/* * Copyright (c) 2020 Henrik Brix Andersen * * Based on uart_mcux_lpuart.c, which is: * Copyright (c) 2017, NXP * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT xlnx_xps_uartlite_1_00_a #include #include #include #include #include /* AXI UART Lite v2 registers offsets (See Xilinx PG142 for details) */ #define RX_FIFO_OFFSET 0x00 #define TX_FIFO_OFFSET 0x04 #define STAT_REG_OFFSET 0x08 #define CTRL_REG_OFFSET 0x0c /* STAT_REG bit definitions */ #define STAT_REG_RX_FIFO_VALID_DATA BIT(0) #define STAT_REG_RX_FIFO_FULL BIT(1) #define STAT_REG_TX_FIFO_EMPTY BIT(2) #define STAT_REG_TX_FIFO_FULL BIT(3) #define STAT_REG_INTR_ENABLED BIT(4) #define STAT_REG_OVERRUN_ERROR BIT(5) #define STAT_REG_FRAME_ERROR BIT(6) #define STAT_REG_PARITY_ERROR BIT(7) /* STAT_REG bit masks */ #define STAT_REG_ERROR_MASK GENMASK(7, 5) /* CTRL_REG bit definitions */ #define CTRL_REG_RST_TX_FIFO BIT(0) #define CTRL_REG_RST_RX_FIFO BIT(1) #define CTRL_REG_ENABLE_INTR BIT(4) struct xlnx_uartlite_config { mm_reg_t base; #ifdef CONFIG_UART_INTERRUPT_DRIVEN void (*irq_config_func)(const struct device *dev); #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ }; struct xlnx_uartlite_data { uint32_t errors; /* spinlocks for RX and TX FIFO preventing a bus error */ struct k_spinlock rx_lock; struct k_spinlock tx_lock; #ifdef CONFIG_UART_INTERRUPT_DRIVEN const struct device *dev; struct k_timer timer; uart_irq_callback_user_data_t callback; void *callback_data; volatile uint8_t tx_irq_enabled : 1; volatile uint8_t rx_irq_enabled : 1; #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ }; static inline uint32_t xlnx_uartlite_read_status(const struct device *dev) { const struct xlnx_uartlite_config *config = dev->config; struct xlnx_uartlite_data *data = dev->data; uint32_t status; /* Cache errors as they are cleared by reading the STAT_REG */ status = sys_read32(config->base + STAT_REG_OFFSET); data->errors &= (status & STAT_REG_ERROR_MASK); /* Return current status and previously cached errors */ return status | data->errors; } static inline void xlnx_uartlite_clear_status(const struct device *dev) { struct xlnx_uartlite_data *data = dev->data; /* Clear cached errors */ data->errors = 0; } static inline unsigned char xlnx_uartlite_read_rx_fifo(const struct device *dev) { const struct xlnx_uartlite_config *config = dev->config; return (sys_read32(config->base + RX_FIFO_OFFSET) & BIT_MASK(8)); } static inline void xlnx_uartlite_write_tx_fifo(const struct device *dev, unsigned char c) { const struct xlnx_uartlite_config *config = dev->config; sys_write32((uint32_t)c, config->base + TX_FIFO_OFFSET); } static int xlnx_uartlite_poll_in(const struct device *dev, unsigned char *c) { uint32_t status; k_spinlock_key_t key; struct xlnx_uartlite_data *data = dev->data; int ret = -1; key = k_spin_lock(&data->rx_lock); status = xlnx_uartlite_read_status(dev); if ((status & STAT_REG_RX_FIFO_VALID_DATA) != 0) { *c = xlnx_uartlite_read_rx_fifo(dev); ret = 0; } k_spin_unlock(&data->rx_lock, key); return ret; } static void xlnx_uartlite_poll_out(const struct device *dev, unsigned char c) { uint32_t status; k_spinlock_key_t key; struct xlnx_uartlite_data *data = dev->data; bool done = false; while (!done) { key = k_spin_lock(&data->tx_lock); status = xlnx_uartlite_read_status(dev); if ((status & STAT_REG_TX_FIFO_FULL) == 0) { xlnx_uartlite_write_tx_fifo(dev, c); done = true; } k_spin_unlock(&data->tx_lock, key); } } static int xlnx_uartlite_err_check(const struct device *dev) { uint32_t status = xlnx_uartlite_read_status(dev); int err = 0; if (status & STAT_REG_OVERRUN_ERROR) { err |= UART_ERROR_OVERRUN; } if (status & STAT_REG_PARITY_ERROR) { err |= UART_ERROR_PARITY; } if (status & STAT_REG_FRAME_ERROR) { err |= UART_ERROR_FRAMING; } xlnx_uartlite_clear_status(dev); return err; } #ifdef CONFIG_UART_INTERRUPT_DRIVEN static inline void xlnx_uartlite_irq_enable(const struct device *dev) { const struct xlnx_uartlite_config *config = dev->config; sys_write32(CTRL_REG_ENABLE_INTR, config->base + CTRL_REG_OFFSET); } static inline void xlnx_uartlite_irq_cond_disable(const struct device *dev) { const struct xlnx_uartlite_config *config = dev->config; struct xlnx_uartlite_data *data = dev->data; /* TX and RX IRQs are shared. Only disable if both are disabled. */ if (!data->tx_irq_enabled && !data->rx_irq_enabled) { sys_write32(0, config->base + CTRL_REG_OFFSET); } } static int xlnx_uartlite_fifo_fill(const struct device *dev, const uint8_t *tx_data, int len) { uint32_t status; k_spinlock_key_t key; struct xlnx_uartlite_data *data = dev->data; int count = 0U; while (len - count > 0) { key = k_spin_lock(&data->tx_lock); status = xlnx_uartlite_read_status(dev); if ((status & STAT_REG_TX_FIFO_FULL) == 0U) { xlnx_uartlite_write_tx_fifo(dev, tx_data[count++]); } k_spin_unlock(&data->tx_lock, key); } return count; } static int xlnx_uartlite_fifo_read(const struct device *dev, uint8_t *rx_data, const int len) { uint32_t status; k_spinlock_key_t key; struct xlnx_uartlite_data *data = dev->data; int count = 0U; while ((len - count) > 0) { key = k_spin_lock(&data->rx_lock); status = xlnx_uartlite_read_status(dev); if ((status & STAT_REG_RX_FIFO_VALID_DATA) != 0) { rx_data[count++] = xlnx_uartlite_read_rx_fifo(dev); } k_spin_unlock(&data->rx_lock, key); if (!(status & STAT_REG_RX_FIFO_VALID_DATA)) { break; } } return count; } static void xlnx_uartlite_tx_soft_isr(struct k_timer *timer) { struct xlnx_uartlite_data *data = CONTAINER_OF(timer, struct xlnx_uartlite_data, timer); if (data->callback) { data->callback(data->dev, data->callback_data); } } static void xlnx_uartlite_irq_tx_enable(const struct device *dev) { struct xlnx_uartlite_data *data = dev->data; uint32_t status; data->tx_irq_enabled = true; status = xlnx_uartlite_read_status(dev); xlnx_uartlite_irq_enable(dev); if ((status & STAT_REG_TX_FIFO_EMPTY) && data->callback) { /* * TX_FIFO_EMPTY event already generated an edge * interrupt. Generate a soft interrupt and have it call the * callback function in timer isr context. */ k_timer_start(&data->timer, K_NO_WAIT, K_NO_WAIT); } } static void xlnx_uartlite_irq_tx_disable(const struct device *dev) { struct xlnx_uartlite_data *data = dev->data; data->tx_irq_enabled = false; xlnx_uartlite_irq_cond_disable(dev); } static int xlnx_uartlite_irq_tx_ready(const struct device *dev) { struct xlnx_uartlite_data *data = dev->data; uint32_t status = xlnx_uartlite_read_status(dev); return (((status & STAT_REG_TX_FIFO_FULL) == 0U) && data->tx_irq_enabled); } static int xlnx_uartlite_irq_tx_complete(const struct device *dev) { uint32_t status = xlnx_uartlite_read_status(dev); return (status & STAT_REG_TX_FIFO_EMPTY); } static void xlnx_uartlite_irq_rx_enable(const struct device *dev) { struct xlnx_uartlite_data *data = dev->data; data->rx_irq_enabled = true; /* RX_FIFO_VALID_DATA generates a level interrupt */ xlnx_uartlite_irq_enable(dev); } static void xlnx_uartlite_irq_rx_disable(const struct device *dev) { struct xlnx_uartlite_data *data = dev->data; data->rx_irq_enabled = false; xlnx_uartlite_irq_cond_disable(dev); } static int xlnx_uartlite_irq_rx_ready(const struct device *dev) { struct xlnx_uartlite_data *data = dev->data; uint32_t status = xlnx_uartlite_read_status(dev); return ((status & STAT_REG_RX_FIFO_VALID_DATA) && data->rx_irq_enabled); } static int xlnx_uartlite_irq_is_pending(const struct device *dev) { return (xlnx_uartlite_irq_tx_ready(dev) || xlnx_uartlite_irq_rx_ready(dev)); } static int xlnx_uartlite_irq_update(const struct device *dev) { return 1; } static void xlnx_uartlite_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb, void *user_data) { struct xlnx_uartlite_data *data = dev->data; data->callback = cb; data->callback_data = user_data; } static __unused void xlnx_uartlite_isr(const struct device *dev) { struct xlnx_uartlite_data *data = dev->data; if (data->callback) { data->callback(dev, data->callback_data); } } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ static int xlnx_uartlite_init(const struct device *dev) { const struct xlnx_uartlite_config *config = dev->config; #ifdef CONFIG_UART_INTERRUPT_DRIVEN struct xlnx_uartlite_data *data = dev->data; data->dev = dev; k_timer_init(&data->timer, &xlnx_uartlite_tx_soft_isr, NULL); #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ /* Reset FIFOs and disable interrupts */ sys_write32(CTRL_REG_RST_RX_FIFO | CTRL_REG_RST_TX_FIFO, config->base + CTRL_REG_OFFSET); #ifdef CONFIG_UART_INTERRUPT_DRIVEN config->irq_config_func(dev); #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ return 0; } static DEVICE_API(uart, xlnx_uartlite_driver_api) = { .poll_in = xlnx_uartlite_poll_in, .poll_out = xlnx_uartlite_poll_out, .err_check = xlnx_uartlite_err_check, #ifdef CONFIG_UART_INTERRUPT_DRIVEN .fifo_fill = xlnx_uartlite_fifo_fill, .fifo_read = xlnx_uartlite_fifo_read, .irq_tx_enable = xlnx_uartlite_irq_tx_enable, .irq_tx_disable = xlnx_uartlite_irq_tx_disable, .irq_tx_ready = xlnx_uartlite_irq_tx_ready, .irq_tx_complete = xlnx_uartlite_irq_tx_complete, .irq_rx_enable = xlnx_uartlite_irq_rx_enable, .irq_rx_disable = xlnx_uartlite_irq_rx_disable, .irq_rx_ready = xlnx_uartlite_irq_rx_ready, .irq_is_pending = xlnx_uartlite_irq_is_pending, .irq_update = xlnx_uartlite_irq_update, .irq_callback_set = xlnx_uartlite_irq_callback_set, #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ }; #ifdef CONFIG_UART_INTERRUPT_DRIVEN #define XLNX_UARTLITE_IRQ_INIT(n, i) \ do { \ IRQ_CONNECT(DT_INST_IRQN_BY_IDX(n, i), \ DT_INST_IRQ_BY_IDX(n, i, priority), \ xlnx_uartlite_isr, \ DEVICE_DT_INST_GET(n), 0); \ \ irq_enable(DT_INST_IRQ_BY_IDX(n, i, irq)); \ } while (false) #define XLNX_UARTLITE_CONFIG_FUNC(n) \ static void xlnx_uartlite_config_func_##n(const struct device *dev) \ { \ /* IRQ line not always present on all instances */ \ IF_ENABLED(DT_INST_IRQ_HAS_IDX(n, 0), \ (XLNX_UARTLITE_IRQ_INIT(n, 0);)) \ } #define XLNX_UARTLITE_IRQ_CFG_FUNC_INIT(n) \ .irq_config_func = xlnx_uartlite_config_func_##n #define XLNX_UARTLITE_INIT_CFG(n) \ XLNX_UARTLITE_DECLARE_CFG(n, XLNX_UARTLITE_IRQ_CFG_FUNC_INIT(n)) #else #define XLNX_UARTLITE_CONFIG_FUNC(n) #define XLNX_UARTLITE_IRQ_CFG_FUNC_INIT #define XLNX_UARTLITE_INIT_CFG(n) \ XLNX_UARTLITE_DECLARE_CFG(n, XLNX_UARTLITE_IRQ_CFG_FUNC_INIT) #endif #define XLNX_UARTLITE_DECLARE_CFG(n, IRQ_FUNC_INIT) \ static const struct xlnx_uartlite_config xlnx_uartlite_##n##_config = { \ .base = DT_INST_REG_ADDR(n), \ IRQ_FUNC_INIT \ } #define XLNX_UARTLITE_INIT(n) \ static struct xlnx_uartlite_data xlnx_uartlite_##n##_data; \ \ static const struct xlnx_uartlite_config xlnx_uartlite_##n##_config;\ \ DEVICE_DT_INST_DEFINE(n, \ &xlnx_uartlite_init, \ NULL, \ &xlnx_uartlite_##n##_data, \ &xlnx_uartlite_##n##_config, \ PRE_KERNEL_1, \ CONFIG_SERIAL_INIT_PRIORITY, \ &xlnx_uartlite_driver_api); \ \ XLNX_UARTLITE_CONFIG_FUNC(n) \ \ XLNX_UARTLITE_INIT_CFG(n); DT_INST_FOREACH_STATUS_OKAY(XLNX_UARTLITE_INIT)