/* * Copyright (c) 2021, Linaro Limited. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT arm_cmsdk_uart /** * @brief Driver for UART on ARM CMSDK APB UART. * * UART has two wires for RX and TX, and does not provide CTS or RTS. */ #include #include #include #include #include #include #include #include /* UART registers struct */ struct uart_cmsdk_apb { /* offset: 0x000 (r/w) data register */ volatile uint32_t data; /* offset: 0x004 (r/w) status register */ volatile uint32_t state; /* offset: 0x008 (r/w) control register */ volatile uint32_t ctrl; union { /* offset: 0x00c (r/ ) interrupt status register */ volatile uint32_t intstatus; /* offset: 0x00c ( /w) interrupt clear register */ volatile uint32_t intclear; }; /* offset: 0x010 (r/w) baudrate divider register */ volatile uint32_t bauddiv; }; /* UART Bits */ /* CTRL Register */ #define UART_TX_EN (1 << 0) #define UART_RX_EN (1 << 1) #define UART_TX_IN_EN (1 << 2) #define UART_RX_IN_EN (1 << 3) #define UART_TX_OV_EN (1 << 4) #define UART_RX_OV_EN (1 << 5) #define UART_HS_TM_TX (1 << 6) /* STATE Register */ #define UART_TX_BF (1 << 0) #define UART_RX_BF (1 << 1) #define UART_TX_B_OV (1 << 2) #define UART_RX_B_OV (1 << 3) /* INTSTATUS Register */ #define UART_TX_IN (1 << 0) #define UART_RX_IN (1 << 1) #define UART_TX_OV_IN (1 << 2) #define UART_RX_OV_IN (1 << 3) struct uart_cmsdk_apb_config { volatile struct uart_cmsdk_apb *uart; uint32_t sys_clk_freq; #ifdef CONFIG_UART_INTERRUPT_DRIVEN uart_irq_config_func_t irq_config_func; #endif }; /* Device data structure */ struct uart_cmsdk_apb_dev_data { uint32_t baud_rate; /* Baud rate */ #ifdef CONFIG_UART_INTERRUPT_DRIVEN uart_irq_callback_user_data_t irq_cb; void *irq_cb_data; #endif /* UART Clock control in Active State */ const struct arm_clock_control_t uart_cc_as; /* UART Clock control in Sleep State */ const struct arm_clock_control_t uart_cc_ss; /* UART Clock control in Deep Sleep State */ const struct arm_clock_control_t uart_cc_dss; }; static DEVICE_API(uart, uart_cmsdk_apb_driver_api); #ifdef CONFIG_UART_INTERRUPT_DRIVEN static void uart_cmsdk_apb_isr(const struct device *dev); #endif /** * @brief Set the baud rate * * This routine set the given baud rate for the UART. * * @param dev UART device struct */ static void baudrate_set(const struct device *dev) { const struct uart_cmsdk_apb_config * const dev_cfg = dev->config; struct uart_cmsdk_apb_dev_data *const dev_data = dev->data; /* * If baudrate and/or sys_clk_freq are 0 the configuration remains * unchanged. It can be useful in case that Zephyr it is run via * a bootloader that brings up the serial and sets the baudrate. */ if ((dev_data->baud_rate != 0U) && (dev_cfg->sys_clk_freq != 0U)) { /* calculate baud rate divisor */ dev_cfg->uart->bauddiv = (dev_cfg->sys_clk_freq / dev_data->baud_rate); } } /** * @brief Initialize UART channel * * This routine is called to reset the chip in a quiescent state. * It is assumed that this function is called