/* * Copyright (c) 2019 Mohamed ElShahawi (extremegtx@hotmail.com) * Copyright (c) 2023 Espressif Systems (Shanghai) Co., Ltd. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT espressif_esp32_uart /* Include esp-idf headers first to avoid redefining BIT() macro */ /* TODO: include w/o prefix */ #ifdef CONFIG_SOC_SERIES_ESP32 #include #include #include #elif defined(CONFIG_SOC_SERIES_ESP32S2) #include #include #include #elif defined(CONFIG_SOC_SERIES_ESP32S3) #include #include #include #elif defined(CONFIG_SOC_SERIES_ESP32C2) #include #include #include #elif defined(CONFIG_SOC_SERIES_ESP32C3) #include #include #include #elif defined(CONFIG_SOC_SERIES_ESP32C6) #include #include #include #endif #ifdef CONFIG_UART_ASYNC_API #include #include #include #endif #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_SOC_SERIES_ESP32C2) || \ defined(CONFIG_SOC_SERIES_ESP32C3) || \ defined(CONFIG_SOC_SERIES_ESP32C6) #include #else #include #endif #include #include #include #include #include LOG_MODULE_REGISTER(uart_esp32, CONFIG_UART_LOG_LEVEL); #if defined(CONFIG_SOC_SERIES_ESP32C2) || \ defined(CONFIG_SOC_SERIES_ESP32C3) || \ defined(CONFIG_SOC_SERIES_ESP32C6) #define ISR_HANDLER isr_handler_t #else #define ISR_HANDLER intr_handler_t #endif struct uart_esp32_config { const struct device *clock_dev; const struct pinctrl_dev_config *pcfg; const clock_control_subsys_t clock_subsys; int irq_source; int irq_priority; int irq_flags; bool tx_invert; bool rx_invert; #if CONFIG_UART_ASYNC_API const struct device *dma_dev; uint8_t tx_dma_channel; uint8_t rx_dma_channel; #endif }; #if CONFIG_UART_ASYNC_API struct uart_esp32_async_data { struct k_work_delayable tx_timeout_work; const uint8_t *tx_buf; size_t tx_len; struct k_work_delayable rx_timeout_work; uint8_t *rx_buf; uint8_t *rx_next_buf; size_t rx_len; size_t rx_next_len; size_t rx_timeout; volatile size_t rx_counter; size_t rx_offset; uart_callback_t cb; void *user_data; }; #endif /* driver data */ struct uart_esp32_data { struct uart_config uart_config; uart_hal_context_t hal; #ifdef CONFIG_UART_INTERRUPT_DRIVEN uart_irq_callback_user_data_t irq_cb; void *irq_cb_data; #endif #if CONFIG_UART_ASYNC_API struct uart_esp32_async_data async; uhci_dev_t *uhci_dev; const struct device *uart_dev; #endif }; #define UART_FIFO_LIMIT (UART_LL_FIFO_DEF_LEN) #define UART_TX_FIFO_THRESH (CONFIG_UART_ESP32_TX_FIFO_THRESH) #define UART_RX_FIFO_THRESH (CONFIG_UART_ESP32_RX_FIFO_THRESH) #if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API static void uart_esp32_isr(void *arg); #endif static int uart_esp32_poll_in(const struct device *dev, unsigned char *p_char) { struct uart_esp32_data *data = dev->data; int inout_rd_len = 1; if (uart_hal_get_rxfifo_len(&data->hal) == 0) { return -1; } uart_hal_read_rxfifo(&data->hal, p_char, &inout_rd_len); return 0; } static void uart_esp32_poll_out(const struct device *dev, unsigned char c) { struct uart_esp32_data *data = dev->data; uint32_t written; /* Wait for space in FIFO */ while (uart_hal_get_txfifo_len(&data->hal) == 0) { ; /* Wait */ } /* Send a character */ uart_hal_write_txfifo(&data->hal, &c, 1, &written); } static int uart_esp32_err_check(const struct device *dev) { struct uart_esp32_data *data = dev->data; uint32_t mask = uart_hal_get_intsts_mask(&data->hal); uint32_t err = mask & (UART_INTR_PARITY_ERR | UART_INTR_FRAM_ERR); return