/* * Copyright (c) 2024, Yishai Jaffe * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT silabs_eusart_uart #include #include #include #include #include #include #include #include struct uart_silabs_eusart_config { EUSART_TypeDef *eusart; const struct pinctrl_dev_config *pcfg; const struct device *clock_dev; const struct silabs_clock_control_cmu_config clock_cfg; #ifdef CONFIG_UART_INTERRUPT_DRIVEN void (*irq_config_func)(const struct device *dev); #endif }; struct uart_silabs_eusart_data { struct uart_config uart_cfg; #ifdef CONFIG_UART_INTERRUPT_DRIVEN uart_irq_callback_user_data_t callback; void *cb_data; #endif }; static int uart_silabs_eusart_poll_in(const struct device *dev, unsigned char *c) { const struct uart_silabs_eusart_config *config = dev->config; if (EUSART_StatusGet(config->eusart) & EUSART_STATUS_RXFL) { *c = EUSART_Rx(config->eusart); return 0; } return -1; } static void uart_silabs_eusart_poll_out(const struct device *dev, unsigned char c) { const struct uart_silabs_eusart_config *config = dev->config; /* EUSART_Tx function already waits for the transmit buffer being empty * and waits for the bus to be free to transmit. */ EUSART_Tx(config->eusart, c); } static int uart_silabs_eusart_err_check(const struct device *dev) { const struct uart_silabs_eusart_config *config = dev->config; uint32_t flags = EUSART_IntGet(config->eusart); int err = 0; if (flags & EUSART_IF_RXOF) { err |= UART_ERROR_OVERRUN; } if (flags & EUSART_IF_PERR) { err |= UART_ERROR_PARITY; } if (flags & EUSART_IF_FERR) { err |= UART_ERROR_FRAMING; } EUSART_IntClear(config->eusart, EUSART_IF_RXOF | EUSART_IF_PERR | EUSART_IF_FERR); return err; } #ifdef CONFIG_UART_INTERRUPT_DRIVEN static int uart_silabs_eusart_fifo_fill(const struct device *dev, const uint8_t *tx_data, int len) { const struct uart_silabs_eusart_config *config = dev->config; int num_tx = 0; while ((len - num_tx > 0) && (EUSART_StatusGet(config->eusart) & EUSART_STATUS_TXFL)) { config->eusart->TXDATA = (uint32_t)tx_data[num_tx++]; } if (!(EUSART_StatusGet(config->eusart) & EUSART_STATUS_TXFL)) { EUSART_IntClear(config->eusart, EUSART_IF_TXFL); } return num_tx; } static int uart_silabs_eusart_fifo_read(const struct device *dev, uint8_t *rx_data, const int len) { const struct uart_silabs_eusart_config *config = dev->config; int num_rx = 0; while ((len - num_rx > 0) && (EUSART_StatusGet(config->eusart) & EUSART_STATUS_RXFL)) { rx_data[num_rx++] = (uint8_t)config->eusart->RXDATA; } if (!(EUSART_StatusGet(config->eusart) & EUSART_STATUS_RXFL)) { EUSART_IntClear(config->eusart, EUSART_IF_RXFL); } return num_rx; } static void uart_silabs_eusart_irq_tx_enable(const struct device *dev) { const struct uart_silabs_eusart_config *config = dev->config; EUSART_IntClear(config->eusart, EUSART_IEN_TXFL | EUSART_IEN_TXC); EUSART_IntEnable(config->eusart, EUSART_IEN_TXFL | EUSART_IEN_TXC); } static void uart_silabs_eusart_irq_tx_disable(const struct device *dev) { const struct uart_silabs_eusart_config *config = dev->config; EUSART_IntDisable(config->eusart, EUSART_IEN_TXFL | EUSART_IEN_TXC); EUSART_IntClear(config->eusart, EUSART_IEN_TXFL | EUSART_IEN_TXC); } static int uart_silabs_eusart_irq_tx_complete(const struct device *dev) { const struct uart_silabs_eusart_config *config = dev->config; uint32_t flags = EUSART_IntGet(config->eusart); EUSART_IntClear(config->eusart, EUSART_IF_TXC); return (flags & EUSART_IF_TXC) != 