only once per UART. * * @param dev UART device struct * * @return 0 */ static int uart_cmsdk_apb_init(const struct device *dev) { const struct uart_cmsdk_apb_config * const dev_cfg = dev->config; #ifdef CONFIG_CLOCK_CONTROL /* Enable clock for subsystem */ const struct device *const clk = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR_BY_IDX(0, 1)); struct uart_cmsdk_apb_dev_data * const data = dev->data; if (!device_is_ready(clk)) { return -ENODEV; } #ifdef CONFIG_SOC_SERIES_BEETLE clock_control_on(clk, (clock_control_subsys_t) &data->uart_cc_as); clock_control_on(clk, (clock_control_subsys_t) &data->uart_cc_ss); clock_control_on(clk, (clock_control_subsys_t) &data->uart_cc_dss); #endif /* CONFIG_SOC_SERIES_BEETLE */ #endif /* CONFIG_CLOCK_CONTROL */ /* Set baud rate */ baudrate_set(dev); /* Enable receiver and transmitter */ dev_cfg->uart->ctrl = UART_RX_EN | UART_TX_EN; #ifdef CONFIG_UART_INTERRUPT_DRIVEN dev_cfg->irq_config_func(dev); #endif return 0; } /** * @brief Poll the device for input. * * @param dev UART device struct * @param c Pointer to character * * @return 0 if a character arrived, -1 if the input buffer if empty. */ static int uart_cmsdk_apb_poll_in(const struct device *dev, unsigned char *c) { const struct uart_cmsdk_apb_config *dev_cfg = dev->config; /* If the receiver is not ready returns -1 */ if (!(dev_cfg->uart->state & UART_RX_BF)) { return -1; } /* got a character */ *c = (unsigned char)dev_cfg->uart->data; return 0; } /** * @brief Output a character in polled mode. * * Checks if the transmitter is empty. If empty, a character is written to * the data register. * * @param dev UART device struct * @param c Character to send */ static void uart_cmsdk_apb_poll_out(const struct device *dev, unsigned char c) { const struct uart_cmsdk_apb_config *dev_cfg = dev->config; /* Wait for transmitter to be ready */ while (dev_cfg->uart->state & UART_TX_BF) { ; /* Wait */ } /* Send a character */ dev_cfg->uart->data = (uint32_t)c; } #ifdef CONFIG_UART_INTERRUPT_DRIVEN /** * @brief Fill FIFO with data * * @param dev UART device struct * @param tx_data Data to transmit * @param len Number of bytes to send * * @return the number of characters that have been read */ static int uart_cmsdk_apb_fifo_fill(const struct device *dev, const uint8_t *tx_data, int len) { const struct uart_cmsdk_apb_config *dev_cfg = dev->config; /* * No hardware FIFO present. Only 1 byte * to write if TX buffer is empty. */ if (len && !(dev_cfg->uart->state & UART_TX_BF)) { /* * Clear TX int. pending flag before pushing byte to "FIFO". * If TX interrupt is enabled the UART_TX_IN bit will be set * again automatically by the UART hardware machinery once * the "FIFO" becomes empty again. */ dev_cfg->uart->intclear = UART_TX_IN; dev_cfg->uart->data = *tx_data; return 1; } return 0; } /** * @brief Read data from FIFO * * @param dev UART device struct * @param rx_data Pointer to data container * @param size Container size