/* * Copyright (c) 2022 Andes Technology Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #include "spi_andes_atcspi200.h" #include #define DT_DRV_COMPAT andestech_atcspi200 typedef void (*atcspi200_cfg_func_t)(void); #ifdef CONFIG_ANDES_SPI_DMA_MODE #define ANDES_SPI_DMA_ERROR_FLAG 0x01 #define ANDES_SPI_DMA_RX_DONE_FLAG 0x02 #define ANDES_SPI_DMA_TX_DONE_FLAG 0x04 #define ANDES_SPI_DMA_DONE_FLAG \ (ANDES_SPI_DMA_RX_DONE_FLAG | ANDES_SPI_DMA_TX_DONE_FLAG) struct stream { const struct device *dma_dev; uint32_t channel; uint32_t block_idx; struct dma_config dma_cfg; struct dma_block_config dma_blk_cfg; struct dma_block_config chain_block[MAX_CHAIN_SIZE]; uint8_t priority; bool src_addr_increment; bool dst_addr_increment; }; #endif struct spi_atcspi200_data { struct spi_context ctx; uint32_t tx_fifo_size; uint32_t rx_fifo_size; int tx_cnt; size_t chunk_len; bool busy; #ifdef CONFIG_ANDES_SPI_DMA_MODE struct stream dma_rx; struct stream dma_tx; #endif }; struct spi_atcspi200_cfg { atcspi200_cfg_func_t cfg_func; uint32_t base; uint32_t irq_num; uint32_t f_sys; bool xip; }; /* API Functions */ static int spi_config(const struct device *dev, const struct spi_config *config) { const struct spi_atcspi200_cfg * const cfg = dev->config; uint32_t sclk_div, data_len; /* Set the divisor for SPI interface sclk */ sclk_div = (cfg->f_sys / (config->frequency << 1)) - 1; sys_clear_bits(SPI_TIMIN(cfg->base), TIMIN_SCLK_DIV_MSK); sys_set_bits(SPI_TIMIN(cfg->base), sclk_div); /* Set Master mode */ sys_clear_bits(SPI_TFMAT(cfg->base), TFMAT_SLVMODE_MSK); /* Disable data merge mode */ sys_clear_bits(SPI_TFMAT(cfg->base), TFMAT_DATA_MERGE_MSK); /* Set data length */ data_len = SPI_WORD_SIZE_GET(config->operation) - 1; sys_clear_bits(SPI_TFMAT(cfg->base), TFMAT_DATA_LEN_MSK); sys_set_bits(SPI_TFMAT(cfg->base), (data_len << TFMAT_DATA_LEN_OFFSET)); /* Set SPI frame format */ if (config->operation & SPI_MODE_CPHA) { sys_set_bits(SPI_TFMAT(cfg->base), TFMAT_CPHA_MSK); } else { sys_clear_bits(SPI_TFMAT(cfg->base), TFMAT_CPHA_MSK); } if (config->operation & SPI_MODE_CPOL) { sys_set_bits(SPI_TFMAT(cfg->base), TFMAT_CPOL_MSK); } else { sys_clear_bits(SPI_TFMAT(cfg->base), TFMAT_CPOL_MSK); } /* Set SPI bit order */ if (config->operation & SPI_TRANSFER_LSB) { sys_set_bits(SPI_TFMAT(cfg->base), TFMAT_LSB_MSK); } else { sys_clear_bits(SPI_TFMAT(cfg->base), TFMAT_LSB_MSK); } /* Set TX/RX FIFO threshold */ sys_clear_bits(SPI_CTRL(cfg->base), CTRL_TX_THRES_MSK); sys_clear_bits(SPI_CTRL(cfg->base), CTRL_RX_THRES_MSK); sys_set_bits(SPI_CTRL(cfg->base), TX_FIFO_THRESHOLD << CTRL_TX_THRES_OFFSET); sys_set_bits(SPI_CTRL(cfg->base), RX_FIFO_THRESHOLD << CTRL_RX_THRES_OFFSET); return 0; } static int spi_transfer(const struct device *dev) { struct spi_atcspi200_data * const data = dev->data; const struct spi_atcspi200_cfg * const cfg = dev->config; struct spi_context *ctx = &data->ctx; uint32_t data_len, tctrl, int_msk; if (data->chunk_len != 0) { data_len = data->chunk_len - 1; } else { data_len = 0; } if (data_len > MAX_TRANSFER_CNT) { return -EINVAL; } data->tx_cnt = 0; if (!spi_context_rx_on(ctx)) { tctrl = (TRNS_MODE_WRITE_ONLY << TCTRL_TRNS_MODE_OFFSET) | (data_len << TCTRL_WR_TCNT_OFFSET); int_msk = IEN_TX_FIFO_MSK | IEN_END_MSK; } else if (!spi_context_tx_on(ctx)) { tctrl = (TRNS_MODE_READ_ONLY << TCTRL_TRNS_MODE_OFFSET) | (data_len << TCTRL_RD_TCNT_OFFSET); int_msk = IEN_RX_FIFO_MSK | IEN_END_MSK; } else { tctrl = (TRNS_MODE_WRITE_READ << TCTRL_TRNS_MODE_OFFSET) | (data_len << TCTRL_WR_TCNT_OFFSET) | (data_len << TCTRL_RD_TCNT_OFFSET); int_msk = IEN_TX_FIFO_MSK | IEN_RX_FIFO_MSK | IEN_END_MSK; } sys_write32(tctrl, SPI_TCTRL(cfg->base)); /* Enable TX/RX FIFO interrupts */ sys_write32(int_msk, SPI_INTEN(cfg->base)); /* Start transferring */ sys_write32(0, SPI_CMD(cfg->base)); return 0; } static int configure(const struct device *dev, const struct spi_config *config) { struct spi_atcspi200_data * const data = dev->data; struct spi_context *ctx = &(data->ctx); if (spi_context_configured(ctx, config)) { /* Already configured. No need to do it again. */ return 0; } if (SPI_OP_MODE_GET(config->operation) != SPI_OP_MODE_MASTER) { LOG_ERR("Slave mode is not supported on %s", dev->name); return -EINVAL; } if (config->operation & SPI_MODE_LOOP) { LOG_ERR("Loopback mode is not supported"); return -EINVAL; } if ((config->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) { LOG_ERR("Only single line mode is supported"); return -EINVAL; } ctx->config = config; /* SPI configuration */ spi_config(dev, config); return 0; } #ifdef CONFIG_ANDES_SPI_DMA_MODE static int spi_dma_tx_load(const struct device *dev); static int spi_dma_rx_load(const struct device *dev); static inline void spi_tx_dma_enable(const struct device *dev) { const struct spi_atcspi200_cfg * const cfg = dev->config; /* Enable TX DMA */ sys_set_bits(SPI_CTRL(cfg->base), CTRL_TX_DMA_EN_MSK); } static inline void spi_tx_dma_disable(const struct device *dev) { const struct spi_atcspi200_cfg * const cfg = dev->config; /* Disable TX DMA */ sys_clear_bits(SPI_CTRL(cfg->base), CTRL_TX_DMA_EN_MSK); } static inline void spi_rx_dma_enable(const struct device *dev) { const struct spi_atcspi200_cfg * const cfg = dev->config; /* Enable RX DMA */ sys_set_bits(SPI_CTRL(cfg->base), CTRL_RX_DMA_EN_MSK); } static inline void spi_rx_dma_disable(const struct device *dev) { const struct spi_atcspi200_cfg * const cfg = dev->config; /* Disable RX DMA */ sys_clear_bits(SPI_CTRL(cfg->base), CTRL_RX_DMA_EN_MSK); } static int spi_dma_move_buffers(const struct device *dev) { struct spi_atcspi200_data *data = dev->data; struct spi_context *ctx = &data->ctx; uint32_t error = 0; data->dma_rx.dma_blk_cfg.next_block = NULL; data->dma_tx.dma_blk_cfg.next_block = NULL; if (spi_context_tx_on(ctx)) { error = spi_dma_tx_load(dev); if (error != 0) { return error; } } if (spi_context_rx_on(ctx)) { error = spi_dma_rx_load(dev); if (error != 0) { return error; } } return 0; } static inline void dma_rx_callback(const struct device *dev, void *user_data, uint32_t channel, int status) { const struct device *spi_dev = (struct device *)user_data; struct spi_atcspi200_data *data = spi_dev->data; struct spi_context *ctx = &data->ctx; int error; dma_stop(data->dma_rx.dma_dev, data->dma_rx.channel); spi_rx_dma_disable(spi_dev); if (spi_context_rx_on(ctx)) { if (spi_dma_rx_load(spi_dev) != 