/* * Copyright (c) 2024 Renesas Electronics Corporation * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT renesas_ra_sci_uart #include #include #include #include #include #include "r_sci_uart.h" #include "r_dtc.h" #include LOG_MODULE_REGISTER(ra_sci_uart); #define SCI_UART_SSR_FIFO_DR_RDF (R_SCI0_SSR_FIFO_DR_Msk | R_SCI0_SSR_FIFO_RDF_Msk) #define SCI_UART_SSR_FIFO_TDFE_TEND (R_SCI0_SSR_FIFO_TDFE_Msk | R_SCI0_SSR_FIFO_TEND_Msk) #define SCI_UART_SSR_TDRE_TEND (R_SCI0_SSR_TDRE_Msk | R_SCI0_SSR_TEND_Msk) #define SCI_UART_SSR_ERR_MSK (R_SCI0_SSR_ORER_Msk | R_SCI0_SSR_FER_Msk | R_SCI0_SSR_PER_Msk) #define SCI_UART_SSR_FIFO_ERR_MSK \ (R_SCI0_SSR_FIFO_ORER_Msk | R_SCI0_SSR_FIFO_FER_Msk | R_SCI0_SSR_FIFO_PER_Msk) #if defined(CONFIG_UART_ASYNC_API) void sci_uart_rxi_isr(void); void sci_uart_txi_isr(void); void sci_uart_tei_isr(void); void sci_uart_eri_isr(void); #endif struct uart_ra_sci_config { const struct pinctrl_dev_config *pcfg; R_SCI0_Type * const regs; }; struct uart_ra_sci_data { const struct device *dev; struct st_sci_uart_instance_ctrl sci; struct uart_config uart_config; struct st_uart_cfg fsp_config; struct st_sci_uart_extended_cfg fsp_config_extend; struct st_baud_setting_t fsp_baud_setting; #if defined(CONFIG_UART_INTERRUPT_DRIVEN) uart_irq_callback_user_data_t user_cb; void *user_cb_data; uint32_t ssr; #endif #if defined(CONFIG_UART_ASYNC_API) uart_callback_t async_user_cb; void *async_user_cb_data; struct k_work_delayable rx_timeout_work; size_t rx_timeout; size_t rx_buf_len; size_t rx_buf_offset; size_t rx_buf_cap; uint8_t *rx_buffer; size_t rx_next_buf_cap; uint8_t *rx_next_buf; struct st_transfer_instance rx_transfer; struct st_dtc_instance_ctrl rx_transfer_ctrl; struct st_transfer_info rx_transfer_info; struct st_transfer_cfg rx_transfer_cfg; struct st_dtc_extended_cfg rx_transfer_cfg_extend; struct k_work_delayable tx_timeout; size_t tx_buf_cap; struct st_transfer_instance tx_transfer; struct st_dtc_instance_ctrl tx_transfer_ctrl; struct st_transfer_info tx_transfer_info; struct st_transfer_cfg tx_transfer_cfg; struct st_dtc_extended_cfg tx_transfer_cfg_extend; #endif }; static int uart_ra_sci_poll_in(const struct device *dev, unsigned char *c) { struct uart_ra_sci_data *data = dev->data; const struct uart_ra_sci_config *cfg = dev->config; if (IS_ENABLED(CONFIG_UART_ASYNC_API) && cfg->regs->SCR_b.RIE) { /* This function cannot be used if async reception was enabled */ return -EBUSY; } if (IS_ENABLED(CONFIG_UART_RA_SCI_UART_FIFO_ENABLE) && data->sci.fifo_depth > 0 ? cfg->regs->FDR_b.R == 0U : cfg->regs->SSR_b.RDRF == 0U) { /* There are no characters available to read. */ return -1; } /* got a character */ *c = IS_ENABLED(CONFIG_UART_RA_SCI_UART_FIFO_ENABLE) && data->sci.fifo_depth > 0 ? cfg->regs->FRDRL : cfg->regs->RDR; return 0; } static void uart_ra_sci_poll_out(const struct device *dev, unsigned char c) { struct uart_ra_sci_data *data = dev->data; const struct uart_ra_sci_config *cfg = dev->config; #if CONFIG_UART_RA_SCI_UART_FIFO_ENABLE if (data->sci.fifo_depth > 0) { while (cfg->regs->FDR_b.T > 0x8) { } cfg->regs->FTDRL = c; } else #endif { while (cfg->regs->SSR_b.TDRE == 0U) { } cfg->regs->TDR = c; } } static int uart_ra_sci_err_check(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; const struct uart_ra_sci_config *cfg = dev->config; int errors = 0; #if CONFIG_UART_RA_SCI_UART_FIFO_ENABLE if (data->sci.fifo_depth > 0) { const uint8_t status = cfg->regs->SSR_FIFO; uint8_t ssr_fifo = 0; if (status & R_SCI0_SSR_FIFO_ORER_Msk) { errors |= UART_ERROR_OVERRUN; ssr_fifo |= R_SCI0_SSR_FIFO_ORER_Msk; } if (status & R_SCI0_SSR_FIFO_PER_Msk) { errors |= UART_ERROR_PARITY; ssr_fifo |= R_SCI0_SSR_FIFO_PER_Msk; } if (status & R_SCI0_SSR_FIFO_FER_Msk) { errors |= UART_ERROR_FRAMING; ssr_fifo |= R_SCI0_SSR_FIFO_FER_Msk; } cfg->regs->SSR_FIFO &= ~ssr_fifo; } else #endif { const uint8_t status = cfg->regs->SSR; uint8_t ssr = 0; if (status & R_SCI0_SSR_ORER_Msk) { errors |= UART_ERROR_OVERRUN; ssr |= R_SCI0_SSR_ORER_Msk; } if (status & R_SCI0_SSR_PER_Msk) { errors |= UART_ERROR_PARITY; ssr |= R_SCI0_SSR_PER_Msk; } if (status & R_SCI0_SSR_FER_Msk) { errors |= UART_ERROR_FRAMING; ssr |= R_SCI0_SSR_FER_Msk; } cfg->regs->SSR &= ~ssr; } return errors; } static int uart_ra_sci_apply_config(const struct uart_config *config, struct st_uart_cfg *fsp_config, struct st_sci_uart_extended_cfg *fsp_config_extend, struct st_baud_setting_t *fsp_baud_setting) { fsp_err_t fsp_err; fsp_err = R_SCI_UART_BaudCalculate(config->baudrate, true, 5000, fsp_baud_setting); if (fsp_err != FSP_SUCCESS) { LOG_DBG("drivers: uart: baud calculate error"); return -EINVAL; } switch (config->parity) { case UART_CFG_PARITY_NONE: fsp_config->parity = UART_PARITY_OFF; break; case UART_CFG_PARITY_ODD: fsp_config->parity = UART_PARITY_ODD; break; case UART_CFG_PARITY_EVEN: fsp_config->parity = UART_PARITY_EVEN; break; case UART_CFG_PARITY_MARK: return -ENOTSUP; case UART_CFG_PARITY_SPACE: return -ENOTSUP; default: return -EINVAL; } switch (config->stop_bits) { case UART_CFG_STOP_BITS_0_5: return -ENOTSUP; case UART_CFG_STOP_BITS_1: fsp_config->stop_bits = UART_STOP_BITS_1; break; case UART_CFG_STOP_BITS_1_5: return -ENOTSUP; case UART_CFG_STOP_BITS_2: fsp_config->stop_bits = UART_STOP_BITS_2; break; default: return -EINVAL; } switch (config->data_bits) { case UART_CFG_DATA_BITS_5: return -ENOTSUP; case UART_CFG_DATA_BITS_6: return -ENOTSUP; case UART_CFG_DATA_BITS_7: fsp_config->data_bits = UART_DATA_BITS_7; break; case UART_CFG_DATA_BITS_8: fsp_config->data_bits = UART_DATA_BITS_8; break; case UART_CFG_DATA_BITS_9: fsp_config->data_bits = UART_DATA_BITS_9; break; default: return -EINVAL; } #if CONFIG_UART_RA_SCI_UART_FIFO_ENABLE fsp_config_extend->rx_fifo_trigger = 0x8; #endif switch (config->flow_ctrl) { case UART_CFG_FLOW_CTRL_NONE: fsp_config_extend->flow_control = 0; fsp_config_extend->rs485_setting.enable = false; break; case UART_CFG_FLOW_CTRL_RTS_CTS: fsp_config_extend->flow_control = SCI_UART_FLOW_CONTROL_HARDWARE_CTSRTS; fsp_config_extend->rs485_setting.enable = false; break; case UART_CFG_FLOW_CTRL_DTR_DSR: return -ENOTSUP; case UART_CFG_FLOW_CTRL_RS485: /* TODO: implement this config */ return -ENOTSUP; default: return -EINVAL; } return 0; } #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE static int uart_ra_sci_configure(const struct device *dev, const struct uart_config *config) { int err; fsp_err_t fsp_err; struct uart_ra_sci_data *data = dev->data; err = uart_ra_sci_apply_config(config, &data->fsp_config, &data->fsp_config_extend, &data->fsp_baud_setting); if (err) { return err; } fsp_err = R_SCI_UART_Close(&data->sci); fsp_err |= R_SCI_UART_Open(&data->sci, &data->fsp_config); if (fsp_err != FSP_SUCCESS) { LOG_DBG("drivers: serial: uart configure failed"); return -EIO; } memcpy(&data->uart_config, config, sizeof(*config)); return 0; } static int uart_ra_sci_config_get(const struct device *dev, struct uart_config *cfg) { struct uart_ra_sci_data *data = dev->data; memcpy(cfg, &data->uart_config, sizeof(*cfg)); return 0; } #endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ #ifdef CONFIG_UART_INTERRUPT_DRIVEN static int uart_ra_sci_fifo_fill(const struct device *dev, const uint8_t *tx_data, int size) { struct uart_ra_sci_data *data = dev->data; const struct uart_ra_sci_config *cfg = dev->config; int num_tx = 0U; #if CONFIG_UART_RA_SCI_UART_FIFO_ENABLE if (data->sci.fifo_depth != 0) { while ((size - num_tx > 0) && cfg->regs->FDR_b.T < data->sci.fifo_depth) { /* Send a character (8bit , parity none) */ cfg->regs->FTDRL = tx_data[num_tx++]; } cfg->regs->SSR_FIFO &= (uint8_t)~SCI_UART_SSR_FIFO_TDFE_TEND; } else #endif { if (size > 0 && cfg->regs->SSR_b.TDRE) { /* Send a character (8bit , parity none) */ cfg->regs->TDR = tx_data[num_tx++]; } }; return num_tx; } static int uart_ra_sci_fifo_read(const struct device *dev, uint8_t *rx_data, const int size) { struct uart_ra_sci_data *data = dev->data; const struct uart_ra_sci_config *cfg = dev->config; int num_rx = 0U; #if CONFIG_UART_RA_SCI_UART_FIFO_ENABLE if (data->sci.fifo_depth != 0) { while ((size - num_rx > 0) && cfg->regs->FDR_b.R > 0) { /* Receive a character (8bit , parity none) */ rx_data[num_rx++] = cfg->regs->FRDRL; } cfg->regs->SSR_FIFO &= (uint8_t)~SCI_UART_SSR_FIFO_DR_RDF; } else #endif { if (size > 0 && cfg->regs->SSR_b.RDRF) { /* Receive a character (8bit , parity none) */ rx_data[num_rx++] = cfg->regs->RDR; } cfg->regs->SSR &= (uint8_t)~R_SCI0_SSR_RDRF_Msk; } return num_rx; } static void uart_ra_sci_irq_tx_enable(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; const struct uart_ra_sci_config *cfg = dev->config; #if CONFIG_UART_RA_SCI_UART_FIFO_ENABLE if (data->sci.fifo_depth != 0) { cfg->regs->SSR_FIFO &= (uint8_t)~SCI_UART_SSR_FIFO_TDFE_TEND; } else #endif { cfg->regs->SSR = (uint8_t)~SCI_UART_SSR_TDRE_TEND; } cfg->regs->SCR |= (R_SCI0_SCR_TIE_Msk | R_SCI0_SCR_TEIE_Msk); } static void uart_ra_sci_irq_tx_disable(const struct device *dev) { const struct uart_ra_sci_config *cfg = dev->config; cfg->regs->SCR &= ~(R_SCI0_SCR_TIE_Msk | R_SCI0_SCR_TEIE_Msk); } static int uart_ra_sci_irq_tx_ready(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; const struct uart_ra_sci_config *cfg = dev->config; int ret; #if CONFIG_UART_RA_SCI_UART_FIFO_ENABLE if (data->sci.fifo_depth != 0) { ret = (cfg->regs->SCR_b.TIE == 1U) && (data->ssr & R_SCI0_SSR_FIFO_TDFE_Msk); } else #endif { ret = (cfg->regs->SCR_b.TIE == 1U) && (data->ssr & R_SCI0_SSR_TDRE_Msk); } return ret; } static int uart_ra_sci_irq_tx_complete(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; const struct uart_ra_sci_config *cfg = dev->config; return (cfg->regs->SCR_b.TEIE == 1U) && (data->ssr & BIT(R_SCI0_SSR_TEND_Pos)); } static void uart_ra_sci_irq_rx_enable(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; const struct uart_ra_sci_config *cfg = dev->config; #if CONFIG_UART_RA_SCI_UART_FIFO_ENABLE if (data->sci.fifo_depth != 0) { cfg->regs->SSR_FIFO &= (uint8_t) ~(SCI_UART_SSR_FIFO_DR_RDF); } else #endif { cfg->regs->SSR_b.RDRF = 0U; } cfg->regs->SCR_b.RIE = 1U; } static void uart_ra_sci_irq_rx_disable(const struct device *dev) { const struct uart_ra_sci_config *cfg = dev->config; cfg->regs->SCR_b.RIE = 0U; } static int uart_ra_sci_irq_rx_ready(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; const struct uart_ra_sci_config *cfg = dev->config; int ret; #if CONFIG_UART_RA_SCI_UART_FIFO_ENABLE if (data->sci.fifo_depth != 0) { ret = (cfg->regs->SCR_b.RIE == 1U) && (data->ssr & SCI_UART_SSR_FIFO_DR_RDF); } else #endif { ret = (cfg->regs->SCR_b.RIE == 1U) && (data->ssr & R_SCI0_SSR_RDRF_Msk); } return ret; } static void uart_ra_sci_irq_err_enable(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; NVIC_EnableIRQ(data->fsp_config.eri_irq); } static void uart_ra_sci_irq_err_disable(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; NVIC_DisableIRQ(data->fsp_config.eri_irq); } static int uart_ra_sci_irq_is_pending(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; const struct uart_ra_sci_config *cfg = dev->config; uint8_t scr; uint8_t ssr; int ret; #if CONFIG_UART_RA_SCI_UART_FIFO_ENABLE if (data->sci.fifo_depth != 0) { scr = cfg->regs->SCR; ssr = cfg->regs->SSR_FIFO; ret = ((scr & R_SCI0_SCR_TIE_Msk) && (ssr & (R_SCI0_SSR_FIFO_TEND_Msk | R_SCI0_SSR_FIFO_TDFE_Msk))) || ((scr & R_SCI0_SCR_RIE_Msk) && ((ssr & (R_SCI0_SSR_FIFO_RDF_Msk | R_SCI0_SSR_FIFO_DR_Msk | R_SCI0_SSR_FIFO_FER_Msk | R_SCI0_SSR_FIFO_ORER_Msk | R_SCI0_SSR_FIFO_PER_Msk)))); } else #endif { scr = cfg->regs->SCR; ssr = cfg->regs->SSR; ret = ((scr & R_SCI0_SCR_TIE_Msk) && (ssr & (R_SCI0_SSR_TEND_Msk | R_SCI0_SSR_TDRE_Msk))) || ((scr & R_SCI0_SCR_RIE_Msk) && (ssr & (R_SCI0_SSR_RDRF_Msk | R_SCI0_SSR_PER_Msk | R_SCI0_SSR_FER_Msk | R_SCI0_SSR_ORER_Msk))); } return ret; } static int uart_ra_sci_irq_update(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; const