in bytes * * @return the number of characters that have been read */ static int uart_cmsdk_apb_fifo_read(const struct device *dev, uint8_t *rx_data, const int size) { const struct uart_cmsdk_apb_config *dev_cfg = dev->config; /* * No hardware FIFO present. Only 1 byte * to read if RX buffer is full. */ if (size && dev_cfg->uart->state & UART_RX_BF) { /* * Clear RX int. pending flag before popping byte from "FIFO". * If RX interrupt is enabled the UART_RX_IN bit will be set * again automatically by the UART hardware machinery once * the "FIFO" becomes full again. */ dev_cfg->uart->intclear = UART_RX_IN; *rx_data = (unsigned char)dev_cfg->uart->data; return 1; } return 0; } /** * @brief Enable TX interrupt * * @param dev UART device struct */ static void uart_cmsdk_apb_irq_tx_enable(const struct device *dev) { const struct uart_cmsdk_apb_config *dev_cfg = dev->config; unsigned int key; dev_cfg->uart->ctrl |= UART_TX_IN_EN; /* The expectation is that TX is a level interrupt, active for as * long as TX buffer is empty. But in CMSDK UART it's an edge * interrupt, firing on a state change of TX buffer from full to * empty. So, we need to "prime" it here by calling ISR directly, * to get interrupt processing going, as there is no previous * full state to allow a transition from full to empty buffer * that will trigger a TX interrupt. */ key = irq_lock(); uart_cmsdk_apb_isr(dev); irq_unlock(key); } /** * @brief Disable TX interrupt * * @param dev UART device struct */ static void uart_cmsdk_apb_irq_tx_disable(const struct device *dev) { const struct uart_cmsdk_apb_config *dev_cfg = dev->config; dev_cfg->uart->ctrl &= ~UART_TX_IN_EN; /* Clear any pending TX interrupt after disabling it */ dev_cfg->uart->intclear = UART_TX_IN; } /** * @brief Verify if Tx interrupt has been raised * * @param dev UART device struct * * @return 1 if an interrupt is ready, 0 otherwise */ static int uart_cmsdk_apb_irq_tx_ready(const struct device *dev) { const struct uart_cmsdk_apb_config *dev_cfg = dev->config; return !(dev_cfg->uart->state & UART_TX_BF); } /** * @brief Enable RX interrupt * * @param dev UART device struct */ static void uart_cmsdk_apb_irq_rx_enable(const struct device *dev) { const struct uart_cmsdk_apb_config *dev_cfg = dev->config; dev_cfg->uart->ctrl |= UART_RX_IN_EN; } /** * @brief Disable RX interrupt * * @param dev UART device struct */ static void uart_cmsdk_apb_irq_rx_disable(const struct device *dev) { const struct uart_cmsdk_apb_config *dev_cfg = dev->config; dev_cfg->uart->ctrl &= ~UART_RX_IN_EN; /* Clear any pending RX interrupt after disabling it */ dev_cfg->uart->intclear = UART_RX_IN; } /** * @brief Verify if Tx complete interrupt has been raised * * @param dev UART device struct * * @return 1 if an interrupt is ready, 0 otherwise */ static int uart_cmsdk_apb_irq_tx_complete(const struct device *dev) { return uart_cmsdk_apb_irq_tx_ready(dev); } /** * @brief Verify if Rx interrupt has been raised * * @param