0) { return; } spi_rx_dma_enable(spi_dev); error = dma_start(data->dma_rx.dma_dev, data->dma_rx.channel); __ASSERT(error == 0, "dma_start was failed in rx callback"); } } static inline void dma_tx_callback(const struct device *dev, void *user_data, uint32_t channel, int status) { const struct device *spi_dev = (struct device *)user_data; struct spi_atcspi200_data *data = spi_dev->data; struct spi_context *ctx = &data->ctx; int error; dma_stop(data->dma_tx.dma_dev, data->dma_tx.channel); spi_tx_dma_disable(spi_dev); if (spi_context_tx_on(ctx)) { if (spi_dma_tx_load(spi_dev) != 0) { return; } spi_tx_dma_enable(spi_dev); error = dma_start(data->dma_tx.dma_dev, data->dma_tx.channel); __ASSERT(error == 0, "dma_start was failed in tx callback"); } } /* * dummy value used for transferring NOP when tx buf is null * and use as dummy sink for when rx buf is null */ uint32_t dummy_rx_tx_buffer; static int spi_dma_tx_load(const struct device *dev) { const struct spi_atcspi200_cfg * const cfg = dev->config; struct spi_atcspi200_data *data = dev->data; struct spi_context *ctx = &data->ctx; int remain_len, ret, dfs; /* prepare the block for this TX DMA channel */ memset(&data->dma_tx.dma_blk_cfg, 0, sizeof(struct dma_block_config)); if (ctx->current_tx->len > data->chunk_len) { data->dma_tx.dma_blk_cfg.block_size = data->chunk_len / data->dma_tx.dma_cfg.dest_data_size; } else { data->dma_tx.dma_blk_cfg.block_size = ctx->current_tx->len / data->dma_tx.dma_cfg.dest_data_size; } /* tx direction has memory as source and periph as dest. */ if (ctx->current_tx->buf == NULL) { dummy_rx_tx_buffer = 0; /* if tx buff is null, then sends NOP on the line. */ data->dma_tx.dma_blk_cfg.source_address = (uintptr_t)&dummy_rx_tx_buffer; data->dma_tx.dma_blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } else { data->dma_tx.dma_blk_cfg.source_address = (uintptr_t)ctx->current_tx->buf; if (data->dma_tx.src_addr_increment) { data->dma_tx.dma_blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { data->dma_tx.dma_blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } } dfs = SPI_WORD_SIZE_GET(ctx->config->operation) >> 3; remain_len = data->chunk_len - ctx->current_tx->len; spi_context_update_tx(ctx, dfs, ctx->current_tx->len); data->dma_tx.dma_blk_cfg.dest_address = (uint32_t)SPI_DATA(cfg->base); /* fifo mode NOT USED there */ if (data->dma_tx.dst_addr_increment) { data->dma_tx.dma_blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { data->dma_tx.dma_blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } /* direction is given by the DT */ data->dma_tx.dma_cfg.head_block = &data->dma_tx.dma_blk_cfg; data->dma_tx.dma_cfg.head_block->next_block = NULL; /* give the client dev as arg, as the callback comes from the dma */ data->dma_tx.dma_cfg.user_data = (void *)dev; if (data->dma_tx.dma_cfg.source_chaining_en) { data->dma_tx.dma_cfg.block_count = ctx->tx_count; data->dma_tx.dma_cfg.dma_callback = NULL; data->dma_tx.block_idx = 0; struct dma_block_config *blk_cfg = &data->dma_tx.dma_blk_cfg; const struct spi_buf *current_tx = ctx->current_tx; while (remain_len > 0) { struct dma_block_config *next_blk_cfg; next_blk_cfg = &data->dma_tx.chain_block[data->dma_tx.block_idx]; data->dma_tx.block_idx += 1; blk_cfg->next_block = next_blk_cfg; current_tx = ctx->current_tx; next_blk_cfg->block_size = current_tx->len / data->dma_tx.dma_cfg.dest_data_size; /* tx direction has memory as source and periph as dest. */ if (current_tx->buf == NULL) { dummy_rx_tx_buffer = 0; /* if tx buff is null, then sends NOP on the line. */ next_blk_cfg->source_address = (uintptr_t)&dummy_rx_tx_buffer; next_blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } else { next_blk_cfg->source_address = (uintptr_t)current_tx->buf; if (data->dma_tx.src_addr_increment) { next_blk_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { next_blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } } next_blk_cfg->dest_address = (uint32_t)SPI_DATA(cfg->base); /* fifo mode NOT USED there */ if (data->dma_tx.dst_addr_increment) { next_blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { next_blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } blk_cfg = next_blk_cfg; next_blk_cfg->next_block = NULL; remain_len -= ctx->current_tx->len; spi_context_update_tx(ctx, dfs, ctx->current_tx->len); } } else { data->dma_tx.dma_blk_cfg.next_block = NULL; data->dma_tx.dma_cfg.block_count = 1; data->dma_tx.dma_cfg.dma_callback = dma_tx_callback; } /* pass our client origin to the dma: data->dma_tx.dma_channel */ ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.channel, &data->dma_tx.dma_cfg); /* the channel is the actual stream from 0 */ if (ret != 0) { data->dma_tx.block_idx = 0; data->dma_tx.dma_blk_cfg.next_block = NULL; return ret; } return 0; } static int spi_dma_rx_load(const struct device *dev) { const struct spi_atcspi200_cfg * const cfg = dev->config; struct spi_atcspi200_data *data = dev->data; struct spi_context *ctx = &data->ctx; int remain_len, ret, dfs; /* prepare the block for this RX DMA channel */ memset(&data->dma_rx.dma_blk_cfg, 0, sizeof(struct dma_block_config)); if (ctx->current_rx->len > data->chunk_len) { data->dma_rx.dma_blk_cfg.block_size = data->chunk_len / data->dma_rx.dma_cfg.dest_data_size; } else { data->dma_rx.dma_blk_cfg.block_size = ctx->current_rx->len / data->dma_rx.dma_cfg.dest_data_size; } /* rx direction has periph as source and mem as dest. */ if (ctx->current_rx->buf == NULL) { /* if rx buff is null, then write data to dummy address. */ data->dma_rx.dma_blk_cfg.dest_address = (uintptr_t)&dummy_rx_tx_buffer; data->dma_rx.dma_blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } else { data->dma_rx.dma_blk_cfg.dest_address = (uintptr_t)ctx->current_rx->buf; if (data->dma_rx.dst_addr_increment) { data->dma_rx.dma_blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { data->dma_rx.dma_blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } } dfs = SPI_WORD_SIZE_GET(ctx->config->operation) >> 3; remain_len = data->chunk_len - ctx->current_rx->len; spi_context_update_rx(ctx, dfs, ctx->current_rx->len); data->dma_rx.dma_blk_cfg.source_address = (uint32_t)SPI_DATA(cfg->base); if (data->dma_rx.src_addr_increment) { data->dma_rx.dma_blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { data->dma_rx.dma_blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } data->dma_rx.dma_cfg.head_block = &data->dma_rx.dma_blk_cfg; data->dma_rx.dma_cfg.head_block->next_block = NULL; data->dma_rx.dma_cfg.user_data = (void *)dev; if (data->dma_rx.dma_cfg.source_chaining_en) { data->dma_rx.dma_cfg.block_count = ctx->rx_count; data->dma_rx.dma_cfg.dma_callback = NULL; data->dma_rx.block_idx = 0; struct dma_block_config *blk_cfg = &data->dma_rx.dma_blk_cfg; const struct spi_buf *current_rx = ctx->current_rx; while (remain_len > 0) { struct dma_block_config *next_blk_cfg; next_blk_cfg = &data->dma_rx.chain_block[data->dma_rx.block_idx]; data->dma_rx.block_idx += 1; blk_cfg->next_block = next_blk_cfg; current_rx = ctx->current_rx; next_blk_cfg->block_size = current_rx->len / data->dma_rx.dma_cfg.dest_data_size; /* rx direction has periph as source and mem as dest. */ if (current_rx->buf == NULL) { /* if rx buff is null, then write data to dummy address. */ next_blk_cfg->dest_address = (uintptr_t)&dummy_rx_tx_buffer; next_blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } else { next_blk_cfg->dest_address = (uintptr_t)current_rx->buf; if (data->dma_rx.dst_addr_increment) { next_blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { next_blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } } next_blk_cfg->source_address = (uint32_t)SPI_DATA(cfg->base); if (data->dma_rx.src_addr_increment) { next_blk_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { next_blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } blk_cfg = next_blk_cfg; next_blk_cfg->next_block = NULL; remain_len -= ctx->current_rx->len; spi_context_update_rx(ctx, dfs, ctx->current_rx->len); } } else { data->dma_rx.dma_blk_cfg.next_block = NULL; data->dma_rx.dma_cfg.block_count = 1; data->dma_rx.dma_cfg.dma_callback = dma_rx_callback; } /* pass our client origin to the dma: data->dma_rx.channel */ ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.channel, &data->dma_rx.dma_cfg); /* the channel is the actual stream from 0 */ if (ret != 0) { data->dma_rx.block_idx = 0; data->dma_rx.dma_blk_cfg.next_block = NULL; return ret; } return 0; } static int spi_transfer_dma(const struct device *dev) { const struct spi_atcspi200_cfg * const cfg = dev->config; struct spi_atcspi200_data * const data = dev->data; struct spi_context *ctx = &data->ctx; uint32_t data_len, tctrl, dma_rx_enable, dma_tx_enable; int error = 0; data_len = data->chunk_len - 1; if (data_len > MAX_TRANSFER_CNT) { return -EINVAL; } if (!spi_context_rx_on(ctx)) { tctrl = (TRNS_MODE_WRITE_ONLY << TCTRL_TRNS_MODE_OFFSET) | (data_len << TCTRL_WR_TCNT_OFFSET); dma_rx_enable = 0; dma_tx_enable = 1; } else if (!spi_context_tx_on(ctx)) { tctrl = (TRNS_MODE_READ_ONLY << TCTRL_TRNS_MODE_OFFSET) | (data_len << TCTRL_RD_TCNT_OFFSET); dma_rx_enable = 1; dma_tx_enable = 0; } else { tctrl = (TRNS_MODE_WRITE_READ << TCTRL_TRNS_MODE_OFFSET) | (data_len << TCTRL_WR_TCNT_OFFSET) | (data_len << TCTRL_RD_TCNT_OFFSET); dma_rx_enable = 1; dma_tx_enable = 1; } sys_write32(tctrl, SPI_TCTRL(cfg->base)); /* Set sclk_div to zero */ sys_clear_bits(SPI_TIMIN(cfg->base), 0xff); /* Enable END Interrupts */ sys_write32(IEN_END_MSK, SPI_INTEN(cfg->base)); /* Setting DMA config*/ error = spi_dma_move_buffers(dev); if (error != 0) { return