0; } static int uart_silabs_eusart_irq_tx_ready(const struct device *dev) { const struct uart_silabs_eusart_config *config = dev->config; return (config->eusart->IEN & EUSART_IEN_TXFL) && (EUSART_IntGet(config->eusart) & EUSART_IF_TXFL); } static void uart_silabs_eusart_irq_rx_enable(const struct device *dev) { const struct uart_silabs_eusart_config *config = dev->config; EUSART_IntClear(config->eusart, EUSART_IEN_RXFL); EUSART_IntEnable(config->eusart, EUSART_IEN_RXFL); } static void uart_silabs_eusart_irq_rx_disable(const struct device *dev) { const struct uart_silabs_eusart_config *config = dev->config; EUSART_IntDisable(config->eusart, EUSART_IEN_RXFL); EUSART_IntClear(config->eusart, EUSART_IEN_RXFL); } static int uart_silabs_eusart_irq_rx_ready(const struct device *dev) { const struct uart_silabs_eusart_config *config = dev->config; return (config->eusart->IEN & EUSART_IEN_RXFL) && (EUSART_IntGet(config->eusart) & EUSART_IF_RXFL); } static void uart_silabs_eusart_irq_err_enable(const struct device *dev) { const struct uart_silabs_eusart_config *config = dev->config; EUSART_IntClear(config->eusart, EUSART_IF_RXOF | EUSART_IF_PERR | EUSART_IF_FERR); EUSART_IntEnable(config->eusart, EUSART_IF_RXOF | EUSART_IF_PERR | EUSART_IF_FERR); } static void uart_silabs_eusart_irq_err_disable(const struct device *dev) { const struct uart_silabs_eusart_config *config = dev->config; EUSART_IntDisable(config->eusart, EUSART_IF_RXOF | EUSART_IF_PERR | EUSART_IF_FERR); EUSART_IntClear(config->eusart, EUSART_IF_RXOF | EUSART_IF_PERR | EUSART_IF_FERR); } static int uart_silabs_eusart_irq_is_pending(const struct device *dev) { return uart_silabs_eusart_irq_tx_ready(dev) || uart_silabs_eusart_irq_rx_ready(dev); } static int uart_silabs_eusart_irq_update(const struct device *dev) { return 1; } static void uart_silabs_eusart_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb, void *cb_data) { struct uart_silabs_eusart_data *data = dev->data; data->callback = cb; data->cb_data = cb_data; } static void uart_silabs_eusart_isr(const struct device *dev) { struct uart_silabs_eusart_data *data = dev->data; if (data->callback) { data->callback(dev, data->cb_data); } } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ static inline EUSART_Parity_TypeDef uart_silabs_eusart_cfg2ll_parity( enum uart_config_parity parity) { switch (parity) { case UART_CFG_PARITY_ODD: return eusartOddParity; case UART_CFG_PARITY_EVEN: return eusartEvenParity; case UART_CFG_PARITY_NONE: default: return eusartNoParity; } } static inline enum uart_config_parity uart_silabs_eusart_ll2cfg_parity( EUSART_Parity_TypeDef parity) { switch (parity) { case eusartOddParity: return UART_CFG_PARITY_ODD; case eusartEvenParity: return UART_CFG_PARITY_EVEN; case eusartNoParity: default: return UART_CFG_PARITY_NONE; } } static inline EUSART_Stopbits_TypeDef uart_silabs_eusart_cfg2ll_stopbits( enum uart_config_stop_bits sb) { switch (sb) { case UART_CFG_STOP_BITS_0_5: return eusartStopbits0p5; case UART_CFG_STOP_BITS_1: return eusartStopbits1; case UART_CFG_STOP_BITS_2: return eusartStopbits2; case UART_CFG_STOP_BITS_1_5: return eusartStopbits1p5; default: return eusartStopbits1; } } static inline enum uart_config_stop_bits uart_silabs_eusart_ll2cfg_stopbits( EUSART_Stopbits_TypeDef sb) { switch (sb) { case eusartStopbits0p5: return UART_CFG_STOP_BITS_0_5; case eusartStopbits1: return