dev UART device struct * * @return 1 if an interrupt is ready, 0 otherwise */ static int uart_cmsdk_apb_irq_rx_ready(const struct device *dev) { const struct uart_cmsdk_apb_config *dev_cfg = dev->config; return (dev_cfg->uart->state & UART_RX_BF) == UART_RX_BF; } /** * @brief Enable error interrupt * * @param dev UART device struct */ static void uart_cmsdk_apb_irq_err_enable(const struct device *dev) { ARG_UNUSED(dev); } /** * @brief Disable error interrupt * * @param dev UART device struct */ static void uart_cmsdk_apb_irq_err_disable(const struct device *dev) { ARG_UNUSED(dev); } /** * @brief Verify if Tx or Rx interrupt is pending * * @param dev UART device struct * * @return 1 if Tx or Rx interrupt is pending, 0 otherwise */ static int uart_cmsdk_apb_irq_is_pending(const struct device *dev) { const struct uart_cmsdk_apb_config *dev_cfg = dev->config; return (dev_cfg->uart->intstatus & (UART_RX_IN | UART_TX_IN)); } /** * @brief Update the interrupt status * * @param dev UART device struct * * @return always 1 */ static int uart_cmsdk_apb_irq_update(const struct device *dev) { return 1; } /** * @brief Set the callback function pointer for an Interrupt. * * @param dev UART device structure * @param cb Callback function pointer. */ static void uart_cmsdk_apb_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb, void *cb_data) { struct uart_cmsdk_apb_dev_data *data = dev->data; data->irq_cb = cb; data->irq_cb_data = cb_data; } /** * @brief Interrupt service routine. * * Calls the callback function, if exists. * * @param arg argument to interrupt service routine. */ void uart_cmsdk_apb_isr(const struct device *dev) { struct uart_cmsdk_apb_dev_data *data = dev->data; /* Verify if the callback has been registered */ if (data->irq_cb) { data->irq_cb(dev, data->irq_cb_data); } } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ static DEVICE_API(uart, uart_cmsdk_apb_driver_api) = { .poll_in = uart_cmsdk_apb_poll_in, .poll_out = uart_cmsdk_apb_poll_out, #ifdef CONFIG_UART_INTERRUPT_DRIVEN .fifo_fill = uart_cmsdk_apb_fifo_fill, .fifo_read = uart_cmsdk_apb_fifo_read, .irq_tx_enable = uart_cmsdk_apb_irq_tx_enable, .irq_tx_disable = uart_cmsdk_apb_irq_tx_disable, .irq_tx_ready = uart_cmsdk_apb_irq_tx_ready, .irq_rx_enable = uart_cmsdk_apb_irq_rx_enable, .irq_rx_disable = uart_cmsdk_apb_irq_rx_disable, .irq_tx_complete = uart_cmsdk_apb_irq_tx_complete, .irq_rx_ready = uart_cmsdk_apb_irq_rx_ready, .irq_err_enable = uart_cmsdk_apb_irq_err_enable, .irq_err_disable = uart_cmsdk_apb_irq_err_disable, .irq_is_pending = uart_cmsdk_apb_irq_is_pending, .irq_update = uart_cmsdk_apb_irq_update, .irq_callback_set = uart_cmsdk_apb_irq_callback_set, #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ }; #if DT_NODE_HAS_STATUS_OKAY(DT_DRV_INST(0)) #ifdef CONFIG_UART_INTERRUPT_DRIVEN static void uart_cmsdk_apb_irq_config_func_0(const struct device *dev); #endif static const struct uart_cmsdk_apb_config uart_cmsdk_apb_dev_cfg_0 = { .uart = (volatile struct uart_cmsdk_apb *)DT_INST_REG_ADDR(0), .sys_clk_freq = DT_INST_PROP_BY_PHANDLE(0, clocks, clock_frequency), #ifdef CONFIG_UART_INTERRUPT_DRIVEN .irq_config_func = uart_cmsdk_apb_irq_config_func_0, #endif }; static struct uart_cmsdk_apb_dev_data uart_cmsdk_apb_dev_data_0 = { .baud_rate = DT_INST_PROP(0, current_speed), .uart_cc_as = {.bus = CMSDK_APB, .state = SOC_ACTIVE, .device = DT_INST_REG_ADDR(0),}, .uart_cc_ss = {.bus = CMSDK_APB, .state = SOC_SLEEP, .device = DT_INST_REG_ADDR(0),}, .uart_cc_dss = {.bus = CMSDK_APB, .state = SOC_DEEPSLEEP, .device = DT_INST_REG_ADDR(0),}, }; DEVICE_DT_INST_DEFINE(0, uart_cmsdk_apb_init, NULL, &uart_cmsdk_apb_dev_data_0, &uart_cmsdk_apb_dev_cfg_0, PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, &uart_cmsdk_apb_driver_api); #ifdef CONFIG_UART_INTERRUPT_DRIVEN #if DT_NUM_IRQS(DT_DRV_INST(0)) == 1 static void uart_cmsdk_apb_irq_config_func_0(const struct device *dev) { IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), uart_cmsdk_apb_isr, DEVICE_DT_INST_GET(0), 0); irq_enable(DT_INST_IRQN(0)); } #else static void uart_cmsdk_apb_irq_config_func_0(const struct device *dev) { IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, tx, irq), DT_INST_IRQ_BY_NAME(0, tx, priority), uart_cmsdk_apb_isr, DEVICE_DT_INST_GET(0), 0); irq_enable(DT_INST_IRQ_BY_NAME(0, tx, irq)); IRQ_CONNECT(DT_INST_IRQ_BY_NAME(0, rx, irq), DT_INST_IRQ_BY_NAME(0, rx, priority), uart_cmsdk_apb_isr, DEVICE_DT_INST_GET(0), 0); irq_enable(DT_INST_IRQ_BY_NAME(0, rx, irq)); } #endif #endif #endif /* DT_NODE_HAS_STATUS_OKAY(DT_DRV_INST(0)) */ #if DT_NODE_HAS_STATUS_OKAY(DT_DRV_INST(1)) #ifdef CONFIG_UART_INTERRUPT_DRIVEN static void uart_cmsdk_apb_irq_config_func_1(const struct device *dev); #endif static const struct uart_cmsdk_apb_config uart_cmsdk_apb_dev_cfg_1 = { .uart = (volatile struct uart_cmsdk_apb *)DT_INST_REG_ADDR(1), .sys_clk_freq = DT_INST_PROP_BY_PHANDLE(1, clocks, clock_frequency), #ifdef CONFIG_UART_INTERRUPT_DRIVEN .irq_config_func = uart_cmsdk_apb_irq_config_func_1, #endif }; static struct uart_cmsdk_apb_dev_data uart_cmsdk_apb_dev_data_1 = { .baud_rate = DT_INST_PROP(1, current_speed), .uart_cc_as = {.bus = CMSDK_APB, .state = SOC_ACTIVE, .device = DT_INST_REG_ADDR(1),}, .uart_cc_ss = {.bus = CMSDK_APB, .state = SOC_SLEEP, .device = DT_INST_REG_ADDR(1),}, .uart_cc_dss = {.bus = CMSDK_APB, .state = SOC_DEEPSLEEP, .device = DT_INST_REG_ADDR(1),}, }; DEVICE_DT_INST_DEFINE(1, uart_cmsdk_apb_init, NULL, &uart_cmsdk_apb_dev_data_1, &uart_cmsdk_apb_dev_cfg_1, PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, &uart_cmsdk_apb_driver_api); #ifdef CONFIG_UART_INTERRUPT_DRIVEN #if DT_NUM_IRQS(DT_DRV_INST(1)) == 1 static void uart_cmsdk_apb_irq_config_func_1(const struct device *dev) { IRQ_CONNECT(DT_INST_IRQN(1), DT_INST_IRQ(1, priority), uart_cmsdk_apb_isr, DEVICE_DT_INST_GET(1), 0); irq_enable(DT_INST_IRQN(1)); } #else static void