error; } /* Start transferring */ sys_write32(0, SPI_CMD(cfg->base)); if (dma_rx_enable) { spi_rx_dma_enable(dev); error = dma_start(data->dma_rx.dma_dev, data->dma_rx.channel); if (error != 0) { return error; } } if (dma_tx_enable) { spi_tx_dma_enable(dev); error = dma_start(data->dma_tx.dma_dev, data->dma_tx.channel); if (error != 0) { return error; } } return 0; } #endif static int transceive(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool asynchronous, spi_callback_t cb, void *userdata) { const struct spi_atcspi200_cfg * const cfg = dev->config; struct spi_atcspi200_data * const data = dev->data; struct spi_context *ctx = &data->ctx; int error, dfs; size_t chunk_len; spi_context_lock(ctx, asynchronous, cb, userdata, config); error = configure(dev, config); if (error == 0) { data->busy = true; dfs = SPI_WORD_SIZE_GET(ctx->config->operation) >> 3; spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, dfs); spi_context_cs_control(ctx, true); sys_set_bits(SPI_CTRL(cfg->base), CTRL_TX_FIFO_RST_MSK); sys_set_bits(SPI_CTRL(cfg->base), CTRL_RX_FIFO_RST_MSK); if (!spi_context_rx_on(ctx)) { chunk_len = spi_context_total_tx_len(ctx); } else if (!spi_context_tx_on(ctx)) { chunk_len = spi_context_total_rx_len(ctx); } else { size_t rx_len = spi_context_total_rx_len(ctx); size_t tx_len = spi_context_total_tx_len(ctx); chunk_len = MIN(rx_len, tx_len); } data->chunk_len = chunk_len; #ifdef CONFIG_ANDES_SPI_DMA_MODE if ((data->dma_tx.dma_dev != NULL) && (data->dma_rx.dma_dev != NULL)) { error = spi_transfer_dma(dev); if (error != 0) { spi_context_cs_control(ctx, false); goto out; } } else { #endif /* CONFIG_ANDES_SPI_DMA_MODE */ error = spi_transfer(dev); if (error != 0) { spi_context_cs_control(ctx, false); goto out; } #ifdef CONFIG_ANDES_SPI_DMA_MODE } #endif /* CONFIG_ANDES_SPI_DMA_MODE */ error = spi_context_wait_for_completion(ctx); spi_context_cs_control(ctx, false); } out: spi_context_release(ctx, error); return error; } int spi_atcspi200_transceive(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return transceive(dev, config, tx_bufs, rx_bufs, false, NULL, NULL); } #ifdef CONFIG_SPI_ASYNC int spi_atcspi200_transceive_async(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { return transceive(dev, config, tx_bufs, rx_bufs, true, cb, userdata); } #endif int spi_atcspi200_release(const struct device *dev, const struct spi_config *config) { struct spi_atcspi200_data * const data = dev->data; if (data->busy) { return -EBUSY; } spi_context_unlock_unconditionally(&data->ctx); return 0; } int spi_atcspi200_init(const struct device *dev) { const struct spi_atcspi200_cfg * const cfg = dev->config; struct spi_atcspi200_data * const data = dev->data; int err = 0; /* we should not configure the device we are running on */ if (cfg->xip) { return -EINVAL; } spi_context_unlock_unconditionally(&data->ctx); #ifdef CONFIG_ANDES_SPI_DMA_MODE if (!data->dma_tx.dma_dev) { LOG_ERR("DMA device not found"); return -ENODEV; } if (!data->dma_rx.dma_dev) { LOG_ERR("DMA device not found"); return -ENODEV; } #endif /* Get the TX/RX FIFO size of this device */ data->tx_fifo_size = TX_FIFO_SIZE(cfg->base); data->rx_fifo_size = RX_FIFO_SIZE(cfg->base); cfg->cfg_func(); irq_enable(cfg->irq_num); err = spi_context_cs_configure_all(&data->ctx); if (err < 0) { return err; } return 0; } static DEVICE_API(spi, spi_atcspi200_api) = { .transceive = spi_atcspi200_transceive, #ifdef CONFIG_SPI_ASYNC .transceive_async = spi_atcspi200_transceive_async, #endif #ifdef CONFIG_SPI_RTIO .iodev_submit = spi_rtio_iodev_default_submit, #endif .release = spi_atcspi200_release }; static void spi_atcspi200_irq_handler(void *arg) { const struct device * const dev = (const struct device *) arg; const struct spi_atcspi200_cfg * const cfg = dev->config; struct spi_atcspi200_data * const data = dev->data; struct spi_context *ctx = &data->ctx; uint32_t rx_data, cur_tx_fifo_num, cur_rx_fifo_num; uint32_t i, dfs, intr_status, spi_status; uint32_t tx_num = 0, tx_data = 0; int error = 0; intr_status = sys_read32(SPI_INTST(cfg->base)); dfs = SPI_WORD_SIZE_GET(ctx->config->operation) >> 3; if ((intr_status & INTST_TX_FIFO_INT_MSK) && !(intr_status & INTST_END_INT_MSK)) { spi_status = sys_read32(SPI_STAT(cfg->base)); cur_tx_fifo_num = GET_TX_NUM(cfg->base); tx_num = data->tx_fifo_size - cur_tx_fifo_num; for (i = tx_num; i > 0; i--) { if (data->tx_cnt >= data->chunk_len) { /* Have already sent a chunk of data, so stop * sending data! */ sys_clear_bits(SPI_INTEN(cfg->base), IEN_TX_FIFO_MSK); break; } if (spi_context_tx_buf_on(ctx)) { switch (dfs) { case 1: tx_data = *ctx->tx_buf; break; case 2: tx_data = *(uint16_t *)ctx->tx_buf; break; } } else if (spi_context_tx_on(ctx)) { tx_data = 0; } else { sys_clear_bits(SPI_INTEN(cfg->base), IEN_TX_FIFO_MSK); break; } sys_write32(tx_data, SPI_DATA(cfg->base)); spi_context_update_tx(ctx, dfs, 1); data->tx_cnt++; } sys_write32(INTST_TX_FIFO_INT_MSK, SPI_INTST(cfg->base)); } if (intr_status & INTST_RX_FIFO_INT_MSK) { cur_rx_fifo_num = GET_RX_NUM(cfg->base); for (i = cur_rx_fifo_num; i > 0; i--) { rx_data = sys_read32(SPI_DATA(cfg->base)); if (spi_context_rx_buf_on(ctx)) { switch (dfs) { case 1: *ctx->rx_buf = rx_data; break; case 2: *(uint16_t *)ctx->rx_buf = rx_data; break; } } else if (!spi_context_rx_on(ctx)) { sys_clear_bits(SPI_INTEN(cfg->base), IEN_RX_FIFO_MSK); } spi_context_update_rx(ctx, dfs, 1); } sys_write32(INTST_RX_FIFO_INT_MSK, SPI_INTST(cfg->base)); } if (intr_status & INTST_END_INT_MSK) { /* Clear end interrupt */ sys_write32(INTST_END_INT_MSK, SPI_INTST(cfg->base)); /* Disable all SPI interrupts */ sys_write32(0, SPI_INTEN(cfg->base)); #ifdef CONFIG_ANDES_SPI_DMA_MODE if ((data->dma_tx.dma_dev != NULL) && data->dma_tx.dma_cfg.source_chaining_en) { spi_tx_dma_disable(dev); dma_stop(data->dma_tx.dma_dev, data->dma_tx.channel); data->dma_tx.block_idx = 0; data->dma_tx.dma_blk_cfg.next_block = NULL; } if ((data->dma_rx.dma_dev != NULL) && data->dma_rx.dma_cfg.source_chaining_en) { spi_rx_dma_disable(dev); dma_stop(data->dma_rx.dma_dev, data->dma_rx.channel); data->dma_rx.block_idx = 0; data->dma_rx.dma_blk_cfg.next_block = NULL; } #endif /* CONFIG_ANDES_SPI_DMA_MODE */ data->busy = false; spi_context_complete(ctx, dev, error); } } #if CONFIG_ANDES_SPI_DMA_MODE #define ANDES_DMA_CONFIG_DIRECTION(config) (FIELD_GET(GENMASK(1, 0), config)) #define