struct uart_ra_sci_config *cfg = dev->config; #if CONFIG_UART_RA_SCI_UART_FIFO_ENABLE if (data->sci.fifo_depth != 0) { data->ssr = cfg->regs->SSR_FIFO; uint8_t ssr = data->ssr ^ (R_SCI0_SSR_FIFO_ORER_Msk | R_SCI0_SSR_FIFO_FER_Msk | R_SCI0_SSR_FIFO_PER_Msk); cfg->regs->SSR_FIFO &= ssr; } else #endif { data->ssr = cfg->regs->SSR; uint8_t ssr = data->ssr ^ (R_SCI0_SSR_ORER_Msk | R_SCI0_SSR_FER_Msk | R_SCI0_SSR_PER_Msk); cfg->regs->SSR_FIFO &= ssr; } return 1; } static void uart_ra_sci_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb, void *cb_data) { struct uart_ra_sci_data *data = dev->data; data->user_cb = cb; data->user_cb_data = cb_data; #if CONFIG_UART_EXCLUSIVE_API_CALLBACKS data->async_user_cb = NULL; data->async_user_cb_data = NULL; #endif } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #ifdef CONFIG_UART_ASYNC_API static int fsp_err_to_errno(fsp_err_t fsp_err) { switch (fsp_err) { case FSP_ERR_INVALID_ARGUMENT: return -EINVAL; case FSP_ERR_NOT_OPEN: return -EIO; case FSP_ERR_IN_USE: return -EBUSY; case FSP_ERR_UNSUPPORTED: return -ENOTSUP; case 0: return 0; default: return -EINVAL; } } static int uart_ra_sci_async_callback_set(const struct device *dev, uart_callback_t cb, void *cb_data) { struct uart_ra_sci_data *data = dev->data; data->async_user_cb = cb; data->async_user_cb_data = cb_data; #if CONFIG_UART_EXCLUSIVE_API_CALLBACKS data->user_cb = NULL; data->user_cb_data = NULL; #endif return 0; } static int uart_ra_sci_async_tx(const struct device *dev, const uint8_t *buf, size_t len, int32_t timeout) { struct uart_ra_sci_data *data = dev->data; int err; err = fsp_err_to_errno(R_SCI_UART_Write(&data->sci, buf, len)); if (err) { return err; } data->tx_buf_cap = len; if (timeout != SYS_FOREVER_US && timeout != 0) { k_work_reschedule(&data->tx_timeout, Z_TIMEOUT_US(timeout)); } return 0; } static inline void async_user_callback(const struct device *dev, struct uart_event *event) { struct uart_ra_sci_data *data = dev->data; if (data->async_user_cb) { data->async_user_cb(dev, event, data->async_user_cb_data); } } static inline void async_rx_release_buf(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; struct uart_event event = { .type = UART_RX_BUF_RELEASED, .data.rx.buf = (uint8_t *)data->rx_buffer, }; async_user_callback(dev, &event); data->rx_buffer = NULL; data->rx_buf_offset = 0; data->rx_buf_len = 0; data->rx_buf_cap = 0; } static inline void async_rx_release_next_buf(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; struct uart_event event = { .type = UART_RX_BUF_RELEASED, .data.rx.buf = (uint8_t *)data->rx_next_buf, }; async_user_callback(dev, &event); data->rx_next_buf = NULL; } static inline void async_rx_req_buf(const struct device *dev) { struct uart_event event = { .type = UART_RX_BUF_REQUEST, }; async_user_callback(dev, &event); } static inline void async_rx_disable(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; const struct uart_ra_sci_config *cfg = dev->config; struct uart_event event = { .type = UART_RX_DISABLED, }; async_user_callback(dev, &event); /* Disable the RXI request and clear the status flag to be ready for the next reception */ cfg->regs->SCR_b.RIE = 0; #if CONFIG_UART_RA_SCI_UART_FIFO_ENABLE if (data->sci.fifo_depth != 0) { cfg->regs->SSR_FIFO &= (uint8_t)~SCI_UART_SSR_FIFO_DR_RDF; } else #endif { cfg->regs->SSR_b.RDRF = 0; } } static inline void async_rx_ready(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; if (!data->rx_buf_len) { return; } struct uart_event event = { .type = UART_RX_RDY, .data.rx.buf = (uint8_t *)data->rx_buffer, .data.rx.offset = data->rx_buf_offset, .data.rx.len = data->rx_buf_len, }; async_user_callback(data->dev, &event); data->rx_buf_offset += data->rx_buf_len; data->rx_buf_len = 0; } static inline void disable_tx(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; const struct uart_ra_sci_config *cfg = dev->config; /* Transmit interrupts must be disabled to start with. */ cfg->regs->SCR &= (uint8_t) ~(R_SCI0_SCR_TIE_Msk | R_SCI0_SCR_TEIE_Msk); /* * Make sure no transmission is in progress. Setting CCR0_b.TE to 0 when CSR_b.TEND * is 0 causes SCI peripheral to work abnormally. */ while (IS_ENABLED(CONFIG_UART_RA_SCI_UART_FIFO_ENABLE) && data->sci.fifo_depth ? cfg->regs->SSR_FIFO_b.TEND != 1U : cfg->regs->SSR_b.TEND != 1U) { } cfg->regs->SCR_b.TE = 0; } static inline void enable_tx(const struct device *dev) { const struct uart_ra_sci_config *cfg = dev->config; cfg->regs->SCR_b.TE = 1; } static int uart_ra_sci_async_tx_abort(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; int err = 0; if (!data->sci.p_tx_src) { return -EFAULT; } disable_tx(dev); if (FSP_SUCCESS != R_SCI_UART_Abort(&data->sci, UART_DIR_TX)) { LOG_DBG("drivers: serial: uart abort tx failed"); err = -EIO; goto unlock; } transfer_properties_t tx_properties = {0}; if (FSP_SUCCESS != R_DTC_InfoGet(data->tx_transfer.p_ctrl, &tx_properties)) { LOG_DBG("drivers: serial: uart abort tx failed"); err = -EIO; goto unlock; } struct uart_event event = { .type = UART_TX_ABORTED, .data.tx.buf = (uint8_t *)data->sci.p_tx_src, .data.tx.len = data->tx_buf_cap - tx_properties.transfer_length_remaining, }; async_user_callback(dev, &event); k_work_cancel_delayable(&data->tx_timeout); unlock: enable_tx(dev); return err; } static int uart_ra_sci_async_rx_enable(const struct device *dev, uint8_t *buf, size_t len, int32_t timeout) { struct uart_ra_sci_data *data = dev->data; const struct uart_ra_sci_config *cfg = dev->config; int err = 0; unsigned int key = irq_lock(); if (data->rx_buffer) { err = -EAGAIN; goto unlock; } #if CONFIG_UART_RA_SCI_UART_FIFO_ENABLE if (data->sci.fifo_depth) { cfg->regs->SSR_FIFO &= (uint8_t) ~(SCI_UART_SSR_FIFO_ERR_MSK); } else #endif { cfg->regs->SSR = (uint8_t)~SCI_UART_SSR_ERR_MSK; } err = fsp_err_to_errno(R_SCI_UART_Read(&data->sci, buf, len)); if (err) { goto unlock; } data->rx_timeout = timeout; data->rx_buffer = buf; data->rx_buf_cap = len; data->rx_buf_len = 0; data->rx_buf_offset = 0; /* Call buffer request user callback */ async_rx_req_buf(dev); cfg->regs->SCR_b.RIE = 1; unlock: irq_unlock(key); return err; } static int uart_ra_sci_async_rx_buf_rsp(const struct device *dev, uint8_t *buf, size_t len) { struct uart_ra_sci_data *data = dev->data; data->rx_next_buf = buf; data->rx_next_buf_cap = len; return 0; } static int uart_ra_sci_async_rx_disable(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; uint32_t remaining_byte = 0; int err = 0; unsigned int key = irq_lock(); if (!data->rx_buffer) { err = -EAGAIN; goto unlock; } k_work_cancel_delayable(&data->rx_timeout_work); if (FSP_SUCCESS != R_SCI_UART_ReadStop(&data->sci, &remaining_byte)) { LOG_DBG("drivers: serial: uart stop reading failed"); err = -EIO; goto unlock; } async_rx_ready(dev); async_rx_release_buf(dev); async_rx_release_next_buf(dev); async_rx_disable(dev); unlock: irq_unlock(key); return err; } static inline void async_evt_rx_err(const struct device *dev, enum uart_rx_stop_reason reason) { struct uart_ra_sci_data *data = dev->data; k_work_cancel_delayable(&data->rx_timeout_work); struct uart_event event = { .type = UART_RX_STOPPED, .data.rx_stop.reason = reason, .data.rx_stop.data.buf = (uint8_t *)data->sci.p_rx_dest, .data.rx_stop.data.offset = 0, .data.rx_stop.data.len = data->rx_buf_cap - data->rx_buf_offset - data->sci.rx_dest_bytes, }; async_user_callback(dev, &event); } static inline void async_evt_rx_complete(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; unsigned int key = irq_lock(); async_rx_ready(dev); async_rx_release_buf(dev); if (data->rx_next_buf) { data->rx_buffer = data->rx_next_buf; data->rx_buf_offset = 0; data->rx_buf_cap = data->rx_next_buf_cap; data->rx_next_buf = NULL; R_SCI_UART_Read(&data->sci, data->rx_buffer, data->rx_buf_cap); async_rx_req_buf(dev); } else { async_rx_disable(dev); } irq_unlock(key); } static inline void