err; } #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE static uint32_t uart_esp32_get_standard_baud(uint32_t calc_baud) { const uint32_t standard_bauds[] = {9600, 14400, 19200, 38400, 57600, 74880, 115200, 230400, 460800, 921600}; int num_bauds = ARRAY_SIZE(standard_bauds); uint32_t baud = calc_baud; /* Find the standard baudrate within 0.1% range. If no close * value is found, input is returned. */ for (int i = 0; i < num_bauds; i++) { float range = (float)abs(calc_baud - standard_bauds[i]) / standard_bauds[i]; if (range < 0.001f) { baud = standard_bauds[i]; break; } } return baud; } static int uart_esp32_config_get(const struct device *dev, struct uart_config *cfg) { struct uart_esp32_data *data = dev->data; uart_parity_t parity; uart_stop_bits_t stop_bit; uart_word_length_t data_bit; uart_hw_flowcontrol_t hw_flow; uart_sclk_t src_clk; uint32_t sclk_freq; uint32_t calc_baud; uart_hal_get_sclk(&data->hal, &src_clk); esp_clk_tree_src_get_freq_hz((soc_module_clk_t)src_clk, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &sclk_freq); uart_hal_get_baudrate(&data->hal, &calc_baud, sclk_freq); cfg->baudrate = uart_esp32_get_standard_baud(calc_baud); uart_hal_get_parity(&data->hal, &parity); switch (parity) { case UART_PARITY_DISABLE: cfg->parity = UART_CFG_PARITY_NONE; break; case UART_PARITY_EVEN: cfg->parity = UART_CFG_PARITY_EVEN; break; case UART_PARITY_ODD: cfg->parity = UART_CFG_PARITY_ODD; break; default: return -ENOTSUP; } uart_hal_get_stop_bits(&data->hal, &stop_bit); switch (stop_bit) { case UART_STOP_BITS_1: cfg->stop_bits = UART_CFG_STOP_BITS_1; break; case UART_STOP_BITS_1_5: cfg->stop_bits = UART_CFG_STOP_BITS_1_5; break; case UART_STOP_BITS_2: cfg->stop_bits = UART_CFG_STOP_BITS_2; break; default: return -ENOTSUP; } uart_hal_get_data_bit_num(&data->hal, &data_bit); switch (data_bit) { case UART_DATA_5_BITS: cfg->data_bits = UART_CFG_DATA_BITS_5; break; case UART_DATA_6_BITS: cfg->data_bits = UART_CFG_DATA_BITS_6; break; case UART_DATA_7_BITS: cfg->data_bits = UART_CFG_DATA_BITS_7; break; case UART_DATA_8_BITS: cfg->data_bits = UART_CFG_DATA_BITS_8; break; default: return -ENOTSUP; } uart_hal_get_hw_flow_ctrl(&data->hal, &hw_flow); switch (hw_flow) { case UART_HW_FLOWCTRL_DISABLE: cfg->flow_ctrl = UART_CFG_FLOW_CTRL_NONE; break; case UART_HW_FLOWCTRL_CTS_RTS: cfg->flow_ctrl = UART_CFG_FLOW_CTRL_RTS_CTS; break; default: return -ENOTSUP; } if (uart_hal_is_mode_rs485_half_duplex(&data->hal)) { cfg->flow_ctrl = UART_CFG_FLOW_CTRL_RS485; } return 0; } #endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ static int uart_esp32_configure(const struct device *dev, const struct uart_config *cfg) { const struct uart_esp32_config *config = dev->config; struct uart_esp32_data *data = dev->data; uart_sclk_t src_clk; uint32_t sclk_freq; int ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); if (ret < 0) { return ret; } if (!device_is_ready(config->clock_dev)) { return -ENODEV; } clock_control_on(config->clock_dev, config->clock_subsys); uart_hal_set_sclk(&data->hal, UART_SCLK_DEFAULT); uart_hal_set_rxfifo_full_thr(&data->hal, UART_RX_FIFO_THRESH); uart_hal_set_txfifo_empty_thr(&data->hal, UART_TX_FIFO_THRESH); uart_hal_rxfifo_rst(&data->hal); uart_hal_txfifo_rst(&data->hal); switch (cfg->parity) { case UART_CFG_PARITY_NONE: uart_hal_set_parity(&data->hal, UART_PARITY_DISABLE); break; case UART_CFG_PARITY_EVEN: uart_hal_set_parity(&data->hal, UART_PARITY_EVEN); break; case