ANDES_DMA_CONFIG_PERIPHERAL_ADDR_INC(config) (FIELD_GET(BIT(2), config)) #define ANDES_DMA_CONFIG_MEMORY_ADDR_INC(config) (FIELD_GET(BIT(3), config)) #define ANDES_DMA_CONFIG_PERIPHERAL_DATA_SIZE(config) (1 << (FIELD_GET(GENMASK(6, 4), config))) #define ANDES_DMA_CONFIG_MEMORY_DATA_SIZE(config) (1 << (FIELD_GET(GENMASK(9, 7), config))) #define ANDES_DMA_CONFIG_PRIORITY(config) (FIELD_GET(BIT(10), config)) #define DMA_CHANNEL_CONFIG(id, dir) \ DT_INST_DMAS_CELL_BY_NAME(id, dir, channel_config) #define SPI_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \ .dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(index, dir)), \ .channel = \ DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \ .dma_cfg = { \ .dma_slot = \ DT_INST_DMAS_CELL_BY_NAME(index, dir, slot), \ .channel_direction = ANDES_DMA_CONFIG_DIRECTION( \ DMA_CHANNEL_CONFIG(index, dir)), \ .complete_callback_en = 0, \ .error_callback_dis = 0, \ .source_data_size = \ ANDES_DMA_CONFIG_##src_dev##_DATA_SIZE( \ DMA_CHANNEL_CONFIG(index, dir) \ ), \ .dest_data_size = \ ANDES_DMA_CONFIG_##dest_dev##_DATA_SIZE( \ DMA_CHANNEL_CONFIG(index, dir) \ ), \ .source_burst_length = 1, /* SINGLE transfer */ \ .dest_burst_length = 1, /* SINGLE transfer */ \ .channel_priority = ANDES_DMA_CONFIG_PRIORITY( \ DMA_CHANNEL_CONFIG(index, dir) \ ), \ .source_chaining_en = DT_PROP(DT_INST_DMAS_CTLR_BY_NAME( \ index, dir), chain_transfer), \ .dest_chaining_en = DT_PROP(DT_INST_DMAS_CTLR_BY_NAME( \ index, dir), chain_transfer), \ }, \ .src_addr_increment = \ ANDES_DMA_CONFIG_##src_dev##_ADDR_INC( \ DMA_CHANNEL_CONFIG(index, dir) \ ), \ .dst_addr_increment = \ ANDES_DMA_CONFIG_##dest_dev##_ADDR_INC( \ DMA_CHANNEL_CONFIG(index, dir) \ ) #define SPI_DMA_CHANNEL(id, dir, DIR, src, dest) \ .dma_##dir = { \ COND_CODE_1(DT_INST_DMAS_HAS_NAME(id, dir), \ (SPI_DMA_CHANNEL_INIT(id, dir, DIR, src, dest)), \ (NULL)) \ }, #else #define SPI_DMA_CHANNEL(id, dir, DIR, src, dest) #endif #define SPI_BUSY_INIT .busy = false, #if (CONFIG_XIP) #define SPI_ROM_CFG_XIP(node_id) DT_SAME_NODE(node_id, DT_BUS(DT_CHOSEN(zephyr_flash))) #else #define SPI_ROM_CFG_XIP(node_id) false #endif #define SPI_INIT(n) \ static struct spi_atcspi200_data spi_atcspi200_dev_data_##n = { \ SPI_CONTEXT_INIT_LOCK(spi_atcspi200_dev_data_##n, ctx), \ SPI_CONTEXT_INIT_SYNC(spi_atcspi200_dev_data_##n, ctx), \ SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \ SPI_BUSY_INIT \ SPI_DMA_CHANNEL(n, rx, RX, PERIPHERAL, MEMORY) \ SPI_DMA_CHANNEL(n, tx, TX, MEMORY, PERIPHERAL) \ }; \ static void spi_atcspi200_cfg_##n(void); \ static struct spi_atcspi200_cfg spi_atcspi200_dev_cfg_##n = { \ .cfg_func = spi_atcspi200_cfg_##n, \ .base = DT_INST_REG_ADDR(n), \ .irq_num = DT_INST_IRQN(n), \ .f_sys = DT_INST_PROP(n, clock_frequency), \ .xip = SPI_ROM_CFG_XIP(DT_DRV_INST(n)), \ }; \ \ SPI_DEVICE_DT_INST_DEFINE(n, \ spi_atcspi200_init, \ NULL, \ &spi_atcspi200_dev_data_##n, \ &spi_atcspi200_dev_cfg_##n, \ POST_KERNEL, \ CONFIG_SPI_INIT_PRIORITY, \ &spi_atcspi200_api); \ \ static void spi_atcspi200_cfg_##n(void) \ { \ IRQ_CONNECT(DT_INST_IRQN(n), \ DT_INST_IRQ(n, priority), \ spi_atcspi200_irq_handler, \ DEVICE_DT_INST_GET(n), \ 0); \ }; DT_INST_FOREACH_STATUS_OKAY(SPI_INIT)