UART_CFG_STOP_BITS_1; case eusartStopbits1p5: return UART_CFG_STOP_BITS_1_5; case eusartStopbits2: return UART_CFG_STOP_BITS_2; default: return UART_CFG_STOP_BITS_1; } } static inline EUSART_Databits_TypeDef uart_silabs_eusart_cfg2ll_databits( enum uart_config_data_bits db, enum uart_config_parity p) { switch (db) { case UART_CFG_DATA_BITS_7: if (p == UART_CFG_PARITY_NONE) { return eusartDataBits7; } else { return eusartDataBits8; } case UART_CFG_DATA_BITS_9: return eusartDataBits9; case UART_CFG_DATA_BITS_8: default: if (p == UART_CFG_PARITY_NONE) { return eusartDataBits8; } else { return eusartDataBits9; } return eusartDataBits8; } } static inline enum uart_config_data_bits uart_silabs_eusart_ll2cfg_databits( EUSART_Databits_TypeDef db, EUSART_Parity_TypeDef p) { switch (db) { case eusartDataBits7: if (p == eusartNoParity) { return UART_CFG_DATA_BITS_7; } else { return UART_CFG_DATA_BITS_6; } case eusartDataBits9: if (p == eusartNoParity) { return UART_CFG_DATA_BITS_9; } else { return UART_CFG_DATA_BITS_8; } case eusartDataBits8: default: if (p == eusartNoParity) { return UART_CFG_DATA_BITS_8; } else { return UART_CFG_DATA_BITS_7; } } } /** * @brief Get LL hardware flow control define from * Zephyr hardware flow control option. * @note Supports only UART_CFG_FLOW_CTRL_RTS_CTS and UART_CFG_FLOW_CTRL_RS485. * @param fc: Zephyr hardware flow control option. * @retval eusartHwFlowControlCtsAndRts, or eusartHwFlowControlNone. */ static inline EUSART_HwFlowControl_TypeDef uart_silabs_eusart_cfg2ll_hwctrl( enum uart_config_flow_control fc) { if (fc == UART_CFG_FLOW_CTRL_RTS_CTS) { return eusartHwFlowControlCtsAndRts; } return eusartHwFlowControlNone; } /** * @brief Get Zephyr hardware flow control option from * LL hardware flow control define. * @note Supports only eusartHwFlowControlCtsAndRts. * @param fc: LL hardware flow control definition. * @retval UART_CFG_FLOW_CTRL_RTS_CTS, or UART_CFG_FLOW_CTRL_NONE. */ static inline enum uart_config_flow_control uart_silabs_eusart_ll2cfg_hwctrl( EUSART_HwFlowControl_TypeDef fc) { if (fc == eusartHwFlowControlCtsAndRts) { return UART_CFG_FLOW_CTRL_RTS_CTS; } return UART_CFG_FLOW_CTRL_NONE; } /** * @brief Main initializer for UART * * @param dev UART device to be initialized * @return int 0 */ static int uart_silabs_eusart_init(const struct device *dev) { int err; const struct uart_silabs_eusart_config *config = dev->config; struct uart_silabs_eusart_data *data = dev->data; struct uart_config *uart_cfg = &data->uart_cfg; EUSART_UartInit_TypeDef eusartInit = EUSART_UART_INIT_DEFAULT_HF; EUSART_AdvancedInit_TypeDef advancedSettings = EUSART_ADVANCED_INIT_DEFAULT; /* The peripheral and gpio clock are already enabled from soc and gpio * driver */ /* Enable EUSART clock */ err = clock_control_on(config->clock_dev, (clock_control_subsys_t)&config->clock_cfg); if (err < 0) { return err; } err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); if (err < 0) { return err; } /* Init EUSART */ eusartInit.baudrate = uart_cfg->baudrate; eusartInit.parity = uart_silabs_eusart_cfg2ll_parity(uart_cfg->parity); eusartInit.stopbits = uart_silabs_eusart_cfg2ll_stopbits(uart_cfg->stop_bits); eusartInit.databits = uart_silabs_eusart_cfg2ll_databits(uart_cfg->data_bits, uart_cfg->parity); advancedSettings.hwFlowControl = uart_silabs_eusart_cfg2ll_hwctrl(uart_cfg->flow_ctrl); eusartInit.advancedSettings = &advancedSettings; EUSART_UartInitHf(config->eusart, &eusartInit); #ifdef CONFIG_UART_INTERRUPT_DRIVEN config->irq_config_func(dev); #endif return 0; } #ifdef CONFIG_PM_DEVICE static int uart_silabs_eusart_pm_action(const struct device *dev, enum pm_device_action action) { __maybe_unused const struct uart_silabs_eusart_config *config = dev->config; switch (action) { case PM_DEVICE_ACTION_SUSPEND: #ifdef EUSART_STATUS_TXIDLE /* Wait for TX FIFO to flush before suspending */ while (!