UART_CFG_PARITY_ODD: uart_hal_set_parity(&data->hal, UART_PARITY_ODD); break; default: return -ENOTSUP; } switch (cfg->stop_bits) { case UART_CFG_STOP_BITS_1: uart_hal_set_stop_bits(&data->hal, UART_STOP_BITS_1); break; case UART_CFG_STOP_BITS_1_5: uart_hal_set_stop_bits(&data->hal, UART_STOP_BITS_1_5); break; case UART_CFG_STOP_BITS_2: uart_hal_set_stop_bits(&data->hal, UART_STOP_BITS_2); break; default: return -ENOTSUP; } switch (cfg->data_bits) { case UART_CFG_DATA_BITS_5: uart_hal_set_data_bit_num(&data->hal, UART_DATA_5_BITS); break; case UART_CFG_DATA_BITS_6: uart_hal_set_data_bit_num(&data->hal, UART_DATA_6_BITS); break; case UART_CFG_DATA_BITS_7: uart_hal_set_data_bit_num(&data->hal, UART_DATA_7_BITS); break; case UART_CFG_DATA_BITS_8: uart_hal_set_data_bit_num(&data->hal, UART_DATA_8_BITS); break; default: return -ENOTSUP; } uart_hal_set_mode(&data->hal, UART_MODE_UART); switch (cfg->flow_ctrl) { case UART_CFG_FLOW_CTRL_NONE: uart_hal_set_hw_flow_ctrl(&data->hal, UART_HW_FLOWCTRL_DISABLE, 0); break; case UART_CFG_FLOW_CTRL_RTS_CTS: uart_hal_set_hw_flow_ctrl(&data->hal, UART_HW_FLOWCTRL_CTS_RTS, 10); break; case UART_CFG_FLOW_CTRL_RS485: uart_hal_set_mode(&data->hal, UART_MODE_RS485_HALF_DUPLEX); break; default: return -ENOTSUP; } uart_hal_get_sclk(&data->hal, &src_clk); esp_clk_tree_src_get_freq_hz((soc_module_clk_t)src_clk, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &sclk_freq); uart_hal_set_baudrate(&data->hal, cfg->baudrate, sclk_freq); uart_hal_set_rx_timeout(&data->hal, 0x16); if (config->tx_invert) { uart_hal_inverse_signal(&data->hal, UART_SIGNAL_TXD_INV); } if (config->rx_invert) { uart_hal_inverse_signal(&data->hal, UART_SIGNAL_RXD_INV); } return 0; } #ifdef CONFIG_UART_INTERRUPT_DRIVEN static int uart_esp32_fifo_fill(const struct device *dev, const uint8_t *tx_data, int len) { struct uart_esp32_data *data = dev->data; uint32_t written = 0; if (len < 0) { return 0; } uart_hal_write_txfifo(&data->hal, tx_data, len, &written); return written; } static int uart_esp32_fifo_read(const struct device *dev, uint8_t *rx_data, const int len) { struct uart_esp32_data *data = dev->data; const int num_rx = uart_hal_get_rxfifo_len(&data->hal); int read = MIN(len, num_rx); if (!read) { return 0; } uart_hal_read_rxfifo(&data->hal, rx_data, &read); return read; } static void uart_esp32_irq_tx_enable(const struct device *dev) { struct uart_esp32_data *data = dev->data; uart_hal_clr_intsts_mask(&data->hal, UART_INTR_TXFIFO_EMPTY); uart_hal_ena_intr_mask(&data->hal, UART_INTR_TXFIFO_EMPTY); } static void uart_esp32_irq_tx_disable(const struct device *dev) { struct uart_esp32_data *data = dev->data; uart_hal_disable_intr_mask(&data->hal, UART_INTR_TXFIFO_EMPTY); } static int uart_esp32_irq_tx_ready(const struct device *dev) { struct uart_esp32_data *data = dev->data; return (uart_hal_get_txfifo_len(&data->hal) > 0 && uart_hal_get_intr_ena_status(&data->hal) & UART_INTR_TXFIFO_EMPTY); } static void uart_esp32_irq_rx_disable(const struct device *dev) { struct uart_esp32_data *data = dev->data; uart_hal_disable_intr_mask(&data->hal, UART_INTR_RXFIFO_FULL); uart_hal_disable_intr_mask(&data->hal, UART_INTR_RXFIFO_TOUT); } static int uart_esp32_irq_tx_complete(const struct device *dev) { struct uart_esp32_data *data = dev->data; return uart_hal_is_tx_idle(&data->hal); } static int uart_esp32_irq_rx_ready(const struct device *dev) { struct uart_esp32_data *data = dev->data; return (uart_hal_get_rxfifo_len(&data->hal) > 0); } static void uart_esp32_irq_err_enable(const struct device *dev) { struct uart_esp32_data *data = dev->data; /* enable framing, parity */ uart_hal_ena_intr_mask(&data->hal, UART_INTR_FRAM_ERR); uart_hal_ena_intr_mask(&data->hal, UART_INTR_PARITY_ERR); } static void uart_esp32_irq_err_disable(const struct device *dev) { struct uart_esp32_data *data = dev->data; uart_hal_disable_intr_mask(&data->hal, UART_INTR_FRAM_ERR); uart_hal_disable_intr_mask(&data->hal, UART_INTR_PARITY_ERR); } static int uart_esp32_irq_is_pending(const struct device *dev) { return uart_esp32_irq_rx_ready(dev) || uart_esp32_irq_tx_ready(dev); } static int uart_esp32_irq_update(const struct device *dev) { struct uart_esp32_data *data = dev->data; uart_hal_clr_intsts_mask(&data->hal, UART_INTR_RXFIFO_FULL); uart_hal_clr_intsts_mask(&data->hal, UART_INTR_RXFIFO_TOUT); uart_hal_clr_intsts_mask(&data->hal, UART_INTR_TXFIFO_EMPTY); return 1; } static void uart_esp32_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb, void *cb_data) { struct uart_esp32_data *data = dev->data; data->irq_cb = cb; data->irq_cb_data = cb_data; #if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS) data->async.cb = NULL; data->async.user_data = NULL; #endif } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #ifdef CONFIG_UART_ASYNC_API static inline void uart_esp32_async_timer_start(struct k_work_delayable *work, size_t timeout) { if ((timeout != SYS_FOREVER_US) && (timeout != 0)) { LOG_DBG("Async timer started for %d us", timeout); k_work_reschedule(work, K_USEC(timeout)); } } #endif #if CONFIG_UART_ASYNC_API || CONFIG_UART_INTERRUPT_DRIVEN static void uart_esp32_irq_rx_enable(const struct device *dev) { struct uart_esp32_data *data = dev->data; uart_hal_clr_intsts_mask(&data->hal, UART_INTR_RXFIFO_FULL); uart_hal_clr_intsts_mask(&data->hal, UART_INTR_RXFIFO_TOUT); uart_hal_ena_intr_mask(&data->hal, UART_INTR_RXFIFO_FULL); uart_hal_ena_intr_mask(&data->hal, UART_INTR_RXFIFO_TOUT); } static void uart_esp32_isr(void *arg) { const struct device *dev = (const struct device *)arg; struct uart_esp32_data *data = dev->data; uint32_t uart_intr_status = uart_hal_get_intsts_mask(&data->hal); if (uart_intr_status == 0) { return; } uart_hal_clr_intsts_mask(&data->hal, uart_intr_status); #if CONFIG_UART_INTERRUPT_DRIVEN /* Verify if the callback has been registered */ if (data->irq_cb) { data->irq_cb(dev, data->irq_cb_data); } #endif #if CONFIG_UART_ASYNC_API if (uart_intr_status & UART_INTR_RXFIFO_FULL) { data->async.rx_counter++; uart_esp32_async_timer_start(&data->async.rx_timeout_work, data->async.rx_timeout); } #endif } #endif #if CONFIG_UART_ASYNC_API static void IRAM_ATTR uart_esp32_dma_rx_done(const struct device *dma_dev, void *user_data, uint32_t channel, int status) { const struct device *uart_dev = user_data; const struct uart_esp32_config *config = uart_dev->config; struct uart_esp32_data *data = uart_dev->data; struct uart_event evt = {0}; unsigned int key = irq_lock(); /* If the receive buffer is not complete we reload the DMA at current buffer position and * let the timeout callback handle the notifications */ if (data->async.rx_counter != data->async.rx_len) { dma_reload(config->dma_dev, config->rx_dma_channel, 0, (uint32_t)data->async.rx_buf + data->async.rx_counter, data->async.rx_len - data->async.rx_counter); dma_start(config->dma_dev, config->rx_dma_channel); data->uhci_dev->pkt_thres.thrs = data->async.rx_len - data->async.rx_counter; irq_unlock(key); return; } /*Notify RX_RDY*/ evt.type = UART_RX_RDY; evt.data.rx.buf = data->async.rx_buf; evt.data.rx.len = data->async.rx_counter - data->async.rx_offset; evt.data.rx.offset = data->async.rx_offset; if (data->async.cb && evt.data.rx.len) { data->async.cb(data->uart_dev, &evt, data->async.user_data); } data->async.rx_offset = 0; data->async.rx_counter = 0; /*Release current buffer*/ evt.type = UART_RX_BUF_RELEASED; evt.data.rx_buf.buf = data->async.rx_buf; if (data->async.cb) { data->async.cb(uart_dev, &evt, data->async.user_data); } /*Load next buffer and request another*/ data->async.rx_buf = data->async.rx_next_buf; data->async.rx_len = data->async.rx_next_len; data->async.rx_next_buf = NULL; data->async.rx_next_len = 0U; evt.type = UART_RX_BUF_REQUEST; if (data->async.cb) { data->async.cb(uart_dev, &evt, data->async.user_data); } /*Notify RX_DISABLED when there is no buffer*/ if (!data->async.rx_buf) { evt.type = UART_RX_DISABLED; if (data->async.cb) { data->async.cb(uart_dev, &evt, data->async.user_data); } } else { /*Reload DMA with new buffer*/ dma_reload(config->dma_dev, config->rx_dma_channel, 0, (uint32_t)data->async.rx_buf, data->async.rx_len); dma_start(config->dma_dev, config->rx_dma_channel); data->uhci_dev->pkt_thres.thrs = data->async.rx_len; } irq_unlock(key); } static void IRAM_ATTR uart_esp32_dma_tx_done(const struct device *dma_dev, void *user_data, uint32_t channel, int status) { const struct device *uart_dev = user_data; struct uart_esp32_data *data = uart_dev->data; struct uart_event evt = {0}; unsigned int key = irq_lock(); k_work_cancel_delayable(&data->async.tx_timeout_work); evt.type = UART_TX_DONE; evt.data.tx.buf = data->async.tx_buf; evt.data.tx.len = data->async.tx_len; if (data->async.cb) { data->async.cb(uart_dev, &evt, data->async.user_data); } /* Reset TX Buffer */ data->async.tx_buf = NULL; data->async.tx_len = 0U; irq_unlock(key); } static int uart_esp32_async_tx_abort(const struct device *dev) { const struct uart_esp32_config *config = dev->config; struct uart_esp32_data *data = dev->data; struct uart_event evt = {0}; int err = 0; unsigned int key = irq_lock(); k_work_cancel_delayable(&data->async.tx_timeout_work); err = dma_stop(config->dma_dev, config->tx_dma_channel); if (err) { LOG_ERR("Error stopping Tx DMA (%d)", err); goto unlock; } evt.type = UART_TX_ABORTED; evt.data.tx.buf = data->async.tx_buf; evt.data.tx.len = data->async.tx_len; if (data->async.cb) { data->async.cb(dev, &evt, data->async.user_data); } unlock: irq_unlock(key); return err; } static void uart_esp32_async_tx_timeout(struct k_work *work) { struct k_work_delayable *dwork = k_work_delayable_from_work(work); struct uart_esp32_async_data *async = CONTAINER_OF(dwork, struct uart_esp32_async_data, tx_timeout_work); struct uart_esp32_data *data = CONTAINER_OF(async, struct uart_esp32_data, async); uart_esp32_async_tx_abort(data->uart_dev); } static void uart_esp32_async_rx_timeout(struct k_work *work) { struct k_work_delayable *dwork = k_work_delayable_from_work(work); struct uart_esp32_async_data *async = CONTAINER_OF(dwork, struct uart_esp32_async_data, rx_timeout_work); struct uart_esp32_data *data = CONTAINER_OF(async, struct uart_esp32_data, async); struct