/* * Copyright (c) 2010, 2012-2015 Wind River Systems, Inc. * Copyright (c) 2020 Intel Corp. * Copyright (c) 2021 Microchip Technology Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @brief Microchip XEC UART Serial Driver * * This is the driver for the Microchip XEC MCU UART. It is NS16550 compatible. * */ #define DT_DRV_COMPAT microchip_xec_uart #include #include #include #include #include #include #include #include #ifdef CONFIG_SOC_SERIES_MEC172X #include #include #endif #include #include #include #include #include #include #include #include #include LOG_MODULE_REGISTER(uart_xec, CONFIG_UART_LOG_LEVEL); /* Clock source is 1.8432 MHz derived from PLL 48 MHz */ #define XEC_UART_CLK_SRC_1P8M 0 /* Clock source is PLL 48 MHz output */ #define XEC_UART_CLK_SRC_48M 1 /* Clock source is the UART_CLK alternate pin function. */ #define XEC_UART_CLK_SRC_EXT_PIN 2 /* register definitions */ #define REG_THR 0x00 /* Transmitter holding reg. */ #define REG_RDR 0x00 /* Receiver data reg. */ #define REG_BRDL 0x00 /* Baud rate divisor (LSB) */ #define REG_BRDH 0x01 /* Baud rate divisor (MSB) */ #define REG_IER 0x01 /* Interrupt enable reg. */ #define REG_IIR 0x02 /* Interrupt ID reg. */ #define REG_FCR 0x02 /* FIFO control reg. */ #define REG_LCR 0x03 /* Line control reg. */ #define REG_MDC 0x04 /* Modem control reg. */ #define REG_LSR 0x05 /* Line status reg. */ #define REG_MSR 0x06 /* Modem status reg. */ #define REG_SCR 0x07 /* scratch register */ #define REG_LD_ACTV 0x330 /* Logical Device activate */ #define REG_LD_CFG 0x3f0 /* Logical Device configuration */ /* equates for interrupt enable register */ #define IER_RXRDY 0x01 /* receiver data ready */ #define IER_TBE 0x02 /* transmit bit enable */ #define IER_LSR 0x04 /* line status interrupts */ #define IER_MSI 0x08 /* modem status interrupts */ /* equates for interrupt identification register */ #define IIR_MSTAT 0x00 /* modem status interrupt */ #define IIR_NIP 0x01 /* no interrupt pending */ #define IIR_THRE 0x02 /* transmit holding register empty interrupt */ #define IIR_RBRF 0x04 /* receiver buffer register full interrupt */ #define IIR_LS 0x06 /* receiver line status interrupt */ #define IIR_MASK 0x07 /* interrupt id bits mask */ #define IIR_ID 0x06 /* interrupt ID mask without NIP */ /* equates for FIFO control register */ #define FCR_FIFO 0x01 /* enable XMIT and RCVR FIFO */ #define FCR_RCVRCLR 0x02 /* clear RCVR FIFO */ #define FCR_XMITCLR 0x04 /* clear XMIT FIFO */ /* * Per PC16550D (Literature Number: SNLS378B): * * RXRDY, Mode 0: When in the 16450 Mode (FCR0 = 0) or in * the FIFO Mode (FCR0 = 1, FCR3 = 0) and there is at least 1 * character in the RCVR FIFO or RCVR holding register, the * RXRDY pin (29) will be low active. Once it is activated the * RXRDY pin will go inactive when there are no more charac- * ters in the FIFO or holding register. * * RXRDY, Mode 1: In the FIFO Mode (FCR0 = 1) when the * FCR3 = 1 and the trigger level or the timeout has been * reached, the RXRDY pin will go low active. Once it is acti- * vated it will go inactive when there are no more characters * in the FIFO or holding register. * * TXRDY, Mode 0: In the 16450 Mode (FCR0 = 0) or in the * FIFO Mode (FCR0 = 1, FCR3 = 0) and there are no charac- * ters in the XMIT FIFO or XMIT holding register, the TXRDY * pin (24) will be low active. Once it is activated the TXRDY * pin will go inactive after the first character is loaded into the * XMIT FIFO or holding register. * * TXRDY, Mode 1: In the FIFO Mode (FCR0 = 1) when * FCR3 = 1 and there are no characters in the XMIT FIFO, the * TXRDY pin will go low active. This pin will become inactive * when