(EUSART_StatusGet(config->eusart) & EUSART_STATUS_TXIDLE)) { } #endif break; case PM_DEVICE_ACTION_RESUME: break; default: return -ENOTSUP; } return 0; } #endif static DEVICE_API(uart, uart_silabs_eusart_driver_api) = { .poll_in = uart_silabs_eusart_poll_in, .poll_out = uart_silabs_eusart_poll_out, .err_check = uart_silabs_eusart_err_check, #ifdef CONFIG_UART_INTERRUPT_DRIVEN .fifo_fill = uart_silabs_eusart_fifo_fill, .fifo_read = uart_silabs_eusart_fifo_read, .irq_tx_enable = uart_silabs_eusart_irq_tx_enable, .irq_tx_disable = uart_silabs_eusart_irq_tx_disable, .irq_tx_complete = uart_silabs_eusart_irq_tx_complete, .irq_tx_ready = uart_silabs_eusart_irq_tx_ready, .irq_rx_enable = uart_silabs_eusart_irq_rx_enable, .irq_rx_disable = uart_silabs_eusart_irq_rx_disable, .irq_rx_ready = uart_silabs_eusart_irq_rx_ready, .irq_err_enable = uart_silabs_eusart_irq_err_enable, .irq_err_disable = uart_silabs_eusart_irq_err_disable, .irq_is_pending = uart_silabs_eusart_irq_is_pending, .irq_update = uart_silabs_eusart_irq_update, .irq_callback_set = uart_silabs_eusart_irq_callback_set, #endif }; #ifdef CONFIG_UART_INTERRUPT_DRIVEN #define UART_IRQ_HANDLER_FUNC(idx) \ .irq_config_func = uart_silabs_eusart_config_func_##idx, #define UART_IRQ_HANDLER(idx) \ static void uart_silabs_eusart_config_func_##idx(const struct device *dev) \ { \ IRQ_CONNECT(DT_INST_IRQ_BY_NAME(idx, rx, irq), \ DT_INST_IRQ_BY_NAME(idx, rx, priority), \ uart_silabs_eusart_isr, DEVICE_DT_INST_GET(idx), 0); \ IRQ_CONNECT(DT_INST_IRQ_BY_NAME(idx, tx, irq), \ DT_INST_IRQ_BY_NAME(idx, tx, priority), \ uart_silabs_eusart_isr, DEVICE_DT_INST_GET(idx), 0); \ \ irq_enable(DT_INST_IRQ_BY_NAME(idx, rx, irq)); \ irq_enable(DT_INST_IRQ_BY_NAME(idx, tx, irq)); \ } #else #define UART_IRQ_HANDLER_FUNC(idx) #define UART_IRQ_HANDLER(idx) #endif #define UART_INIT(idx) \ UART_IRQ_HANDLER(idx) \ \ PINCTRL_DT_INST_DEFINE(idx); \ \ static const struct uart_silabs_eusart_config uart_silabs_eusart_cfg_##idx = { \ .eusart = (EUSART_TypeDef *)DT_INST_REG_ADDR(idx), \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \ .clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)), \ .clock_cfg = SILABS_DT_INST_CLOCK_CFG(idx), \ UART_IRQ_HANDLER_FUNC(idx) \ }; \ \ static struct uart_silabs_eusart_data uart_silabs_eusart_data_##idx = { \ .uart_cfg = { \ .baudrate = DT_INST_PROP(idx, current_speed), \ .parity = DT_INST_ENUM_IDX(idx, parity), \ .stop_bits = DT_INST_ENUM_IDX(idx, stop_bits), \ .data_bits = DT_INST_ENUM_IDX(idx, data_bits), \ .flow_ctrl = DT_INST_PROP(idx, hw_flow_control) \ ? UART_CFG_FLOW_CTRL_RTS_CTS \ : UART_CFG_FLOW_CTRL_NONE, \ }, \ }; \ \ PM_DEVICE_DT_INST_DEFINE(idx, uart_silabs_eusart_pm_action); \ \ DEVICE_DT_INST_DEFINE(idx, uart_silabs_eusart_init, PM_DEVICE_DT_INST_GET(idx), \ &uart_silabs_eusart_data_##idx, \ &uart_silabs_eusart_cfg_##idx, PRE_KERNEL_1, \ CONFIG_SERIAL_INIT_PRIORITY, \ &uart_silabs_eusart_driver_api); DT_INST_FOREACH_STATUS_OKAY(UART_INIT)