uart_event evt = {0}; unsigned int key = irq_lock(); evt.type = UART_RX_RDY; evt.data.rx.buf = data->async.rx_buf; evt.data.rx.len = data->async.rx_counter - data->async.rx_offset; evt.data.rx.offset = data->async.rx_offset; if (data->async.cb && evt.data.rx.len) { data->async.cb(data->uart_dev, &evt, data->async.user_data); } data->async.rx_offset = data->async.rx_counter; k_work_cancel_delayable(&data->async.rx_timeout_work); irq_unlock(key); } static int uart_esp32_async_callback_set(const struct device *dev, uart_callback_t callback, void *user_data) { struct uart_esp32_data *data = dev->data; if (!callback) { return -EINVAL; } data->async.cb = callback; data->async.user_data = user_data; #if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS) data->irq_cb = NULL; data->irq_cb_data = NULL; #endif return 0; } static int uart_esp32_async_tx(const struct device *dev, const uint8_t *buf, size_t len, int32_t timeout) { const struct uart_esp32_config *config = dev->config; struct uart_esp32_data *data = dev->data; struct dma_config dma_cfg = {0}; struct dma_block_config dma_blk = {0}; struct dma_status dma_status = {0}; int err = 0; unsigned int key = irq_lock(); if (config->tx_dma_channel == 0xFF) { LOG_ERR("Tx DMA channel is not configured"); err = -ENOTSUP; goto unlock; } err = dma_get_status(config->dma_dev, config->tx_dma_channel, &dma_status); if (err) { LOG_ERR("Unable to get Tx status (%d)", err); goto unlock; } if (dma_status.busy) { LOG_ERR("Tx DMA Channel is busy"); err = -EBUSY; goto unlock; } data->async.tx_buf = buf; data->async.tx_len = len; dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL; dma_cfg.dma_callback = uart_esp32_dma_tx_done; dma_cfg.user_data = (void *)dev; dma_cfg.dma_slot = ESP_GDMA_TRIG_PERIPH_UHCI0; dma_cfg.block_count = 1; dma_cfg.head_block = &dma_blk; dma_blk.block_size = len; dma_blk.source_address = (uint32_t)buf; err = dma_config(config->dma_dev, config->tx_dma_channel, &dma_cfg); if (err) { LOG_ERR("Error configuring Tx DMA (%d)", err); goto unlock; } uart_esp32_async_timer_start(&data->async.tx_timeout_work, timeout); err = dma_start(config->dma_dev, config->tx_dma_channel); if (err) { LOG_ERR("Error starting Tx DMA (%d)", err); goto unlock; } unlock: irq_unlock(key); return err; } static int uart_esp32_async_rx_enable(const struct device *dev, uint8_t *buf, size_t len, int32_t timeout) { const struct uart_esp32_config *config = dev->config; struct uart_esp32_data *data = dev->data; struct dma_config dma_cfg = {0}; struct dma_block_config dma_blk = {0}; struct dma_status dma_status = {0}; int err = 0; struct uart_event evt = {0}; if (config->rx_dma_channel == 0xFF) { LOG_ERR("Rx DMA channel is not configured"); return -ENOTSUP; } err = dma_get_status(config->dma_dev, config->rx_dma_channel, &dma_status); if (err) { LOG_ERR("Unable to get Rx status (%d)", err); return err; } if (dma_status.busy) { LOG_ERR("Rx DMA Channel is busy"); return -EBUSY; } unsigned int key = irq_lock(); data->async.rx_buf = buf; data->async.rx_len = len; data->async.rx_timeout = timeout; dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY; dma_cfg.dma_callback = uart_esp32_dma_rx_done; dma_cfg.user_data = (void *)dev; dma_cfg.dma_slot = ESP_GDMA_TRIG_PERIPH_UHCI0; dma_cfg.block_count = 1; dma_cfg.head_block = &dma_blk; dma_blk.block_size = len; dma_blk.dest_address = (uint32_t)data->async.rx_buf; err = dma_config(config->dma_dev, config->rx_dma_channel, &dma_cfg); if (err) { LOG_ERR("Error configuring Rx DMA (%d)", err); goto unlock; } /* * Enable interrupt on first receive byte so we can start async timer */ uart_hal_set_rxfifo_full_thr(&data->hal, 1); uart_esp32_irq_rx_enable(dev); err = dma_start(config->dma_dev, config->rx_dma_channel); if (err) { LOG_ERR("Error starting Rx DMA (%d)", err); goto unlock; } data->uhci_dev->pkt_thres.thrs = len; /** * Request next buffer */ evt.type = UART_RX_BUF_REQUEST; if (data->async.cb) { data->async.cb(dev, &evt, data->async.user_data); } unlock: irq_unlock(key); return err; } static int uart_esp32_async_rx_buf_rsp(const struct device *dev, uint8_t *buf, size_t len) { struct uart_esp32_data *data = dev->data; data->async.rx_next_buf = buf; data->async.rx_next_len = len; return 0; } static int uart_esp32_async_rx_disable(const struct device *dev) { const struct uart_esp32_config *config = dev->config; struct uart_esp32_data *data = dev->data; unsigned int key = irq_lock(); int err = 0; struct uart_event evt = {0}; k_work_cancel_delayable(&data->async.rx_timeout_work); if (!data->async.rx_len) { err = -EINVAL; goto unlock; } err = dma_stop(config->dma_dev, config->rx_dma_channel); if (err) { LOG_ERR("Error stopping Rx DMA (%d)", err); goto unlock; } /*If any bytes have been received notify RX_RDY*/ evt.type = UART_RX_RDY; evt.data.rx.buf = data->async.rx_buf; evt.data.rx.len = data->async.rx_counter - data->async.rx_offset; evt.data.rx.offset = data->async.rx_offset; if (data->async.cb && evt.data.rx.len) { data->async.cb(data->uart_dev, &evt, data->async.user_data); } data->async.rx_offset = 0; data->async.rx_counter = 0; /* Release current buffer*/ evt.type = UART_RX_BUF_RELEASED; evt.data.rx_buf.buf = data->async.rx_buf; if (data->async.cb) { data->async.cb(dev, &evt, data->async.user_data); } data->async.rx_len = 0; data->async.rx_buf = NULL; /*Release next buffer*/ if (data->async.rx_next_len) { evt.type = UART_RX_BUF_RELEASED; evt.data.rx_buf.buf = data->async.rx_next_buf; if (data->async.cb) { data->async.cb(dev, &evt, data->async.user_data); } data->async.rx_next_len = 0; data->async.rx_next_buf = NULL; } /*Notify UART_RX_DISABLED*/ evt.type = UART_RX_DISABLED; if (data->async.cb) { data->async.cb(dev, &evt, data->async.user_data); } unlock: irq_unlock(key); return err; } #endif /* CONFIG_UART_ASYNC_API */ static int uart_esp32_init(const struct device *dev) { struct uart_esp32_data *data = dev->data; int ret = uart_esp32_configure(dev, &data->uart_config); if (ret < 0) { LOG_ERR("Error configuring UART (%d)", ret); return ret; } #if CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API const struct uart_esp32_config *config = dev->config; ret = esp_intr_alloc(config->irq_source, ESP_PRIO_TO_FLAGS(config->irq_priority) | ESP_INT_FLAGS_CHECK(config->irq_flags), (ISR_HANDLER)uart_esp32_isr, (void *)dev, NULL); if (ret < 0) { LOG_ERR("Error allocating UART interrupt (%d)", ret); return ret; } #endif #if CONFIG_UART_ASYNC_API if (config->dma_dev) { if (!device_is_ready(config->dma_dev)) { LOG_ERR("DMA device is not ready"); return -ENODEV; } clock_control_on(config->clock_dev, (clock_control_subsys_t)ESP32_UHCI0_MODULE); uhci_ll_init(data->uhci_dev); uhci_ll_set_eof_mode(data->uhci_dev, UHCI_RX_IDLE_EOF | UHCI_RX_LEN_EOF); uhci_ll_attach_uart_port(data->uhci_dev, uart_hal_get_port_num(&data->hal)); data->uart_dev = dev; k_work_init_delayable(&data->async.tx_timeout_work, uart_esp32_async_tx_timeout); k_work_init_delayable(&data->async.rx_timeout_work, uart_esp32_async_rx_timeout); } #endif return 0; } static DEVICE_API(uart, uart_esp32_api) = { .poll_in = uart_esp32_poll_in, .poll_out = uart_esp32_poll_out, .err_check = uart_esp32_err_check, #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE .configure = uart_esp32_configure, .config_get = uart_esp32_config_get, #endif #ifdef CONFIG_UART_INTERRUPT_DRIVEN .fifo_fill = uart_esp32_fifo_fill, .fifo_read = uart_esp32_fifo_read, .irq_tx_enable = uart_esp32_irq_tx_enable, .irq_tx_disable = uart_esp32_irq_tx_disable, .irq_tx_ready = uart_esp32_irq_tx_ready, .irq_rx_enable = uart_esp32_irq_rx_enable, .irq_rx_disable = uart_esp32_irq_rx_disable, .irq_tx_complete = uart_esp32_irq_tx_complete, .irq_rx_ready = uart_esp32_irq_rx_ready, .irq_err_enable = uart_esp32_irq_err_enable, .irq_err_disable = uart_esp32_irq_err_disable, .irq_is_pending = uart_esp32_irq_is_pending, .irq_update = uart_esp32_irq_update, .irq_callback_set = uart_esp32_irq_callback_set, #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #if CONFIG_UART_ASYNC_API .callback_set = uart_esp32_async_callback_set, .tx = uart_esp32_async_tx, .tx_abort = uart_esp32_async_tx_abort, .rx_enable = uart_esp32_async_rx_enable, .rx_buf_rsp = uart_esp32_async_rx_buf_rsp, .rx_disable = uart_esp32_async_rx_disable, #endif /*CONFIG_UART_ASYNC_API*/ }; #if CONFIG_UART_ASYNC_API #define ESP_UART_DMA_INIT(n) \ .dma_dev = ESP32_DT_INST_DMA_CTLR(n, tx), \ .tx_dma_channel = ESP32_DT_INST_DMA_CELL(n, tx, channel), \ .rx_dma_channel = ESP32_DT_INST_DMA_CELL(n, rx, channel) #define ESP_UART_UHCI_INIT(n) \ .uhci_dev = COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), (&UHCI0), (NULL)) #else #define ESP_UART_DMA_INIT(n) #define ESP_UART_UHCI_INIT(n) #endif #define ESP32_UART_INIT(idx) \ \ PINCTRL_DT_INST_DEFINE(idx); \ \ static const DRAM_ATTR struct uart_esp32_config uart_esp32_cfg_port_##idx = { \ .clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)), \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \ .clock_subsys = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(idx, offset), \ .irq_source = DT_INST_IRQ_BY_IDX(idx, 0, irq), \ .irq_priority = DT_INST_IRQ_BY_IDX(idx, 0, priority), \ .irq_flags = DT_INST_IRQ_BY_IDX(idx, 0, flags), \ .tx_invert = DT_INST_PROP_OR(idx, tx_invert, false), \ .rx_invert = DT_INST_PROP_OR(idx, rx_invert, false), \ ESP_UART_DMA_INIT(idx)}; \ \ static struct uart_esp32_data uart_esp32_data_##idx = { \ .uart_config = {.baudrate = DT_INST_PROP(idx, current_speed), \ .parity = DT_INST_ENUM_IDX_OR(idx, parity, UART_CFG_PARITY_NONE), \ .stop_bits = DT_INST_ENUM_IDX_OR(idx, stop_bits, \ UART_CFG_STOP_BITS_1), \ .data_bits = DT_INST_ENUM_IDX_OR(idx, data_bits, \ UART_CFG_DATA_BITS_8), \ .flow_ctrl = MAX(COND_CODE_1(DT_INST_PROP(idx, hw_rs485_hd_mode), \ (UART_CFG_FLOW_CTRL_RS485), \ (UART_CFG_FLOW_CTRL_NONE)), \ COND_CODE_1(DT_INST_PROP(idx, hw_flow_control), \ (UART_CFG_FLOW_CTRL_RTS_CTS), \ (UART_CFG_FLOW_CTRL_NONE)))}, \ .hal = \ { \ .dev = (uart_dev_t *)DT_INST_REG_ADDR(idx), \ }, \ ESP_UART_UHCI_INIT(idx)}; \ \ DEVICE_DT_INST_DEFINE(idx, uart_esp32_init, NULL, &uart_esp32_data_##idx, \ &uart_esp32_cfg_port_##idx, PRE_KERNEL_1, \ CONFIG_SERIAL_INIT_PRIORITY, &uart_esp32_api); DT_INST_FOREACH_STATUS_OKAY(ESP32_UART_INIT);