the XMIT FIFO is completely full. */ #define FCR_MODE0 0x00 /* set receiver in mode 0 */ #define FCR_MODE1 0x08 /* set receiver in mode 1 */ /* RCVR FIFO interrupt levels: trigger interrupt with this bytes in FIFO */ #define FCR_FIFO_1 0x00 /* 1 byte in RCVR FIFO */ #define FCR_FIFO_4 0x40 /* 4 bytes in RCVR FIFO */ #define FCR_FIFO_8 0x80 /* 8 bytes in RCVR FIFO */ #define FCR_FIFO_14 0xC0 /* 14 bytes in RCVR FIFO */ /* constants for line control register */ #define LCR_CS5 0x00 /* 5 bits data size */ #define LCR_CS6 0x01 /* 6 bits data size */ #define LCR_CS7 0x02 /* 7 bits data size */ #define LCR_CS8 0x03 /* 8 bits data size */ #define LCR_2_STB 0x04 /* 2 stop bits */ #define LCR_1_STB 0x00 /* 1 stop bit */ #define LCR_PEN 0x08 /* parity enable */ #define LCR_PDIS 0x00 /* parity disable */ #define LCR_EPS 0x10 /* even parity select */ #define LCR_SP 0x20 /* stick parity select */ #define LCR_SBRK 0x40 /* break control bit */ #define LCR_DLAB 0x80 /* divisor latch access enable */ /* constants for the modem control register */ #define MCR_DTR 0x01 /* dtr output */ #define MCR_RTS 0x02 /* rts output */ #define MCR_OUT1 0x04 /* output #1 */ #define MCR_OUT2 0x08 /* output #2 */ #define MCR_LOOP 0x10 /* loop back */ #define MCR_AFCE 0x20 /* auto flow control enable */ /* constants for line status register */ #define LSR_RXRDY 0x01 /* receiver data available */ #define LSR_OE 0x02 /* overrun error */ #define LSR_PE 0x04 /* parity error */ #define LSR_FE 0x08 /* framing error */ #define LSR_BI 0x10 /* break interrupt */ #define LSR_EOB_MASK 0x1E /* Error or Break mask */ #define LSR_THRE 0x20 /* transmit holding register empty */ #define LSR_TEMT 0x40 /* transmitter empty */ /* constants for modem status register */ #define MSR_DCTS 0x01 /* cts change */ #define MSR_DDSR 0x02 /* dsr change */ #define MSR_DRI 0x04 /* ring change */ #define MSR_DDCD 0x08 /* data carrier change */ #define MSR_CTS 0x10 /* complement of cts */ #define MSR_DSR 0x20 /* complement of dsr */ #define MSR_RI 0x40 /* complement of ring signal */ #define MSR_DCD 0x80 /* complement of dcd */ #define IIRC(dev) (((struct uart_xec_dev_data *)(dev)->data)->iir_cache) enum uart_xec_pm_policy_state_flag { UART_XEC_PM_POLICY_STATE_TX_FLAG, UART_XEC_PM_POLICY_STATE_RX_FLAG, UART_XEC_PM_POLICY_STATE_FLAG_COUNT, }; /* device config */ struct uart_xec_device_config { struct uart_regs *regs; uint32_t sys_clk_freq; uint8_t girq_id; uint8_t girq_pos; uint8_t pcr_idx; uint8_t pcr_bitpos; const struct pinctrl_dev_config *pcfg; #if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) uart_irq_config_func_t irq_config_func; #endif #ifdef CONFIG_PM_DEVICE struct gpio_dt_spec wakerx_gpio; bool wakeup_source; #endif }; /** Device data structure */ struct uart_xec_dev_data { struct uart_config uart_config; struct k_spinlock lock; uint8_t fcr_cache; /**< cache of FCR write only register */ uint8_t iir_cache; /**< cache of IIR since it clears when read */ #ifdef CONFIG_UART_INTERRUPT_DRIVEN uart_irq_callback_user_data_t cb; /**< Callback function pointer */ void *cb_data; /**< Callback function arg */ #endif }; #ifdef CONFIG_PM_DEVICE ATOMIC_DEFINE(pm_policy_state_flag, UART_XEC_PM_POLICY_STATE_FLAG_COUNT); #endif #if defined(CONFIG_PM_DEVICE) && defined(CONFIG_UART_CONSOLE_INPUT_EXPIRED) struct k_work_delayable rx_refresh_timeout_work; #endif static DEVICE_API(uart, uart_xec_driver_api); #if defined(CONFIG_PM_DEVICE) && defined(CONFIG_UART_CONSOLE_INPUT_EXPIRED) static void uart_xec_pm_policy_state_lock_get(enum uart_xec_pm_policy_state_flag flag) { if (atomic_test_and_set_bit(pm_policy_state_flag, flag) == 0) { pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); } } static void uart_xec_pm_policy_state_lock_put(enum uart_xec_pm_policy_state_flag flag) { if (atomic_test_and_clear_bit(pm_policy_state_flag, flag) == 1) { pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); } } #endif #ifdef CONFIG_SOC_SERIES_MEC172X static void uart_clr_slp_en(const struct device *dev) { struct uart_xec_device_config const *dev_cfg = dev->config; z_mchp_xec_pcr_periph_sleep(dev_cfg->pcr_idx, dev_cfg->pcr_bitpos, 0); } static inline void uart_xec_girq_clr(const struct device *dev) { struct uart_xec_device_config const *dev_cfg = dev->config; mchp_soc_ecia_girq_src_clr(dev_cfg->girq_id, dev_cfg->girq_pos); } static inline void uart_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn) { mchp_xec_ecia_girq_src_en(girq_idx, girq_posn); } #else static void uart_clr_slp_en(const struct device *dev) { struct uart_xec_device_config const *dev_cfg = dev->config; if (dev_cfg->pcr_bitpos == MCHP_PCR2_UART0_POS) { mchp_pcr_periph_slp_ctrl(PCR_UART0, 0); } else if (dev_cfg->pcr_bitpos == MCHP_PCR2_UART1_POS) { mchp_pcr_periph_slp_ctrl(PCR_UART1, 0); } else { mchp_pcr_periph_slp_ctrl(PCR_UART2, 0); } } static inline void uart_xec_girq_clr(const struct device *dev) { struct uart_xec_device_config const *dev_cfg = dev->config; MCHP_GIRQ_SRC(dev_cfg->girq_id) = BIT(dev_cfg->girq_pos); } static inline void uart_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn) { MCHP_GIRQ_ENSET(girq_idx) = BIT(girq_posn); } #endif static void set_baud_rate(const struct device *dev, uint32_t baud_rate) { const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_xec_dev_data * const dev_data = dev->data; struct uart_regs *regs = dev_cfg->regs; uint32_t divisor; /* baud rate divisor */ uint8_t lcr_cache; if ((baud_rate != 0U) && (dev_cfg->sys_clk_freq != 0U)) { /* * calculate baud rate divisor. a variant of * (uint32_t)(dev_cfg->sys_clk_freq / (16.0 * baud_rate) + 0.5) */ divisor = ((dev_cfg->sys_clk_freq + (baud_rate << 3)) / baud_rate) >> 4; /* set the DLAB to access the baud rate divisor registers */ lcr_cache = regs->LCR; regs->LCR = LCR_DLAB | lcr_cache; regs->RTXB = (unsigned char)(divisor & 0xff); /* bit[7]=0 1.8MHz clock source, =1 48MHz clock source */ regs->IER = (unsigned char)((divisor >> 8) & 0x7f); /* restore the DLAB to access the baud rate divisor registers */ regs->LCR = lcr_cache; dev_data->uart_config.baudrate = baud_rate; } } /* * Configure UART. * MCHP XEC UART defaults to reset if external Host VCC_PWRGD is inactive. * We must change the UART reset signal to XEC VTR_PWRGD. Make sure UART * clock source is an internal clock and UART pins are not inverted. */ static int uart_xec_configure(const struct device *dev, const struct uart_config *cfg) { struct uart_xec_dev_data * const dev_data = dev->data; const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_regs *regs = dev_cfg->regs; uint8_t lcr_cache; /* temp for return value if error occurs in this locked region */ int ret = 0; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); ARG_UNUSED(dev_data); dev_data->fcr_cache = 0U; dev_data->iir_cache = 0U; /* XEC UART specific configuration and enable */ regs->CFG_SEL &= ~(MCHP_UART_LD_CFG_RESET_VCC | MCHP_UART_LD_CFG_EXTCLK | MCHP_UART_LD_CFG_INVERT); /* set activate to enable clocks */ regs->ACTV |= MCHP_UART_LD_ACTIVATE; set_baud_rate(dev, cfg->baudrate); /* Local structure to hold temporary values */ struct uart_config uart_cfg; switch (cfg->data_bits) { case UART_CFG_DATA_BITS_5: uart_cfg.data_bits = LCR_CS5; break; case UART_CFG_DATA_BITS_6: uart_cfg.data_bits = LCR_CS6; break; case UART_CFG_DATA_BITS_7: uart_cfg.data_bits = LCR_CS7; break; case UART_CFG_DATA_BITS_8: uart_cfg.data_bits = LCR_CS8; break; default: ret = -ENOTSUP; goto out; } switch (cfg->stop_bits) { case UART_CFG_STOP_BITS_1: uart_cfg.stop_bits = LCR_1_STB; break; case UART_CFG_STOP_BITS_2: uart_cfg.stop_bits = LCR_2_STB; break; default: ret = -ENOTSUP; goto out; } switch (cfg->parity) { case UART_CFG_PARITY_NONE: uart_cfg.parity = LCR_PDIS; break; case UART_CFG_PARITY_EVEN: uart_cfg.parity = LCR_EPS; break; default: ret = -ENOTSUP; goto out; } dev_data->uart_config = *cfg; /* data bits, stop bits, parity, clear DLAB */ regs->LCR = uart_cfg.data_bits | uart_cfg.stop_bits | uart_cfg.parity; regs->MCR = MCR_OUT2 | MCR_RTS | MCR_DTR; /* * Program FIFO: enabled, mode 0 * generate the interrupt at 8th byte * Clear TX and RX FIFO */ dev_data->fcr_cache = FCR_FIFO | FCR_MODE0 | FCR_FIFO_8 | FCR_RCVRCLR | FCR_XMITCLR; regs->IIR_FCR = dev_data->fcr_cache; /* clear the port */ lcr_cache = regs->LCR; regs->LCR = LCR_DLAB | lcr_cache; regs->SCR = regs->RTXB; regs->LCR = lcr_cache; /* disable interrupts */ regs->IER = 0; out: k_spin_unlock(&dev_data->lock, key); return ret; }; #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE static int uart_xec_config_get(const struct device *dev, struct uart_config *cfg) { struct uart_xec_dev_data *data = dev->data; cfg->baudrate = data->uart_config.baudrate; cfg->parity = data->uart_config.parity; cfg->stop_bits = data->uart_config.stop_bits; cfg->data_bits = data->uart_config.data_bits; cfg->flow_ctrl = data->uart_config.flow_ctrl; return 0; } #endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ #ifdef CONFIG_PM_DEVICE static void uart_xec_wake_handler(const struct device *gpio, struct gpio_callback *cb, uint32_t pins) { /* Disable interrupts on UART RX pin to avoid repeated interrupts. */ (void)gpio_pin_interrupt_configure(gpio, (find_msb_set(pins) - 1), GPIO_INT_DISABLE); /* Refresh console expired time */ #ifdef CONFIG_UART_CONSOLE_INPUT_EXPIRED k_timeout_t delay = K_MSEC(CONFIG_UART_CONSOLE_INPUT_EXPIRED_TIMEOUT); uart_xec_pm_policy_state_lock_get(UART_XEC_PM_POLICY_STATE_RX_FLAG); k_work_reschedule(&rx_refresh_timeout_work, delay); #endif } static int uart_xec_pm_action(const struct device *dev, enum pm_device_action action) { const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_regs *regs = dev_cfg->regs; int ret = 0; switch (action) { case PM_DEVICE_ACTION_RESUME: regs->ACTV = MCHP_UART_LD_ACTIVATE; break; case PM_DEVICE_ACTION_SUSPEND: /* Enable UART wake interrupt */ regs->ACTV = 0; if ((dev_cfg->wakeup_source) && (dev_cfg->wakerx_gpio.port != NULL)) { ret = gpio_pin_interrupt_configure_dt(&dev_cfg->wakerx_gpio, GPIO_INT_MODE_EDGE | GPIO_INT_TRIG_LOW); if (ret < 0) { LOG_ERR("Failed to configure UART wake interrupt (ret %d)", ret); return ret; } } break; default: return -ENOTSUP; } return 0; } #ifdef CONFIG_UART_CONSOLE_INPUT_EXPIRED static void uart_xec_rx_refresh_timeout(struct k_work *work) { ARG_UNUSED(work); uart_xec_pm_policy_state_lock_put(UART_XEC_PM_POLICY_STATE_RX_FLAG); } #endif #endif /* CONFIG_PM_DEVICE */ /** * @brief Initialize individual UART port * * This routine is called to reset the chip in a quiescent state. * * @param dev UART device struct * * @return 0 if successful, failed otherwise */ static int uart_xec_init(const struct device *dev) { const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_xec_dev_data *dev_data = dev->data; int ret; uart_clr_slp_en(dev); ret = pinctrl_apply_state(dev_cfg->pcfg, PINCTRL_STATE_DEFAULT); if (ret != 0) { return ret; } ret = uart_xec_configure(dev, &dev_data->uart_config); if (ret != 0) { return ret; } #ifdef