uart_cmsdk_apb_irq_config_func_1(const struct device *dev) { IRQ_CONNECT(DT_INST_IRQ_BY_NAME(1, tx, irq), DT_INST_IRQ_BY_NAME(1, tx, priority), uart_cmsdk_apb_isr, DEVICE_DT_INST_GET(1), 0); irq_enable(DT_INST_IRQ_BY_NAME(1, tx, irq)); IRQ_CONNECT(DT_INST_IRQ_BY_NAME(1, rx, irq), DT_INST_IRQ_BY_NAME(1, rx, priority), uart_cmsdk_apb_isr, DEVICE_DT_INST_GET(1), 0); irq_enable(DT_INST_IRQ_BY_NAME(1, rx, irq)); } #endif #endif #endif /* DT_NODE_HAS_STATUS_OKAY(DT_DRV_INST(1)) */ #if DT_NODE_HAS_STATUS_OKAY(DT_DRV_INST(2)) #ifdef CONFIG_UART_INTERRUPT_DRIVEN static void uart_cmsdk_apb_irq_config_func_2(const struct device *dev); #endif static const struct uart_cmsdk_apb_config uart_cmsdk_apb_dev_cfg_2 = { .uart = (volatile struct uart_cmsdk_apb *)DT_INST_REG_ADDR(2), .sys_clk_freq = DT_INST_PROP_BY_PHANDLE(2, clocks, clock_frequency), #ifdef CONFIG_UART_INTERRUPT_DRIVEN .irq_config_func = uart_cmsdk_apb_irq_config_func_2, #endif }; static struct uart_cmsdk_apb_dev_data uart_cmsdk_apb_dev_data_2 = { .baud_rate = DT_INST_PROP(2, current_speed), .uart_cc_as = {.bus = CMSDK_APB, .state = SOC_ACTIVE, .device = DT_INST_REG_ADDR(2),}, .uart_cc_ss = {.bus = CMSDK_APB, .state = SOC_SLEEP, .device = DT_INST_REG_ADDR(2),}, .uart_cc_dss = {.bus = CMSDK_APB, .state = SOC_DEEPSLEEP, .device = DT_INST_REG_ADDR(2),}, }; DEVICE_DT_INST_DEFINE(2, uart_cmsdk_apb_init, NULL, &uart_cmsdk_apb_dev_data_2, &uart_cmsdk_apb_dev_cfg_2, PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, &uart_cmsdk_apb_driver_api); #ifdef CONFIG_UART_INTERRUPT_DRIVEN #if DT_NUM_IRQS(DT_DRV_INST(2)) == 1 static void uart_cmsdk_apb_irq_config_func_2(const struct device *dev) { IRQ_CONNECT(DT_INST_IRQN(2), DT_INST_IRQ_BY_NAME(2, priority, irq), uart_cmsdk_apb_isr, DEVICE_DT_INST_GET(2), 0); irq_enable(DT_INST_IRQN(2)); } #else static void uart_cmsdk_apb_irq_config_func_2(const struct device *dev) { IRQ_CONNECT(DT_INST_IRQ_BY_NAME(2, tx, irq), DT_INST_IRQ_BY_NAME(2, tx, priority), uart_cmsdk_apb_isr, DEVICE_DT_INST_GET(2), 0); irq_enable(DT_INST_IRQ_BY_NAME(2, tx, irq)); IRQ_CONNECT(DT_INST_IRQ_BY_NAME(2, rx, irq), DT_INST_IRQ_BY_NAME(2, rx, priority), uart_cmsdk_apb_isr, DEVICE_DT_INST_GET(2), 0); irq_enable(DT_INST_IRQ_BY_NAME(2, rx, irq)); } #endif #endif #endif /* DT_NODE_HAS_STATUS_OKAY(DT_DRV_INST(2)) */ #if DT_NODE_HAS_STATUS_OKAY(DT_DRV_INST(3)) #ifdef CONFIG_UART_INTERRUPT_DRIVEN static void uart_cmsdk_apb_irq_config_func_3(const struct device *dev); #endif static const struct uart_cmsdk_apb_config uart_cmsdk_apb_dev_cfg_3 = { .uart = (volatile struct uart_cmsdk_apb *)DT_INST_REG_ADDR(3), .sys_clk_freq = DT_INST_PROP_BY_PHANDLE(3, clocks, clock_frequency), #ifdef CONFIG_UART_INTERRUPT_DRIVEN .irq_config_func = uart_cmsdk_apb_irq_config_func_3, #endif }; static struct uart_cmsdk_apb_dev_data uart_cmsdk_apb_dev_data_3 = { .baud_rate = DT_INST_PROP(3, current_speed), .uart_cc_as = {.bus = CMSDK_APB, .state = SOC_ACTIVE, .device = DT_INST_REG_ADDR(3),}, .uart_cc_ss = {.bus = CMSDK_APB, .state = SOC_SLEEP, .device = DT_INST_REG_ADDR(3),}, .uart_cc_dss = {.bus = CMSDK_APB, .state = SOC_DEEPSLEEP, .device = DT_INST_REG_ADDR(3),}, }; DEVICE_DT_INST_DEFINE(3, uart_cmsdk_apb_init, NULL, &uart_cmsdk_apb_dev_data_3, &uart_cmsdk_apb_dev_cfg_3, PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, &uart_cmsdk_apb_driver_api); #ifdef CONFIG_UART_INTERRUPT_DRIVEN #if DT_NUM_IRQS(DT_DRV_INST(3)) == 1 static void uart_cmsdk_apb_irq_config_func_3(const struct device *dev) { IRQ_CONNECT(DT_INST_IRQN(3), DT_INST_IRQ(3, priority), uart_cmsdk_apb_isr, DEVICE_DT_INST_GET(3), 0); irq_enable(DT_INST_IRQN(3)); } #else static void uart_cmsdk_apb_irq_config_func_3(const struct device *dev) { IRQ_CONNECT(DT_INST_IRQ_BY_NAME(3, tx, irq), DT_INST_IRQ_BY_NAME(3, tx, priority), uart_cmsdk_apb_isr, DEVICE_DT_INST_GET(3), 0); irq_enable(DT_INST_IRQ_BY_NAME(3, tx, irq)); IRQ_CONNECT(DT_INST_IRQ_BY_NAME(3, rx, irq), DT_INST_IRQ_BY_NAME(3, rx, priority), uart_cmsdk_apb_isr, DEVICE_DT_INST_GET(3), 0); irq_enable(DT_INST_IRQ_BY_NAME(3, rx, irq)); } #endif #endif #endif /* DT_NODE_HAS_STATUS_OKAY(DT_DRV_INST(3)) */ #if DT_NODE_HAS_STATUS_OKAY(DT_DRV_INST(4)) #ifdef CONFIG_UART_INTERRUPT_DRIVEN static void uart_cmsdk_apb_irq_config_func_4(const struct device *dev); #endif static const struct uart_cmsdk_apb_config uart_cmsdk_apb_dev_cfg_4 = { .uart = (volatile struct uart_cmsdk_apb *)DT_INST_REG_ADDR(4), .sys_clk_freq = DT_INST_PROP_BY_PHANDLE(4, clocks, clock_frequency), #ifdef CONFIG_UART_INTERRUPT_DRIVEN .irq_config_func = uart_cmsdk_apb_irq_config_func_4, #endif }; static struct uart_cmsdk_apb_dev_data uart_cmsdk_apb_dev_data_4 = { .baud_rate = DT_INST_PROP(4, current_speed), .uart_cc_as = {.bus = CMSDK_APB, .state = SOC_ACTIVE, .device = DT_INST_REG_ADDR(4),}, .uart_cc_ss = {.bus = CMSDK_APB, .state = SOC_SLEEP, .device = DT_INST_REG_ADDR(4),}, .uart_cc_dss = {.bus = CMSDK_APB, .state = SOC_DEEPSLEEP, .device = DT_INST_REG_ADDR(4),}, }; DEVICE_DT_INST_DEFINE(4, uart_cmsdk_apb_init, NULL, &uart_cmsdk_apb_dev_data_4, &uart_cmsdk_apb_dev_cfg_4, PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, &uart_cmsdk_apb_driver_api); #ifdef CONFIG_UART_INTERRUPT_DRIVEN #if DT_NUM_IRQS(DT_DRV_INST(4)) == 1 static void uart_cmsdk_apb_irq_config_func_4(const struct device *dev) { IRQ_CONNECT(DT_INST_IRQN(4), DT_INST_IRQ_BY_NAME(4, priority, irq), uart_cmsdk_apb_isr, DEVICE_DT_INST_GET(4), 0); irq_enable(DT_INST_IRQN(4)); } #else static void uart_cmsdk_apb_irq_config_func_4(const struct device *dev) { IRQ_CONNECT(DT_INST_IRQ_BY_NAME(4, tx, irq), DT_INST_IRQ_BY_NAME(4, tx, priority), uart_cmsdk_apb_isr, DEVICE_DT_INST_GET(4), 0); irq_enable(DT_INST_IRQ_BY_NAME(4, tx, irq)); IRQ_CONNECT(DT_INST_IRQ_BY_NAME(4, rx, irq), DT_INST_IRQ_BY_NAME(4, rx, priority), uart_cmsdk_apb_isr, DEVICE_DT_INST_GET(4), 0); irq_enable(DT_INST_IRQ_BY_NAME(4, rx, irq)); } #endif #endif #endif /* DT_NODE_HAS_STATUS_OKAY(DT_DRV_INST(4)) */