/* * Copyright (c) 2024 ITE Technology Inc. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT ite_it8xxx2_spi #include LOG_MODULE_REGISTER(spi_it8xxx2, CONFIG_SPI_LOG_LEVEL); #include #include #include #include #include #include "spi_context.h" #define BYTE_0(x) (uint8_t)(((x) >> 0) & 0xFF) #define BYTE_1(x) (uint8_t)(((x) >> 8) & 0xFF) #define BYTE_2(x) (uint8_t)(((x) >> 16) & 0xFF) #define SRAM_BASE_ADDR DT_REG_ADDR(DT_NODELABEL(sram0)) #define SPI_CHIP_SELECT_COUNT 2 #define SPI_CMDQ_WR_CMD_LEN_MAX 16 #define SPI_CMDQ_DATA_LEN_MAX 0xFFFF /* IT8xxx2 SSPI Registers Definition */ #define SPI01_CTRL1 0x01 #define CLOCK_POLARTY BIT(6) #define SSCK_FREQ_MASK (BIT(2) | BIT(3) | BIT(4)) #define INTERRUPT_EN BIT(1) #define SPI04_CTRL3 0x04 #define AUTO_MODE BIT(5) #define SPI05_CH0_CMD_ADDR_LB 0x05 #define SPI06_CH0_CMD_ADDR_HB 0x06 #define SPI0C_INT_STS 0x0C #define SPI_CMDQ_BUS_END_INT_MASK BIT(4) #define SPI_DMA_RBUF_1_FULL BIT(2) #define SPI_DMA_RBUF_0_FULL BIT(1) #define SPI_CMDQ_BUS_END BIT(0) #define SPI0D_CTRL5 0x0D #define CH1_SEL_CMDQ BIT(5) #define CH0_SEL_CMDQ BIT(4) #define SCK_FREQ_DIV_1_EN BIT(1) #define CMDQ_MODE_EN BIT(0) #define SPI0E_CH0_WR_MEM_ADDR_LB 0x0E #define SPI0F_CH0_WR_MEM_ADDR_HB 0x0F #define SPI12_CH1_CMD_ADDR_LB 0x12 #define SPI13_CH1_CMD_ADDR_HB 0x13 #define SPI14_CH1_WR_MEM_ADDR_LB 0x14 #define SPI15_CH1_WR_MEM_ADDR_HB 0x15 #define SPI21_CH0_CMD_ADDR_HB2 0x21 #define SPI23_CH0_WR_MEM_ADDR_HB2 0x23 #define SPI25_CH1_CMD_ADDR_HB2 0x25 #define SPI27_CH1_WR_MEM_ADDR_HB2 0x27 struct spi_it8xxx2_cmdq_data { uint8_t spi_write_cmd_length; union { uint8_t value; struct { uint8_t cmd_end: 1; uint8_t read_write: 1; uint8_t auto_check_sts: 1; uint8_t cs_active: 1; uint8_t reserved: 1; uint8_t cmd_mode: 2; uint8_t dtr: 1; } __packed fields; } __packed command; uint8_t data_length_lb; uint8_t data_length_hb; uint8_t data_addr_lb; uint8_t data_addr_hb; uint8_t check_bit_mask; uint8_t check_bit_value; uint8_t write_data[SPI_CMDQ_WR_CMD_LEN_MAX]; }; struct spi_it8xxx2_config { mm_reg_t base; const struct pinctrl_dev_config *pcfg; uint8_t spi_irq; }; struct spi_it8xxx2_data { struct spi_context ctx; struct spi_it8xxx2_cmdq_data cmdq_data; size_t transfer_len; size_t receive_len; }; static inline int spi_it8xxx2_set_freq(const struct device *dev, const uint32_t frequency) { const struct spi_it8xxx2_config *cfg = dev->config; uint8_t freq_div[8] = {2, 4, 6, 8, 10, 12, 14, 16}; uint32_t clk_pll, clk_sspi; uint8_t reg_val; clk_pll = chip_get_pll_freq(); clk_sspi = clk_pll / (((IT8XXX2_ECPM_SCDCR2 & 0xF0) >> 4) + 1U); if (frequency < (clk_sspi / 16) || frequency > clk_sspi) { LOG_ERR("Unsupported frequency %d", frequency); return -ENOTSUP; } if (frequency == clk_sspi) { sys_write8(sys_read8(cfg->base + SPI0D_CTRL5) | SCK_FREQ_DIV_1_EN, cfg->base + SPI0D_CTRL5); } else { for (int i = 0; i <= ARRAY_SIZE(freq_div); i++) { if (i == ARRAY_SIZE(freq_div)) { LOG_ERR("Unknown frequency %d", frequency); return -ENOTSUP; } if (frequency == (clk_sspi / freq_div[i])) { sys_write8(sys_read8(cfg->base + SPI0D_CTRL5) & ~SCK_FREQ_DIV_1_EN, cfg->base + SPI0D_CTRL5); reg_val = sys_read8(cfg->base + SPI01_CTRL1); reg_val = (reg_val & (~SSCK_FREQ_MASK)) | (i << 2); sys_write8(reg_val, cfg->base + SPI01_CTRL1); break; } } } LOG_DBG("freq: pll %dHz, sspi %dHz, ssck %dHz", clk_pll, clk_sspi, frequency); return 0; } static int spi_it8xxx2_configure(const struct device *dev, const struct spi_config *spi_cfg) { const struct spi_it8xxx2_config *cfg = dev->config; struct spi_it8xxx2_data *data = dev->data; struct spi_context *ctx = &data->ctx; int ret; uint8_t reg_val; if (spi_cfg->slave > (SPI_CHIP_SELECT_COUNT - 1)) { LOG_ERR("Slave %d is greater than %d", spi_cfg->slave, SPI_CHIP_SELECT_COUNT - 1); return -EINVAL; } LOG_DBG("chip select: %d, operation: 0x%x", spi_cfg->slave, spi_cfg->operation); if (SPI_OP_MODE_GET(spi_cfg->operation) == SPI_OP_MODE_SLAVE) { LOG_ERR("Unsupported SPI slave mode"); return -ENOTSUP; } if (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_LOOP) { LOG_ERR("Unsupported loopback mode"); return -ENOTSUP; } if (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA) { LOG_ERR("Unsupported cpha mode"); return -ENOTSUP; } reg_val = sys_read8(cfg->base + SPI01_CTRL1); if (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL) { reg_val |= CLOCK_POLARTY; } else { reg_val &= ~CLOCK_POLARTY; } sys_write8(reg_val, cfg->base + SPI01_CTRL1); if (SPI_WORD_SIZE_GET(spi_cfg->operation) != 8) { return -ENOTSUP; } if (IS_ENABLED(CONFIG_SPI_EXTENDED_MODES) && (spi_cfg->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) { LOG_ERR("Only single line mode is supported"); return -EINVAL; } ret = spi_it8xxx2_set_freq(dev, spi_cfg->frequency); if (ret) { return ret; } reg_val = sys_read8(cfg->base + SPI0C_INT_STS); reg_val = (reg_val & (~SPI_CMDQ_BUS_END_INT_MASK)); sys_write8(reg_val, cfg->base + SPI0C_INT_STS); ctx->config = spi_cfg; return 0; } static inline bool spi_it8xxx2_transfer_done(struct spi_context *ctx) { return !spi_context_tx_buf_on(ctx) && !spi_context_rx_buf_on(ctx); } static void spi_it8xxx2_complete(const struct device *dev, const int status) { struct spi_it8xxx2_data *data = dev->data; struct spi_context *ctx = &data->ctx; spi_context_complete(ctx, dev, status); if (spi_cs_is_gpio(ctx->config)) { spi_context_cs_control(ctx, false); } /* Permit to enter power policy and idle mode. */ pm_policy_state_lock_put(PM_STATE_STANDBY, PM_ALL_SUBSTATES); chip_permit_idle(); } static inline void spi_it8xxx2_tx(const struct device *dev) { struct spi_it8xxx2_data *data = dev->data; struct spi_context *ctx = &data->ctx; uint32_t mem_address; if (ctx->tx_count > 1) { data->cmdq_data.command.fields.cs_active = 1; } else { data->cmdq_data.command.fields.cs_active = 0; } data->cmdq_data.command.fields.cmd_end = 1; data->cmdq_data.command.fields.read_write = 0; if (ctx->tx_len <= SPI_CMDQ_WR_CMD_LEN_MAX) { data->cmdq_data.spi_write_cmd_length = ctx->tx_len; memcpy(data->cmdq_data.write_data, ctx->tx_buf, ctx->tx_len); data->cmdq_data.data_length_lb = 0; data->cmdq_data.data_length_hb = 0; data->cmdq_data.data_addr_lb = 0; data->cmdq_data.data_addr_hb = 0; } else { data->cmdq_data.spi_write_cmd_length = SPI_CMDQ_WR_CMD_LEN_MAX; memcpy(data->cmdq_data.write_data, ctx->tx_buf, SPI_CMDQ_WR_CMD_LEN_MAX); data->cmdq_data.data_length_lb = BYTE_0(ctx->tx_len - SPI_CMDQ_WR_CMD_LEN_MAX); data->cmdq_data.data_length_hb = BYTE_1(ctx->tx_len - SPI_CMDQ_WR_CMD_LEN_MAX); mem_address = (uint32_t)(ctx->tx_buf + SPI_CMDQ_WR_CMD_LEN_MAX) - SRAM_BASE_ADDR; data->cmdq_data.data_addr_lb = BYTE_0(mem_address); data->cmdq_data.data_addr_hb = BYTE_1(mem_address); data->cmdq_data.check_bit_mask |= ((BYTE_2(mem_address)) & 0x03); } data->transfer_len = ctx->tx_len; } static inline void spi_it8xxx2_rx(const struct device *dev) { struct spi_it8xxx2_data *data = dev->data; struct spi_context *ctx = &data->ctx; if (ctx->rx_count > 1) { data->cmdq_data.command.fields.cs_active = 1; } else { data->cmdq_data.command.fields.cs_active = 0; } data->cmdq_data.command.fields.cmd_end = 1; data->cmdq_data.command.fields.read_write = 1; data->cmdq_data.spi_write_cmd_length = 0; data->cmdq_data.data_length_lb = BYTE_0(ctx->rx_len); data->cmdq_data.data_length_hb = BYTE_1(ctx->rx_len); data->cmdq_data.data_addr_lb = 0; data->cmdq_data.data_addr_hb = 0; data->receive_len = ctx->rx_len; } static inline void spi_it8xxx2_tx_rx(const struct device *dev) { struct spi_it8xxx2_data *data = dev->data; struct spi_context *ctx = &data->ctx; uint32_t mem_address; data->cmdq_data.command.fields.cmd_end = 1; if (ctx->tx_len <= SPI_CMDQ_WR_CMD_LEN_MAX) { data->cmdq_data.command.fields.cs_active = 0; data->cmdq_data.command.fields.read_write = 1; data->cmdq_data.spi_write_cmd_length = ctx->tx_len; memcpy(data->cmdq_data.write_data, ctx->tx_buf, ctx->tx_len); if (ctx->rx_buf == ctx->tx_buf) { spi_context_update_tx(ctx, 1, ctx->tx_len); spi_context_update_rx(ctx, 1, ctx->rx_len); } data->cmdq_data.data_length_lb = BYTE_0(ctx->rx_len); data->cmdq_data.data_length_hb = BYTE_1(ctx->rx_len); data->cmdq_data.data_addr_lb = 0; data->cmdq_data.data_addr_hb = 0; data->transfer_len = ctx->tx_len; data->receive_len = ctx->rx_len; } else { data->cmdq_data.command.fields.cs_active = 1; data->cmdq_data.command.fields.read_write = 0; data->cmdq_data.spi_write_cmd_length = SPI_CMDQ_WR_CMD_LEN_MAX; memcpy(data->cmdq_data.write_data, ctx->tx_buf, SPI_CMDQ_WR_CMD_LEN_MAX); data->cmdq_data.data_length_lb = BYTE_0(ctx->tx_len - SPI_CMDQ_WR_CMD_LEN_MAX); data->cmdq_data.data_length_hb = BYTE_1(ctx->tx_len - SPI_CMDQ_WR_CMD_LEN_MAX); mem_address = (uint32_t)(ctx->tx_buf + SPI_CMDQ_WR_CMD_LEN_MAX) - SRAM_BASE_ADDR; data->cmdq_data.data_addr_lb = BYTE_0(mem_address); data->cmdq_data.data_addr_hb = BYTE_1(mem_address); data->cmdq_data.check_bit_mask |= ((BYTE_2(mem_address)) & 0x03); if (ctx->rx_buf == ctx->tx_buf) { spi_context_update_tx(ctx, 1, ctx->tx_len); spi_context_update_rx(ctx, 1, ctx->rx_len); } data->transfer_len = ctx->tx_len; data->receive_len = 0; } } static int spi_it8xxx2_next_xfer(const struct device *dev) { const struct spi_it8xxx2_config *cfg = dev->config; struct spi_it8xxx2_data *data = dev->data; struct spi_context *ctx = &data->ctx; uint8_t reg_val; uint32_t cmd_address, mem_address; if (spi_it8xxx2_transfer_done(ctx)) { spi_it8xxx2_complete(dev, 0); return 0; } if (spi_cs_is_gpio(ctx->config)) { spi_context_cs_control(ctx, true); } if (spi_context_longest_current_buf(ctx) > SPI_CMDQ_DATA_LEN_MAX) { return -EINVAL; } memset(&data->cmdq_data, 0, sizeof(struct spi_it8xxx2_cmdq_data)); /* Prepare command queue data */ if (!spi_context_tx_on(ctx)) { /* rx only, nothing to tx */ spi_it8xxx2_rx(dev); } else if (!spi_context_rx_on(ctx)) { /* tx only, nothing to rx */ spi_it8xxx2_tx(dev); } else { spi_it8xxx2_tx_rx(dev); } cmd_address = (uint32_t)(&data->cmdq_data) - SRAM_BASE_ADDR; mem_address = (uint32_t)ctx->rx_buf - SRAM_BASE_ADDR; if (ctx->config->slave == 0) { sys_write8(BYTE_0(cmd_address), cfg->base + SPI05_CH0_CMD_ADDR_LB); sys_write8(BYTE_1(cmd_address), cfg->base + SPI06_CH0_CMD_ADDR_HB); sys_write8(BYTE_2(cmd_address), cfg->base + SPI21_CH0_CMD_ADDR_HB2); if (spi_context_rx_on(ctx)) { sys_write8(BYTE_0(mem_address), cfg->base + SPI0E_CH0_WR_MEM_ADDR_LB); sys_write8(BYTE_1(mem_address), cfg->base + SPI0F_CH0_WR_MEM_ADDR_HB); sys_write8(BYTE_2(mem_address), cfg->base + SPI23_CH0_WR_MEM_ADDR_HB2); } } else { sys_write8(BYTE_0(cmd_address), cfg->base + SPI12_CH1_CMD_ADDR_LB); sys_write8(BYTE_1(cmd_address), cfg->base + SPI13_CH1_CMD_ADDR_HB); sys_write8(BYTE_2(cmd_address), cfg->base + SPI25_CH1_CMD_ADDR_HB2); if (spi_context_rx_on(ctx)) { sys_write8(BYTE_0(mem_address), cfg->base + SPI14_CH1_WR_MEM_ADDR_LB); sys_write8(BYTE_1(mem_address), cfg->base + SPI15_CH1_WR_MEM_ADDR_HB); sys_write8(BYTE_2(mem_address), cfg->base + SPI27_CH1_WR_MEM_ADDR_HB2); } } sys_write8(sys_read8(cfg->base + SPI01_CTRL1) | INTERRUPT_EN, cfg->base + SPI01_CTRL1); reg_val = sys_read8(cfg->base + SPI0D_CTRL5); reg_val |= (ctx->config->slave == 0) ? CH0_SEL_CMDQ : CH1_SEL_CMDQ; sys_write8(reg_val | CMDQ_MODE_EN, cfg->base + SPI0D_CTRL5); return 0; } static int transceive(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool asynchronous, spi_callback_t cb, void *userdata) { struct spi_it8xxx2_data *data = dev->data; struct spi_context *ctx = &data->ctx; int ret; spi_context_lock(ctx, asynchronous, cb, userdata, config); /* Configure spi */ ret = spi_it8xxx2_configure(dev, config); if (ret) { spi_context_release(ctx, ret); return ret; } /* * The EC processor(CPU) cannot be in the k_cpu_idle() and power * policy during the transactions with the CQ mode. * Otherwise, the EC processor would be clock gated. */ chip_block_idle(); pm_policy_state_lock_get(PM_STATE_STANDBY, PM_ALL_SUBSTATES); spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1); ret = spi_it8xxx2_next_xfer(dev); if (!ret) { ret = spi_context_wait_for_completion(ctx); } else { spi_it8xxx2_complete(dev, ret); } spi_context_release(ctx, ret); return