CONFIG_UART_INTERRUPT_DRIVEN dev_cfg->irq_config_func(dev); #endif #ifdef CONFIG_PM_DEVICE #ifdef CONFIG_UART_CONSOLE_INPUT_EXPIRED k_work_init_delayable(&rx_refresh_timeout_work, uart_xec_rx_refresh_timeout); #endif if ((dev_cfg->wakeup_source) && (dev_cfg->wakerx_gpio.port != NULL)) { static struct gpio_callback uart_xec_wake_cb; gpio_init_callback(&uart_xec_wake_cb, uart_xec_wake_handler, BIT(dev_cfg->wakerx_gpio.pin)); ret = gpio_add_callback(dev_cfg->wakerx_gpio.port, &uart_xec_wake_cb); if (ret < 0) { LOG_ERR("Failed to add UART wake callback (err %d)", ret); return ret; } } #endif return 0; } /** * @brief Poll the device for input. * * @param dev UART device struct * @param c Pointer to character * * @return 0 if a character arrived, -1 if the input buffer if empty. */ static int uart_xec_poll_in(const struct device *dev, unsigned char *c) { const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_xec_dev_data *dev_data = dev->data; struct uart_regs *regs = dev_cfg->regs; int ret = -1; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); if ((regs->LSR & LSR_RXRDY) != 0) { /* got a character */ *c = regs->RTXB; ret = 0; } k_spin_unlock(&dev_data->lock, key); return ret; } /** * @brief Output a character in polled mode. * * Checks if the transmitter is empty. If empty, a character is written to * the data register. * * If the hardware flow control is enabled then the handshake signal CTS has to * be asserted in order to send a character. * * @param dev UART device struct * @param c Character to send */ static void uart_xec_poll_out(const struct device *dev, unsigned char c) { const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_xec_dev_data *dev_data = dev->data; struct uart_regs *regs = dev_cfg->regs; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); while ((regs->LSR & LSR_THRE) == 0) { ; } regs->RTXB = c; k_spin_unlock(&dev_data->lock, key); } /** * @brief Check if an error was received * * @param dev UART device struct * * @return one of UART_ERROR_OVERRUN, UART_ERROR_PARITY, UART_ERROR_FRAMING, * UART_BREAK if an error was detected, 0 otherwise. */ static int uart_xec_err_check(const struct device *dev) { const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_xec_dev_data *dev_data = dev->data; struct uart_regs *regs = dev_cfg->regs; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); int check = regs->LSR & LSR_EOB_MASK; k_spin_unlock(&dev_data->lock, key); return check >> 1; } #if CONFIG_UART_INTERRUPT_DRIVEN /** * @brief Fill FIFO with data * * @param dev UART device struct * @param tx_data Data to transmit * @param size Number of bytes to send * * @return Number of bytes sent */ static int uart_xec_fifo_fill(const struct device *dev, const uint8_t *tx_data, int size) { const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_xec_dev_data *dev_data = dev->data; struct uart_regs *regs = dev_cfg->regs; int i; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); for (i = 0; (i < size) && (regs->LSR & LSR_THRE) != 0; i++) { #if defined(CONFIG_PM_DEVICE) && defined(CONFIG_UART_CONSOLE_INPUT_EXPIRED) uart_xec_pm_policy_state_lock_get(UART_XEC_PM_POLICY_STATE_TX_FLAG); #endif regs->RTXB = tx_data[i]; } k_spin_unlock(&dev_data->lock, key); return i; } /** * @brief Read data from FIFO * * @param dev UART device struct * @param rxData Data container * @param size Container size * * @return Number of bytes read */ static int uart_xec_fifo_read(const struct device *dev, uint8_t *rx_data, const int size) { const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_xec_dev_data *dev_data = dev->data; struct uart_regs *regs = dev_cfg->regs; int i; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); for (i = 0; (i < size) && (regs->LSR & LSR_RXRDY) != 0; i++) { rx_data[i] = regs->RTXB; } k_spin_unlock(&dev_data->lock, key); return i; } /** * @brief Enable TX interrupt in IER * * @param dev UART device struct */ static void uart_xec_irq_tx_enable(const struct device *dev) { const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_xec_dev_data *dev_data = dev->data; struct uart_regs *regs = dev_cfg->regs; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); regs->IER |= IER_TBE; k_spin_unlock(&dev_data->lock, key); } /** * @brief Disable TX interrupt in IER * * @param dev UART device struct */ static void uart_xec_irq_tx_disable(const struct device *dev) { const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_xec_dev_data *dev_data = dev->data; struct uart_regs *regs = dev_cfg->regs; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); regs->IER &= ~(IER_TBE); k_spin_unlock(&dev_data->lock, key); } /** * @brief Check if Tx IRQ has been raised * * @param dev UART device struct * * @return 1 if an IRQ is ready, 0 otherwise */ static int uart_xec_irq_tx_ready(const struct device *dev) { struct uart_xec_dev_data *dev_data = dev->data; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); int ret = ((IIRC(dev) & IIR_ID) == IIR_THRE) ? 1 : 0; k_spin_unlock(&dev_data->lock, key); return ret; } /** * @brief Check if nothing remains to be transmitted * * @param dev UART device struct * * @return 1 if nothing remains to be transmitted, 0 otherwise */ static int uart_xec_irq_tx_complete(const struct device *dev) { const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_xec_dev_data *dev_data = dev->data; struct uart_regs *regs = dev_cfg->regs; int ret; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); if ((regs->IER & IER_TBE) || ((regs->LSR & (LSR_TEMT | LSR_THRE)) != (LSR_TEMT | LSR_THRE))) { ret = 0; } else { ret = 1; } k_spin_unlock(&dev_data->lock, key); return ret; } /** * @brief Enable RX interrupt in IER * * @param dev UART device struct */ static void uart_xec_irq_rx_enable(const struct device *dev) { const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_xec_dev_data *dev_data = dev->data; struct uart_regs *regs = dev_cfg->regs; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); regs->IER |= IER_RXRDY; k_spin_unlock(&dev_data->lock, key); } /** * @brief Disable RX interrupt in IER * * @param dev UART device struct */ static void uart_xec_irq_rx_disable(const struct device *dev) { const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_xec_dev_data *dev_data = dev->data; struct uart_regs *regs = dev_cfg->regs; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); regs->IER &= ~(IER_RXRDY); k_spin_unlock(&dev_data->lock, key); } /** * @brief Check if Rx IRQ has been raised * * @param dev UART device struct * * @return 1 if an IRQ is ready, 0 otherwise */ static int uart_xec_irq_rx_ready(const struct device *dev) { struct uart_xec_dev_data *dev_data = dev->data; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); int ret = ((IIRC(dev) & IIR_ID) == IIR_RBRF) ? 1 : 0; k_spin_unlock(&dev_data->lock, key); return ret; } /** * @brief Enable error interrupt in IER * * @param dev UART device struct */ static void uart_xec_irq_err_enable(const struct device *dev) { const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_xec_dev_data *dev_data = dev->data; struct uart_regs *regs = dev_cfg->regs; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); regs->IER |= IER_LSR; k_spin_unlock(&dev_data->lock, key); } /** * @brief Disable error interrupt in IER * * @param dev UART device struct * * @return 1 if an IRQ is ready, 0 otherwise */ static void uart_xec_irq_err_disable(const struct device *dev) { const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_xec_dev_data *dev_data = dev->data; struct uart_regs *regs = dev_cfg->regs; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); regs->IER &= ~(IER_LSR); k_spin_unlock(&dev_data->lock, key); } /** * @brief Check if any IRQ is pending * * @param dev UART device struct * * @return 1 if an IRQ is pending, 0 otherwise */ static int uart_xec_irq_is_pending(const struct device *dev) { struct uart_xec_dev_data *dev_data = dev->data; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); int ret = (!(IIRC(dev) & IIR_NIP)) ? 1 : 0; k_spin_unlock(&dev_data->lock, key); return ret; } /** * @brief Update cached contents of IIR * * @param dev UART device struct * * @return Always 1 */ static int uart_xec_irq_update(const struct device *dev) { const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_xec_dev_data *dev_data = dev->data; struct uart_regs *regs = dev_cfg->regs; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); IIRC(dev) = regs->IIR_FCR; k_spin_unlock(&dev_data->lock, key); return 1; } /** * @brief Set the callback function pointer for IRQ. * * @param dev UART device struct * @param cb Callback function pointer. */ static void uart_xec_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb, void *cb_data) { struct uart_xec_dev_data * const dev_data = dev->data; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); dev_data->cb = cb; dev_data->cb_data = cb_data; k_spin_unlock(&dev_data->lock, key); } /** * @brief Interrupt service routine. * * This simply calls the callback function, if one exists. * * @param arg Argument to ISR. */ static void uart_xec_isr(const struct device *dev) { struct uart_xec_dev_data * const dev_data = dev->data; #if defined(CONFIG_PM_DEVICE) && defined(CONFIG_UART_CONSOLE_INPUT_EXPIRED) const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_regs *regs = dev_cfg->regs; int rx_ready = 0; rx_ready = ((regs->LSR & LSR_RXRDY) == LSR_RXRDY) ? 1 : 0; if (rx_ready) { k_timeout_t delay = K_MSEC(CONFIG_UART_CONSOLE_INPUT_EXPIRED_TIMEOUT); uart_xec_pm_policy_state_lock_get(UART_XEC_PM_POLICY_STATE_RX_FLAG); k_work_reschedule(&rx_refresh_timeout_work, delay); } #endif if (dev_data->cb) { dev_data->cb(dev, dev_data->cb_data); } #if defined(CONFIG_PM_DEVICE) && defined(CONFIG_UART_CONSOLE_INPUT_EXPIRED) if (uart_xec_irq_tx_complete(dev)) { uart_xec_pm_policy_state_lock_put(UART_XEC_PM_POLICY_STATE_TX_FLAG); } #endif /* CONFIG_PM */ /* clear ECIA GIRQ R/W1C status bit after UART status cleared */ uart_xec_girq_clr(dev); } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #ifdef CONFIG_UART_XEC_LINE_CTRL /** * @brief Manipulate line control for UART. * * @param dev UART device struct * @param ctrl The line control to be manipulated * @param val Value to set the line control * * @return 0 if successful, failed otherwise */ static int uart_xec_line_ctrl_set(const struct device *dev, uint32_t ctrl, uint32_t val) { const struct uart_xec_device_config * const dev_cfg = dev->config; struct uart_xec_dev_data *dev_data = dev->data; struct uart_regs *regs = dev_cfg->regs; uint32_t mdc, chg; k_spinlock_key_t key; switch (ctrl) { case UART_LINE_CTRL_BAUD_RATE: set_baud_rate(dev, val); return 0; case UART_LINE_CTRL_RTS: case UART_LINE_CTRL_DTR: key = k_spin_lock(&dev_data->lock); mdc = regs->MCR; if (ctrl == UART_LINE_CTRL_RTS) { chg = MCR_RTS; } else { chg = MCR_DTR; } if (val) { mdc |= chg; } else { mdc &= ~(chg); } regs->MCR = mdc; k_spin_unlock(&dev_data->lock, key); return 0; } return -ENOTSUP; } #endif /* CONFIG_UART_XEC_LINE_CTRL */ static DEVICE_API(uart, uart_xec_driver_api) = { .poll_in = uart_xec_poll_in, .poll_out = uart_xec_poll_out, .err_check = uart_xec_err_check, #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE .configure = uart_xec_configure, .config_get = uart_xec_config_get, #endif #ifdef CONFIG_UART_INTERRUPT_DRIVEN .fifo_fill = uart_xec_fifo_fill, .fifo_read = uart_xec_fifo_read, .irq_tx_enable = uart_xec_irq_tx_enable, .irq_tx_disable = uart_xec_irq_tx_disable, .irq_tx_ready = uart_xec_irq_tx_ready, .irq_tx_complete = uart_xec_irq_tx_complete, .irq_rx_enable = uart_xec_irq_rx_enable, .irq_rx_disable = uart_xec_irq_rx_disable, .irq_rx_ready = uart_xec_irq_rx_ready, .irq_err_enable = uart_xec_irq_err_enable, .irq_err_disable = uart_xec_irq_err_disable, .irq_is_pending = uart_xec_irq_is_pending, .irq_update = uart_xec_irq_update, .irq_callback_set = uart_xec_irq_callback_set, #endif #ifdef CONFIG_UART_XEC_LINE_CTRL .line_ctrl_set = uart_xec_line_ctrl_set, #endif }; #define DEV_CONFIG_REG_INIT(n) \ .regs = (struct uart_regs *)(DT_INST_REG_ADDR(n)), #ifdef CONFIG_UART_INTERRUPT_DRIVEN #define DEV_CONFIG_IRQ_FUNC_INIT(n) \ .irq_config_func = irq_config_func##n, #define UART_XEC_IRQ_FUNC_DECLARE(n) \ static void irq_config_func##n(const struct device *dev); #define UART_XEC_IRQ_FUNC_DEFINE(n) \ static void irq_config_func##n(const struct device *dev) \ { \ ARG_UNUSED(dev); \ IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \ uart_xec_isr, DEVICE_DT_INST_GET(n), \ 0); \ irq_enable(DT_INST_IRQN(n)); \ uart_xec_girq_en(DT_INST_PROP_BY_IDX(n, girqs, 0), \ DT_INST_PROP_BY_IDX(n, girqs, 1)); \ } #else /* !CONFIG_UART_INTERRUPT_DRIVEN */ #define DEV_CONFIG_IRQ_FUNC_INIT(n) #define UART_XEC_IRQ_FUNC_DECLARE(n) #define UART_XEC_IRQ_FUNC_DEFINE(n) #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #define DEV_DATA_FLOW_CTRL(n) \ DT_INST_PROP_OR(n, hw_flow_control, UART_CFG_FLOW_CTRL_NONE) /* To enable wakeup on the UART, the DTS needs to have two entries defined * in the corresponding UART node in the DTS specifying it as a wake source * and specifying the UART_RX GPIO; example as below * * wakerx-gpios = <&gpio_140_176 25 GPIO_ACTIVE_HIGH>; * wakeup-source; */ #ifdef CONFIG_PM_DEVICE #define XEC_UART_PM_WAKEUP(n) \ .wakeup_source = (uint8_t)DT_INST_PROP_OR(n, wakeup_source, 0), \ .wakerx_gpio = GPIO_DT_SPEC_INST_GET_OR(n, wakerx_gpios, {0}), #else #define XEC_UART_PM_WAKEUP(index) /* Not used */ #endif #define UART_XEC_DEVICE_INIT(n) \ \ PINCTRL_DT_INST_DEFINE(n); \ \ UART_XEC_IRQ_FUNC_DECLARE(n); \ \ static const struct uart_xec_device_config uart_xec_dev_cfg_##n = { \ DEV_CONFIG_REG_INIT(n) \ .sys_clk_freq = DT_INST_PROP(n, clock_frequency), \ .girq_id = DT_INST_PROP_BY_IDX(n, girqs, 0), \ .girq_pos = DT_INST_PROP_BY_IDX(n, girqs, 1), \ .pcr_idx = DT_INST_PROP_BY_IDX(n, pcrs, 0), \ .pcr_bitpos = DT_INST_PROP_BY_IDX(n, pcrs, 1), \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \ XEC_UART_PM_WAKEUP(n) \ DEV_CONFIG_IRQ_FUNC_INIT(n) \ }; \ static struct uart_xec_dev_data uart_xec_dev_data_##n = { \ .uart_config.baudrate = DT_INST_PROP_OR(n, current_speed, 0), \ .uart_config.parity = UART_CFG_PARITY_NONE, \ .uart_config.stop_bits = UART_CFG_STOP_BITS_1, \ .uart_config.data_bits = UART_CFG_DATA_BITS_8, \ .uart_config.flow_ctrl = DEV_DATA_FLOW_CTRL(n), \ }; \ PM_DEVICE_DT_INST_DEFINE(n, uart_xec_pm_action); \ DEVICE_DT_INST_DEFINE(n, uart_xec_init, \ PM_DEVICE_DT_INST_GET(n), \ &uart_xec_dev_data_##n, \ &uart_xec_dev_cfg_##n, \ PRE_KERNEL_1, \ CONFIG_SERIAL_INIT_PRIORITY, \ &uart_xec_driver_api); \ UART_XEC_IRQ_FUNC_DEFINE(n) DT_INST_FOREACH_STATUS_OKAY(UART_XEC_DEVICE_INIT)