SPI_WriteTXFIFO(spi, &req->txData[req->txCnt], remain); } } else { MXC_SPI_DisableInt(spi, ADI_MAX32_SPI_INT_EN_TX_THD); } } remain = (req->rxLen << dfs_shift) - req->rxCnt; if (remain) { req->rxCnt += MXC_SPI_ReadRXFIFO(spi, &req->rxData[req->rxCnt], remain); remain = (req->rxLen << dfs_shift) - req->rxCnt; if (remain >= MXC_SPI_FIFO_DEPTH) { MXC_SPI_SetRXThreshold(spi, 2); } else { MXC_SPI_SetRXThreshold(spi, remain); } } else { MXC_SPI_DisableInt(spi, ADI_MAX32_SPI_INT_EN_RX_THD); } if ((req->txLen == req->txCnt) && (req->rxLen == req->rxCnt)) { MXC_SPI_DisableInt(spi, ADI_MAX32_SPI_INT_EN_TX_THD | ADI_MAX32_SPI_INT_EN_RX_THD); if (flags & ADI_MAX32_SPI_INT_FL_MST_DONE) { MXC_SPI_DisableInt(spi, ADI_MAX32_SPI_INT_EN_MST_DONE); spi_max32_callback(req, 0); } } } #endif /* CONFIG_SPI_MAX32_INTERRUPT */ static int api_release(const struct device *dev, const struct spi_config *config) { struct max32_spi_data *data = dev->data; #ifndef CONFIG_SPI_RTIO if (!spi_context_configured(&data->ctx, config)) { return -EINVAL; } #endif spi_context_unlock_unconditionally(&data->ctx); return 0; } static int spi_max32_init(const struct device *dev) { int ret = 0; const struct max32_spi_config *const cfg = dev->config; mxc_spi_regs_t *regs = cfg->regs; struct max32_spi_data *data = dev->data; if (!device_is_ready(cfg->clock)) { return -ENODEV; } MXC_SPI_Shutdown(regs); ret = clock_control_on(cfg->clock, (clock_control_subsys_t)&cfg->perclk); if (ret) { return ret; } ret = pinctrl_apply_state(cfg->pctrl, PINCTRL_STATE_DEFAULT); if (ret) { return ret; } ret = spi_context_cs_configure_all(&data->ctx); if (ret < 0) { return ret; } data->dev = dev; #ifdef CONFIG_SPI_RTIO spi_rtio_init(data->rtio_ctx, dev); #endif #ifdef CONFIG_SPI_MAX32_INTERRUPT cfg->irq_config_func(dev); #ifdef CONFIG_SPI_ASYNC k_work_init(&data->async_work, spi_max32_async_work_handler); #endif #endif spi_context_unlock_unconditionally(&data->ctx); return ret; } /* SPI driver APIs structure */ static DEVICE_API(spi, spi_max32_api) = { .transceive = api_transceive, #ifdef CONFIG_SPI_ASYNC .transceive_async = api_transceive_async, #endif /* CONFIG_SPI_ASYNC */ #ifdef CONFIG_SPI_RTIO .iodev_submit = api_iodev_submit, #endif /* CONFIG_SPI_RTIO */ .release = api_release, }; /* SPI driver registration */ #ifdef CONFIG_SPI_MAX32_INTERRUPT #define SPI_MAX32_CONFIG_IRQ_FUNC(n) .irq_config_func = spi_max32_irq_config_func_##n, #define SPI_MAX32_IRQ_CONFIG_FUNC(n) \ static void spi_max32_irq_config_func_##n(const struct device *dev) \ { \ IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), spi_max32_isr, \ DEVICE_DT_INST_GET(n), 0); \ irq_enable(DT_INST_IRQN(n)); \ } #else #define SPI_MAX32_CONFIG_IRQ_FUNC(n) #define SPI_MAX32_IRQ_CONFIG_FUNC(n) #endif /* CONFIG_SPI_MAX32_INTERRUPT */ #if CONFIG_SPI_MAX32_DMA #define MAX32_DT_INST_DMA_CTLR(n, name) \ COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), \ (DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, name))), (NULL)) #define MAX32_DT_INST_DMA_CELL(n, name, cell) \ COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), (DT_INST_DMAS_CELL_BY_NAME(n, name, cell)), \ (0xff)) #define MAX32_SPI_DMA_INIT(n) \ .tx_dma.dev = MAX32_DT_INST_DMA_CTLR(n, tx), \ .tx_dma.channel = MAX32_DT_INST_DMA_CELL(n, tx, channel), \ .tx_dma.slot = MAX32_DT_INST_DMA_CELL(n, tx, slot), \ .rx_dma.dev = MAX32_DT_INST_DMA_CTLR(n, rx), \ .rx_dma.channel = MAX32_DT_INST_DMA_CELL(n, rx, channel), \ .rx_dma.slot = MAX32_DT_INST_DMA_CELL(n, rx, slot), #else #define MAX32_SPI_DMA_INIT(n) #endif #define DEFINE_SPI_MAX32_RTIO(_num) SPI_RTIO_DEFINE(max32_spi_rtio_##_num, \ CONFIG_SPI_MAX32_RTIO_SQ_SIZE, \ CONFIG_SPI_MAX32_RTIO_CQ_SIZE) #define DEFINE_SPI_MAX32(_num) \ PINCTRL_DT_INST_DEFINE(_num); \ SPI_MAX32_IRQ_CONFIG_FUNC(_num) \ COND_CODE_1(CONFIG_SPI_RTIO, (DEFINE_SPI_MAX32_RTIO(_num)), ()); \ static const struct max32_spi_config max32_spi_config_##_num = { \ .regs = (mxc_spi_regs_t *)DT_INST_REG_ADDR(_num), \ .pctrl = PINCTRL_DT_INST_DEV_CONFIG_GET(_num), \ .clock = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(_num)), \ .perclk.bus = DT_INST_CLOCKS_CELL(_num, offset), \ .perclk.bit = DT_INST_CLOCKS_CELL(_num, bit), \ MAX32_SPI_DMA_INIT(_num) SPI_MAX32_CONFIG_IRQ_FUNC(_num)}; \ static struct max32_spi_data max32_spi_data_##_num = { \ SPI_CONTEXT_INIT_LOCK(max32_spi_data_##_num, ctx), \ SPI_CONTEXT_INIT_SYNC(max32_spi_data_##_num, ctx), \ SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(_num), ctx) \ IF_ENABLED(CONFIG_SPI_RTIO, (.rtio_ctx = &max32_spi_rtio_##_num))}; \ SPI_DEVICE_DT_INST_DEFINE(_num, spi_max32_init, NULL, &max32_spi_data_##_num, \ &max32_spi_config_##_num, PRE_KERNEL_2, CONFIG_SPI_INIT_PRIORITY, \ &spi_max32_api); DT_INST_FOREACH_STATUS_OKAY(DEFINE_SPI_MAX32)