ret; } static int it8xxx2_transceive(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return transceive(dev, config, tx_bufs, rx_bufs, false, NULL, NULL); } #ifdef CONFIG_SPI_ASYNC static int it8xxx2_transceive_async(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { return transceive(dev, config, tx_bufs, rx_bufs, true, cb, userdata); } #endif /* CONFIG_SPI_ASYNC */ static int it8xxx2_release(const struct device *dev, const struct spi_config *config) { struct spi_it8xxx2_data *data = dev->data; spi_context_unlock_unconditionally(&data->ctx); return 0; } static void it8xxx2_spi_isr(const void *arg) { const struct device *dev = arg; const struct spi_it8xxx2_config *cfg = dev->config; struct spi_it8xxx2_data *data = dev->data; struct spi_context *ctx = &data->ctx; uint8_t reg_val; int ret; reg_val = sys_read8(cfg->base + SPI0C_INT_STS); sys_write8(reg_val, cfg->base + SPI0C_INT_STS); if (reg_val & (SPI_DMA_RBUF_0_FULL | SPI_DMA_RBUF_1_FULL)) { LOG_INF("Triggered dma ring buffer full interrupt, status: 0x%x", reg_val); } if (reg_val & SPI_CMDQ_BUS_END) { reg_val = sys_read8(cfg->base + SPI0D_CTRL5); if (ctx->config->slave == 0) { reg_val &= ~CH0_SEL_CMDQ; } else { reg_val &= ~CH1_SEL_CMDQ; } sys_write8(reg_val, cfg->base + SPI0D_CTRL5); spi_context_update_tx(ctx, 1, data->transfer_len); spi_context_update_rx(ctx, 1, data->receive_len); ret = spi_it8xxx2_next_xfer(dev); if (ret) { spi_it8xxx2_complete(dev, ret); } } } static int spi_it8xxx2_init(const struct device *dev) { const struct spi_it8xxx2_config *cfg = dev->config; struct spi_it8xxx2_data *data = dev->data; int ret; ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); if (ret) { LOG_ERR("Failed to set default pinctrl"); return ret; } /* Enable one-shot mode */ sys_write8(sys_read8(cfg->base + SPI04_CTRL3) & ~AUTO_MODE, cfg->base + SPI04_CTRL3); irq_connect_dynamic(cfg->spi_irq, 0, it8xxx2_spi_isr, dev, 0); irq_enable(cfg->spi_irq); ret = spi_context_cs_configure_all(&data->ctx); if (ret) { return ret; } spi_context_unlock_unconditionally(&data->ctx); return 0; } static DEVICE_API(spi, spi_it8xxx2_driver_api) = { .transceive = it8xxx2_transceive, .release = it8xxx2_release, #ifdef CONFIG_SPI_ASYNC .transceive_async = it8xxx2_transceive_async, #endif }; #define SPI_IT8XXX2_INIT(n) \ PINCTRL_DT_INST_DEFINE(n); \ static const struct spi_it8xxx2_config spi_it8xxx2_cfg_##n = { \ .base = DT_INST_REG_ADDR(n), \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \ .spi_irq = DT_INST_IRQ(n, irq), \ }; \ \ static struct spi_it8xxx2_data spi_it8xxx2_data_##n = { \ SPI_CONTEXT_INIT_LOCK(spi_it8xxx2_data_##n, ctx), \ SPI_CONTEXT_INIT_SYNC(spi_it8xxx2_data_##n, ctx), \ SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx)}; \ \ DEVICE_DT_INST_DEFINE(n, &spi_it8xxx2_init, NULL, &spi_it8xxx2_data_##n, \ &spi_it8xxx2_cfg_##n, POST_KERNEL, \ CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &spi_it8xxx2_driver_api); DT_INST_FOREACH_STATUS_OKAY(SPI_IT8XXX2_INIT)