async_evt_tx_done(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; k_work_cancel_delayable(&data->tx_timeout); struct uart_event event = { .type = UART_TX_DONE, .data.tx.buf = (uint8_t *)data->sci.p_tx_src, .data.tx.len = data->tx_buf_cap, }; async_user_callback(dev, &event); } static void uart_ra_sci_callback_adapter(struct st_uart_callback_arg *fsp_args) { const struct device *dev = fsp_args->p_context; switch (fsp_args->event) { case UART_EVENT_TX_COMPLETE: async_evt_tx_done(dev); break; case UART_EVENT_RX_COMPLETE: async_evt_rx_complete(dev); break; case UART_EVENT_ERR_PARITY: async_evt_rx_err(dev, UART_ERROR_PARITY); break; case UART_EVENT_ERR_FRAMING: async_evt_rx_err(dev, UART_ERROR_FRAMING); break; case UART_EVENT_ERR_OVERFLOW: async_evt_rx_err(dev, UART_ERROR_OVERRUN); break; case UART_EVENT_BREAK_DETECT: async_evt_rx_err(dev, UART_BREAK); break; case UART_EVENT_TX_DATA_EMPTY: case UART_EVENT_RX_CHAR: break; } } static void uart_ra_sci_rx_timeout_handler(struct k_work *work) { struct k_work_delayable *dwork = k_work_delayable_from_work(work); struct uart_ra_sci_data *data = CONTAINER_OF(dwork, struct uart_ra_sci_data, rx_timeout_work); unsigned int key = irq_lock(); async_rx_ready(data->dev); irq_unlock(key); } static void uart_ra_sci_tx_timeout_handler(struct k_work *work) { struct k_work_delayable *dwork = k_work_delayable_from_work(work); struct uart_ra_sci_data *data = CONTAINER_OF(dwork, struct uart_ra_sci_data, tx_timeout); uart_ra_sci_async_tx_abort(data->dev); } #endif /* CONFIG_UART_ASYNC_API */ static DEVICE_API(uart, uart_ra_sci_driver_api) = { .poll_in = uart_ra_sci_poll_in, .poll_out = uart_ra_sci_poll_out, .err_check = uart_ra_sci_err_check, #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE .configure = uart_ra_sci_configure, .config_get = uart_ra_sci_config_get, #endif #ifdef CONFIG_UART_INTERRUPT_DRIVEN .fifo_fill = uart_ra_sci_fifo_fill, .fifo_read = uart_ra_sci_fifo_read, .irq_tx_enable = uart_ra_sci_irq_tx_enable, .irq_tx_disable = uart_ra_sci_irq_tx_disable, .irq_tx_ready = uart_ra_sci_irq_tx_ready, .irq_rx_enable = uart_ra_sci_irq_rx_enable, .irq_rx_disable = uart_ra_sci_irq_rx_disable, .irq_tx_complete = uart_ra_sci_irq_tx_complete, .irq_rx_ready = uart_ra_sci_irq_rx_ready, .irq_err_enable = uart_ra_sci_irq_err_enable, .irq_err_disable = uart_ra_sci_irq_err_disable, .irq_is_pending = uart_ra_sci_irq_is_pending, .irq_update = uart_ra_sci_irq_update, .irq_callback_set = uart_ra_sci_irq_callback_set, #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #if CONFIG_UART_ASYNC_API .callback_set = uart_ra_sci_async_callback_set, .tx = uart_ra_sci_async_tx, .tx_abort = uart_ra_sci_async_tx_abort, .rx_enable = uart_ra_sci_async_rx_enable, .rx_buf_rsp = uart_ra_sci_async_rx_buf_rsp, .rx_disable = uart_ra_sci_async_rx_disable, #endif /* CONFIG_UART_ASYNC_API */ }; static int uart_ra_sci_init(const struct device *dev) { const struct uart_ra_sci_config *config = dev->config; struct uart_ra_sci_data *data = dev->data; int ret; fsp_err_t fsp_err; /* Configure dt provided device signals when available */ ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); if (ret < 0) { return ret; } /* Setup fsp sci_uart setting */ ret = uart_ra_sci_apply_config(&data->uart_config, &data->fsp_config, &data->fsp_config_extend, &data->fsp_baud_setting); if (ret != 0) { return ret; } data->fsp_config_extend.p_baud_setting = &data->fsp_baud_setting; #if defined(CONFIG_UART_ASYNC_API) data->fsp_config.p_callback = uart_ra_sci_callback_adapter; data->fsp_config.p_context = dev; k_work_init_delayable(&data->tx_timeout, uart_ra_sci_tx_timeout_handler); k_work_init_delayable(&data->rx_timeout_work, uart_ra_sci_rx_timeout_handler); #endif /* defined(CONFIG_UART_ASYNC_API) */ data->fsp_config.p_extend = &data->fsp_config_extend; fsp_err = R_SCI_UART_Open(&data->sci, &data->fsp_config); if (fsp_err != FSP_SUCCESS) { LOG_DBG("drivers: uart: initialize failed"); return -EIO; } irq_disable(data->fsp_config.eri_irq); return 0; } #if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API static void uart_ra_sci_rxi_isr(const struct device *dev) { struct uart_ra_sci_data *data = dev->data; #if defined(CONFIG_UART_INTERRUPT_DRIVEN) if (data->user_cb != NULL) { data->user_cb(dev, data->user_cb_data); goto out; } #endif #if defined(CONFIG_UART_ASYNC_API) if (data->rx_timeout != SYS_FOREVER_US && data->rx_timeout != 0) { k_work_reschedule(&data->rx_timeout_work, Z_TIMEOUT_US(data->rx_timeout)); } data->rx_buf_len++; if (data->rx_buf_len + data->rx_buf_offset == data->rx_buf_cap) { sci_uart_rxi_isr(); } else { goto out; } #endif out: R_ICU->IELSR_b[data->fsp_config.rxi_irq].IR = 0U; } static void uart_ra_sci_txi_isr(const struct device *dev) { #if defined(CONFIG_UART_INTERRUPT_DRIVEN) struct uart_ra_sci_data *data = dev->data; if (data->user_cb != NULL) { data->user_cb(dev, data->user_cb_data); R_ICU->IELSR_b[data->fsp_config.txi_irq].IR = 0U; return; } #endif #if defined(CONFIG_UART_ASYNC_API) sci_uart_txi_isr(); #endif } static void uart_ra_sci_tei_isr(const struct device *dev) { #if defined(CONFIG_UART_INTERRUPT_DRIVEN) struct uart_ra_sci_data *data = dev->data; if (data->user_cb != NULL) { data->user_cb(dev, data->user_cb_data); R_ICU->IELSR_b[data->fsp_config.tei_irq].IR = 0U; return; } #endif #if defined(CONFIG_UART_ASYNC_API) sci_uart_tei_isr(); #endif } static void uart_ra_sci_eri_isr(const struct device *dev) { #if defined(CONFIG_UART_INTERRUPT_DRIVEN) struct uart_ra_sci_data *data = dev->data; if (data->user_cb != NULL) { data->user_cb(dev, data->user_cb_data); R_ICU->IELSR_b[data->fsp_config.eri_irq].IR = 0U; return; } #endif #if defined(CONFIG_UART_ASYNC_API) sci_uart_eri_isr(); #endif } #endif #define _ELC_EVENT_SCI_RXI(channel) ELC_EVENT_SCI##channel##_RXI #define _ELC_EVENT_SCI_TXI(channel) ELC_EVENT_SCI##channel##_TXI #define _ELC_EVENT_SCI_TEI(channel) ELC_EVENT_SCI##channel##_TEI #define _ELC_EVENT_SCI_ERI(channel) ELC_EVENT_SCI##channel##_ERI #define ELC_EVENT_SCI_RXI(channel) _ELC_EVENT_SCI_RXI(channel) #define ELC_EVENT_SCI_TXI(channel) _ELC_EVENT_SCI_TXI(channel) #define ELC_EVENT_SCI_TEI(channel) _ELC_EVENT_SCI_TEI(channel) #define ELC_EVENT_SCI_ERI(channel) _ELC_EVENT_SCI_ERI(channel) #if CONFIG_UART_ASYNC_API #define UART_RA_SCI_ASYNC_INIT(index) \ .rx_transfer_info = \ { \ .transfer_settings_word_b.dest_addr_mode = TRANSFER_ADDR_MODE_INCREMENTED, \ .transfer_settings_word_b.repeat_area = TRANSFER_REPEAT_AREA_DESTINATION, \ .transfer_settings_word_b.irq = TRANSFER_IRQ_EACH, \ .transfer_settings_word_b.chain_mode = TRANSFER_CHAIN_MODE_DISABLED, \ .transfer_settings_word_b.src_addr_mode = TRANSFER_ADDR_MODE_FIXED, \ .transfer_settings_word_b.size = TRANSFER_SIZE_1_BYTE, \ .transfer_settings_word_b.mode = TRANSFER_MODE_NORMAL, \ .p_dest = (void *)NULL, \ .p_src = (void const *)NULL, \ .num_blocks = 0, \ .length = 0, \ }, \ .rx_transfer_cfg_extend = {.activation_source = \ DT_IRQ_BY_NAME(DT_INST_PARENT(index), rxi, irq)}, \ .rx_transfer_cfg = \ { \ .p_info = &uart_ra_sci_data_##index.rx_transfer_info, \ .p_extend = &uart_ra_sci_data_##index.rx_transfer_cfg_extend, \ }, \ .rx_transfer = \ { \ .p_ctrl = &uart_ra_sci_data_##index.rx_transfer_ctrl, \ .p_cfg = &uart_ra_sci_data_##index.rx_transfer_cfg, \ .p_api = &g_transfer_on_dtc, \ }, \ .tx_transfer_info = \ { \ .transfer_settings_word_b.dest_addr_mode = TRANSFER_ADDR_MODE_FIXED, \ .transfer_settings_word_b.repeat_area = TRANSFER_REPEAT_AREA_SOURCE, \ .transfer_settings_word_b.irq = TRANSFER_IRQ_END, \ .transfer_settings_word_b.chain_mode = TRANSFER_CHAIN_MODE_DISABLED, \ .transfer_settings_word_b.src_addr_mode = TRANSFER_ADDR_MODE_INCREMENTED, \ .transfer_settings_word_b.size = TRANSFER_SIZE_1_BYTE, \ .transfer_settings_word_b.mode = TRANSFER_MODE_NORMAL, \ .p_dest = (void *)NULL, \ .p_src = (void const *)NULL, \ .num_blocks = 0, \ .length = 0, \ }, \ .tx_transfer_cfg_extend = {.activation_source = \ DT_IRQ_BY_NAME(DT_INST_PARENT(index), txi, irq)}, \ .tx_transfer_cfg = \ { \ .p_info = &uart_ra_sci_data_##index.tx_transfer_info, \ .p_extend = &uart_ra_sci_data_##index.tx_transfer_cfg_extend, \ }, \ .tx_transfer = { \ .p_ctrl = &uart_ra_sci_data_##index.tx_transfer_ctrl, \ .p_cfg = &uart_ra_sci_data_##index.tx_transfer_cfg, \ .p_api = &g_transfer_on_dtc, \ }, #define UART_RA_SCI_DTC_INIT(index) \ { \ uart_ra_sci_data_##index.fsp_config.p_transfer_rx = \ &uart_ra_sci_data_##index.rx_transfer; \ uart_ra_sci_data_##index.fsp_config.p_transfer_tx = \ &uart_ra_sci_data_##index.tx_transfer; \ } #else #define UART_RA_SCI_ASYNC_INIT(index) #define UART_RA_SCI_DTC_INIT(index) #endif #if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API #define UART_RA_SCI_IRQ_INIT(index) \ { \ R_ICU->IELSR[DT_IRQ_BY_NAME(DT_INST_PARENT(index), rxi, irq)] = \ ELC_EVENT_SCI_RXI(DT_INST_PROP(index, channel)); \ R_ICU->IELSR[DT_IRQ_BY_NAME(DT_INST_PARENT(index), txi, irq)] = \ ELC_EVENT_SCI_TXI(DT_INST_PROP(index, channel)); \ R_ICU->IELSR[DT_IRQ_BY_NAME(DT_INST_PARENT(index), tei, irq)] = \ ELC_EVENT_SCI_TEI(DT_INST_PROP(index, channel)); \ R_ICU->IELSR[DT_IRQ_BY_NAME(DT_INST_PARENT(index), eri, irq)] = \ ELC_EVENT_SCI_ERI(DT_INST_PROP(index, channel)); \ \ IRQ_CONNECT(DT_IRQ_BY_NAME(DT_INST_PARENT(index), rxi, irq), \ DT_IRQ_BY_NAME(DT_INST_PARENT(index), rxi, priority), \ uart_ra_sci_rxi_isr, DEVICE_DT_INST_GET(index), 0); \ IRQ_CONNECT(DT_IRQ_BY_NAME(DT_INST_PARENT(index), txi, irq), \ DT_IRQ_BY_NAME(DT_INST_PARENT(index), txi, priority), \ uart_ra_sci_txi_isr, DEVICE_DT_INST_GET(index), 0); \ IRQ_CONNECT(DT_IRQ_BY_NAME(DT_INST_PARENT(index), tei, irq), \ DT_IRQ_BY_NAME(DT_INST_PARENT(index), tei, priority), \ uart_ra_sci_tei_isr, DEVICE_DT_INST_GET(index), 0); \ IRQ_CONNECT(DT_IRQ_BY_NAME(DT_INST_PARENT(index), eri, irq), \ DT_IRQ_BY_NAME(DT_INST_PARENT(index), eri, priority), \ uart_ra_sci_eri_isr, DEVICE_DT_INST_GET(index), 0); \ \ irq_enable(DT_IRQ_BY_NAME(DT_INST_PARENT(index), rxi, irq)); \ irq_enable(DT_IRQ_BY_NAME(DT_INST_PARENT(index), txi, irq)); \ irq_enable(DT_IRQ_BY_NAME(DT_INST_PARENT(index), tei, irq)); \ } #else #define UART_RA_SCI_IRQ_INIT(index) #endif #define UART_RA_SCI_INIT(index) \ PINCTRL_DT_DEFINE(DT_INST_PARENT(index)); \ static const struct uart_ra_sci_config uart_ra_sci_config_##index = { \ .pcfg = PINCTRL_DT_DEV_CONFIG_GET(DT_INST_PARENT(index)), \ .regs = (R_SCI0_Type *)DT_REG_ADDR(DT_INST_PARENT(index)), \ }; \ \ static struct uart_ra_sci_data uart_ra_sci_data_##index = { \ .uart_config = \ { \ .baudrate = DT_INST_PROP(index, current_speed), \ .parity = UART_CFG_PARITY_NONE, \ .stop_bits = UART_CFG_STOP_BITS_1, \ .data_bits = UART_CFG_DATA_BITS_8, \ .flow_ctrl = COND_CODE_1(DT_INST_PROP(index, hw_flow_control), \ (UART_CFG_FLOW_CTRL_RTS_CTS), \ (UART_CFG_FLOW_CTRL_NONE)), \ }, \ .fsp_config = \ { \ .channel = DT_INST_PROP(index, channel), \ .rxi_ipl = DT_IRQ_BY_NAME(DT_INST_PARENT(index), rxi, priority), \ .rxi_irq = DT_IRQ_BY_NAME(DT_INST_PARENT(index), rxi, irq), \ .txi_ipl = DT_IRQ_BY_NAME(DT_INST_PARENT(index), txi, priority), \ .txi_irq = DT_IRQ_BY_NAME(DT_INST_PARENT(index), txi, irq), \ .tei_ipl = DT_IRQ_BY_NAME(DT_INST_PARENT(index), tei, priority), \ .tei_irq = DT_IRQ_BY_NAME(DT_INST_PARENT(index), tei, irq), \ .eri_ipl = DT_IRQ_BY_NAME(DT_INST_PARENT(index), eri, priority), \ .eri_irq = DT_IRQ_BY_NAME(DT_INST_PARENT(index), eri, irq), \ }, \ .fsp_config_extend = {}, \ .fsp_baud_setting = {}, \ .dev = DEVICE_DT_INST_GET(index), \ UART_RA_SCI_ASYNC_INIT(index)}; \ \ static int uart_ra_sci_init##index(const struct device *dev) \ { \ UART_RA_SCI_IRQ_INIT(index); \ UART_RA_SCI_DTC_INIT(index); \ int err = uart_ra_sci_init(dev); \ if (err != 0) { \ return err; \ } \ return 0; \ } \ DEVICE_DT_INST_DEFINE(index, uart_ra_sci_init##index, NULL, &uart_ra_sci_data_##index, \ &uart_ra_sci_config_##index, PRE_KERNEL_1, \ CONFIG_SERIAL_INIT_PRIORITY, &uart_ra_sci_driver_api); DT_INST_FOREACH_STATUS_OKAY(UART_RA_SCI_INIT)